Skip to main content
Erschienen in: Clinical Pharmacokinetics 6/2005

01.06.2005 | Review Article

Clinical Pharmacokinetics of Atomoxetine

verfasst von: John-Michael Sauer, Barbara J. Ring, Dr Jennifer W. Witcher

Erschienen in: Clinical Pharmacokinetics | Ausgabe 6/2005

Einloggen, um Zugang zu erhalten

Abstract

Atomoxetine (Strattera®), a potent and selective inhibitor of the presynaptic norepinephrine transporter, is used clinically for the treatment of attention-deficit hyperactivity disorder (ADHD) in children, adolescents and adults. Atomoxetine has high aqueous solubility and biological membrane permeability that facilitates its rapid and complete absorption after oral administration. Absolute oral bioavailability ranges from 63 to 94%, which is governed by the extent of its first-pass metabolism. Three oxidative metabolic pathways are involved in the systemic clearance of atomoxetine: aromatic ring-hydroxylation, benzylic hydroxylation and N-demethylation. Aromatic ring-hydroxylation results in the formation of the primary oxidative metabolite of atomoxetine, 4-hydroxyatomoxetine, which is subsequently glucuronidated and excreted in urine. The formation of 4-hydroxy-atomoxetine is primarily mediated by the polymorphically expressed enzyme cytochrome P450 (CYP) 2D6. This results in two distinct populations of individuals: those exhibiting active metabolic capabilities (CYP2D6 extensive metabolisers) and those exhibiting poor metabolic capabilities (CYP2D6 poor metabolisers) for atomoxetine.
The oral bioavailability and clearance of atomoxetine are influenced by the activity of CYP2D6; nonetheless, plasma pharmacokinetic parameters are predictable in extensive and poor metaboliser patients. After single oral dose, atomoxetine reaches maximum plasma concentration within about 1–2 hours of administration. In extensive metabolisers, atomoxetine has a plasma half-life of 5.2 hours, while in poor metabolisers, atomoxetine has a plasma half-life of 21.6 hours. The systemic plasma clearance of atomoxetine is 0.35 and 0.03 L/h/kg in extensive and poor metabolisers, respectively. Correspondingly, the average steady-state plasma concentrations are approximately 10-fold higher in poor metabolisers compared with extensive metabolisers. Upon multiple dosing there is plasma accumulation of atomoxetine in poor metabolisers, but very little accumulation in extensive metabolisers. The volume of distribution is 0.85 L/kg, indicating that atomoxetine is distributed in total body water in both extensive and poor metabolisers. Atomoxetine is highly bound to plasma albumin (approximately 99% bound in plasma). Although steady-state concentrations of atomoxetine in poor metabolisers are higher than those in extensive metabolisers following administration of the same mg/kg/day dosage, the frequency and severity of adverse events are similar regardless of CYP2D6 phenotype.
Atomoxetine administration does not inhibit or induce the clearance of other drugs metabolised by CYP enzymes. In extensive metabolisers, potent and selective CYP2D6 inhibitors reduce atomoxetine clearance; however, administration of CYP inhibitors to poor metabolisers has no effect on the steady-state plasma concentrations of atomoxetine.
Fußnoten
1
The use of trade names is for product identification purposes only and does not imply endorsement.
 
Literatur
1.
Zurück zum Zitat Spencer T, Biederman J, Wilens T, et al. Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle. Child Adol Psychiatry 1996; 35: 409–32CrossRef Spencer T, Biederman J, Wilens T, et al. Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle. Child Adol Psychiatry 1996; 35: 409–32CrossRef
2.
Zurück zum Zitat Swanson JM, Sergeant JA, Sonuga-Barke EJS, et al. Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet 1998; 351: 429–33PubMedCrossRef Swanson JM, Sergeant JA, Sonuga-Barke EJS, et al. Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet 1998; 351: 429–33PubMedCrossRef
3.
Zurück zum Zitat Weiss G. Follow-up studies on outcome of hyperactive children. Psychopharmacol Bull 1985; 21: 169–77PubMed Weiss G. Follow-up studies on outcome of hyperactive children. Psychopharmacol Bull 1985; 21: 169–77PubMed
4.
Zurück zum Zitat Pary R, Lewis S, Matuschka PR, et al. Attention deficit disorder in adults. Ann Clin Psychiatry 2002; 14: 105–11PubMed Pary R, Lewis S, Matuschka PR, et al. Attention deficit disorder in adults. Ann Clin Psychiatry 2002; 14: 105–11PubMed
5.
Zurück zum Zitat Adler LA, Chua HC. Management of ADHD in adults. J Clin Psychiatry 2002; 63 Suppl. 12: 29–35PubMed Adler LA, Chua HC. Management of ADHD in adults. J Clin Psychiatry 2002; 63 Suppl. 12: 29–35PubMed
6.
Zurück zum Zitat Barkley FA, Fischer M, Edelbrock CS, et al. The adolescent outcome of hyperactive children diagnosed by research criteria: I. An 8-year prospective follow-up study. J Am Acad Child Adolesc Psychiatry 1990; 29: 546–57PubMedCrossRef Barkley FA, Fischer M, Edelbrock CS, et al. The adolescent outcome of hyperactive children diagnosed by research criteria: I. An 8-year prospective follow-up study. J Am Acad Child Adolesc Psychiatry 1990; 29: 546–57PubMedCrossRef
7.
Zurück zum Zitat Munir K, Biederman J, Knee D. Psychiatric comorbidity in patients with attention deficit disorder: a controlled study. J Am Acad Child Adolesc Psychiatry 1987; 26: 844–8PubMedCrossRef Munir K, Biederman J, Knee D. Psychiatric comorbidity in patients with attention deficit disorder: a controlled study. J Am Acad Child Adolesc Psychiatry 1987; 26: 844–8PubMedCrossRef
8.
Zurück zum Zitat Biederman J, Newcorn J, Sprich S. Comorbidity of attention deficit hyperactivity disorder with conduct, depressive, anxiety, and other disorders. Am J Psychiatry 1991; 148: 564–77PubMed Biederman J, Newcorn J, Sprich S. Comorbidity of attention deficit hyperactivity disorder with conduct, depressive, anxiety, and other disorders. Am J Psychiatry 1991; 148: 564–77PubMed
9.
Zurück zum Zitat Spencer TJ, Biederman J, Wilens TE, et al. Overview and neurobiology of attention-deficit/hyperactivity disorder. J Clin Psychiatry 2002; 63 Suppl. 12: 3–9PubMed Spencer TJ, Biederman J, Wilens TE, et al. Overview and neurobiology of attention-deficit/hyperactivity disorder. J Clin Psychiatry 2002; 63 Suppl. 12: 3–9PubMed
10.
Zurück zum Zitat Volkow ND, Fowler JS, Wang G-J, et al. Role of dopamine in the therapeutic and reinforcing effects of methylphenidate in humans: results from imaging studies. Eur Neuropsychopharmacol 2002; 12: 557–66PubMedCrossRef Volkow ND, Fowler JS, Wang G-J, et al. Role of dopamine in the therapeutic and reinforcing effects of methylphenidate in humans: results from imaging studies. Eur Neuropsychopharmacol 2002; 12: 557–66PubMedCrossRef
11.
Zurück zum Zitat Giros B, Caron MG. Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 1993; 14: 43–9PubMedCrossRef Giros B, Caron MG. Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 1993; 14: 43–9PubMedCrossRef
12.
Zurück zum Zitat Patrick KS, Markowitz JS. Pharmacology of methylphenidate, amphetamine enantiomers and pemoline in attention-deficit hyperactivity disorder: a review. Hum Psychopharmacol 1997; 12: 527–46CrossRef Patrick KS, Markowitz JS. Pharmacology of methylphenidate, amphetamine enantiomers and pemoline in attention-deficit hyperactivity disorder: a review. Hum Psychopharmacol 1997; 12: 527–46CrossRef
13.
Zurück zum Zitat Dackis CA, Gold MS. Addictiveness of central stimulants. Adv Alcohol Subst Abuse 1990; 9: 9–26PubMedCrossRef Dackis CA, Gold MS. Addictiveness of central stimulants. Adv Alcohol Subst Abuse 1990; 9: 9–26PubMedCrossRef
14.
Zurück zum Zitat Markowitz JS, Patrick KS. Pharmacokinetic and pharmacodynamic drug interactions in the treatment of attention-deficit hyperactivity disorder. Clin Pharmacokinet 2001; 40: 753–72PubMedCrossRef Markowitz JS, Patrick KS. Pharmacokinetic and pharmacodynamic drug interactions in the treatment of attention-deficit hyperactivity disorder. Clin Pharmacokinet 2001; 40: 753–72PubMedCrossRef
15.
Zurück zum Zitat Pelham WE, Gnagy EM, Burrows-Maclean L, et al. Once-a-day Concerta methylphenidate versus three-times-daily methylphenidate in laboratory and natural settings [abstract]. Pediatrics 2001; 107: E105PubMedCrossRef Pelham WE, Gnagy EM, Burrows-Maclean L, et al. Once-a-day Concerta methylphenidate versus three-times-daily methylphenidate in laboratory and natural settings [abstract]. Pediatrics 2001; 107: E105PubMedCrossRef
16.
Zurück zum Zitat Lyseng-Williamson KA, Keating GM. Extended-release methylphenidate (Ritalin LA). Drugs 2002; 62: 2251–9PubMedCrossRef Lyseng-Williamson KA, Keating GM. Extended-release methylphenidate (Ritalin LA). Drugs 2002; 62: 2251–9PubMedCrossRef
17.
Zurück zum Zitat Tulloch SJ, Zhang Y, McLean A, et al. SLI381 (Adderall XR), a two-component, extended-release formulation of mixed amphetamine salts: bioavailability of three test formulations and comparison of fasted, fed, and sprinkled administration. Pharmacotherapy 2002; 22: 1405–15PubMedCrossRef Tulloch SJ, Zhang Y, McLean A, et al. SLI381 (Adderall XR), a two-component, extended-release formulation of mixed amphetamine salts: bioavailability of three test formulations and comparison of fasted, fed, and sprinkled administration. Pharmacotherapy 2002; 22: 1405–15PubMedCrossRef
18.
Zurück zum Zitat Wu D, Otton SV, Inaba T, et al. Interactions of amphetamine analogs with human liver CYP2D6. Biochem Pharmacol 1997; 53: 1605–12PubMedCrossRef Wu D, Otton SV, Inaba T, et al. Interactions of amphetamine analogs with human liver CYP2D6. Biochem Pharmacol 1997; 53: 1605–12PubMedCrossRef
19.
Zurück zum Zitat Nehra A, Mullick R, Ishak KG, et al. Pemoline-associated hepatic injury. Gastroenterology 1990; 99: 1517–9PubMed Nehra A, Mullick R, Ishak KG, et al. Pemoline-associated hepatic injury. Gastroenterology 1990; 99: 1517–9PubMed
20.
Zurück zum Zitat Popper CW. Antidepressants in the treatment of attention-deficit/hyperactivity disorder. J Clin Psychiatry 1997; 58 Suppl. 14: 14–29PubMed Popper CW. Antidepressants in the treatment of attention-deficit/hyperactivity disorder. J Clin Psychiatry 1997; 58 Suppl. 14: 14–29PubMed
21.
Zurück zum Zitat Wong DT, Threlkeld PG, Best KL, et al. A new inhibitor of norepinephrine uptake devoid of affinity for receptors in rat brain. J Pharmacol Exp Ther 1982; 222: 61–5PubMed Wong DT, Threlkeld PG, Best KL, et al. A new inhibitor of norepinephrine uptake devoid of affinity for receptors in rat brain. J Pharmacol Exp Ther 1982; 222: 61–5PubMed
22.
Zurück zum Zitat Bymaster FP, Katner JS, Nelson DL, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002; 27: 699–711PubMedCrossRef Bymaster FP, Katner JS, Nelson DL, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002; 27: 699–711PubMedCrossRef
23.
Zurück zum Zitat Spencer T, Biederman J, Wilens T, et al. Effectiveness and tolerability of tomoxetine in adults with attention deficit hyper-activity disorder. Am J Psychiatry 1998; 155: 693–5PubMed Spencer T, Biederman J, Wilens T, et al. Effectiveness and tolerability of tomoxetine in adults with attention deficit hyper-activity disorder. Am J Psychiatry 1998; 155: 693–5PubMed
24.
Zurück zum Zitat Michelson D, Adler L, Spencer T, et al. Atomoxetine in adults with ADHD: two randomized, placebo-controlled studies. Biol Psychiatry 2003; 53: 112–20PubMedCrossRef Michelson D, Adler L, Spencer T, et al. Atomoxetine in adults with ADHD: two randomized, placebo-controlled studies. Biol Psychiatry 2003; 53: 112–20PubMedCrossRef
25.
Zurück zum Zitat Michelson D, Faries DE, Wernicke J, et al. Atomoxetine in the treatment of children and adolescents with ADHD: a randomized, placebo-controlled dose-response study [abstract]. Pediatrics 2001; 108: E83PubMedCrossRef Michelson D, Faries DE, Wernicke J, et al. Atomoxetine in the treatment of children and adolescents with ADHD: a randomized, placebo-controlled dose-response study [abstract]. Pediatrics 2001; 108: E83PubMedCrossRef
26.
Zurück zum Zitat Michelson D, Allen AJ, Busner J, et al. Once-daily atomoxetine treatment for children and adolescents with attention deficit hyperactivity disorder: a randomized, placebo-controlled study. Am J Psychiatry 2002; 159: 1896–901PubMedCrossRef Michelson D, Allen AJ, Busner J, et al. Once-daily atomoxetine treatment for children and adolescents with attention deficit hyperactivity disorder: a randomized, placebo-controlled study. Am J Psychiatry 2002; 159: 1896–901PubMedCrossRef
27.
Zurück zum Zitat Kratochvil CJ, Heiligenstein JH, Dittmann R, et al. Atomoxetine and methylphenidate treatment in children with ADHD: a prospective, randomized, open-label trial. Am Acad Child Adolesc Psychiatry 2002; 41: 776–84CrossRef Kratochvil CJ, Heiligenstein JH, Dittmann R, et al. Atomoxetine and methylphenidate treatment in children with ADHD: a prospective, randomized, open-label trial. Am Acad Child Adolesc Psychiatry 2002; 41: 776–84CrossRef
28.
Zurück zum Zitat Sauer JM, Ponsler GD, Mattiuz EL, et al. Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metab Dispos 2003; 31: 98–107PubMedCrossRef Sauer JM, Ponsler GD, Mattiuz EL, et al. Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metab Dispos 2003; 31: 98–107PubMedCrossRef
29.
Zurück zum Zitat Farid NA, Bergstrom RF, Ziege EA, et al. Single-dose and steady-state pharmacokinetics of tomoxetine in normal subjects. J Clin Pharmacol 1985; 25: 296–301PubMed Farid NA, Bergstrom RF, Ziege EA, et al. Single-dose and steady-state pharmacokinetics of tomoxetine in normal subjects. J Clin Pharmacol 1985; 25: 296–301PubMed
30.
Zurück zum Zitat Belle DJ, Ernest S, Sauer JM, et al. Effect of potent CYP2D6 inhibition by paroxetine on atomoxetine pharmacokinetics. J Clin Pharmacol 2002; 42: 1–9 Belle DJ, Ernest S, Sauer JM, et al. Effect of potent CYP2D6 inhibition by paroxetine on atomoxetine pharmacokinetics. J Clin Pharmacol 2002; 42: 1–9
31.
Zurück zum Zitat Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochrome P450: structure, mechanism, and biochemistry. New York: Plenum Press, 1995: 473–535 Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochrome P450: structure, mechanism, and biochemistry. New York: Plenum Press, 1995: 473–535
32.
Zurück zum Zitat Sachse C, Brockmoller J, Bauer S, et al. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–95PubMed Sachse C, Brockmoller J, Bauer S, et al. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–95PubMed
33.
Zurück zum Zitat Agundez JA, Ledesma MC, Ladero JM, et al. Prevalence of CYP2D6 gene duplication and its repercussion on the oxidative phenotype in a white population. Clin Pharmacol Ther 1995; 57: 265–9PubMedCrossRef Agundez JA, Ledesma MC, Ladero JM, et al. Prevalence of CYP2D6 gene duplication and its repercussion on the oxidative phenotype in a white population. Clin Pharmacol Ther 1995; 57: 265–9PubMedCrossRef
34.
Zurück zum Zitat Chalon S, Desager JP, DeSante K, et al. Effect of liver impairment on the pharmacokinetics of atomoxetine and its metabolites. Clin Pharmacol Ther 2003; 73: 178–91PubMedCrossRef Chalon S, Desager JP, DeSante K, et al. Effect of liver impairment on the pharmacokinetics of atomoxetine and its metabolites. Clin Pharmacol Ther 2003; 73: 178–91PubMedCrossRef
35.
Zurück zum Zitat Sauer JM, Long AJ, Ring B, et al. Disposition and metabolic fate of atomoxetine hydrochloride: clinical drug-drug interaction prediction and outcome. J Pharmacol and Exp Ther 2004; 308: 410–8CrossRef Sauer JM, Long AJ, Ring B, et al. Disposition and metabolic fate of atomoxetine hydrochloride: clinical drug-drug interaction prediction and outcome. J Pharmacol and Exp Ther 2004; 308: 410–8CrossRef
36.
Zurück zum Zitat Witcher JW, Long AJ, Sauer JM, et al. Atomoxetine pharmacokinetics in children with attention deficit hyperactivity disorder. J Child Adolesc Psychopharmacol 2003; 13: 53–64PubMedCrossRef Witcher JW, Long AJ, Sauer JM, et al. Atomoxetine pharmacokinetics in children with attention deficit hyperactivity disorder. J Child Adolesc Psychopharmacol 2003; 13: 53–64PubMedCrossRef
37.
Zurück zum Zitat Strattera™ (atomoxetine) package insert (NDA21–411). Indianapolis (IN); Eli Lilly and Co., 2003 Strattera™ (atomoxetine) package insert (NDA21–411). Indianapolis (IN); Eli Lilly and Co., 2003
38.
Zurück zum Zitat Evans DAP, Maghoub A, Sloan TP, et al. A family and population study of the genetic polymorphism of the debrisoquine oxidation in a white British population. J Med Genet 1980; 17: 102–5PubMedCrossRef Evans DAP, Maghoub A, Sloan TP, et al. A family and population study of the genetic polymorphism of the debrisoquine oxidation in a white British population. J Med Genet 1980; 17: 102–5PubMedCrossRef
39.
Zurück zum Zitat Steiner E, Bertilsson L, Sawe J, et al. Polymorphic debrisoquine hydroxylation in 757 Swedish subjects. Clin Pharmacol Ther 1988; 44: 431–5PubMedCrossRef Steiner E, Bertilsson L, Sawe J, et al. Polymorphic debrisoquine hydroxylation in 757 Swedish subjects. Clin Pharmacol Ther 1988; 44: 431–5PubMedCrossRef
40.
Zurück zum Zitat DeSante K, Long A, Smith B, et al. Atomoxetine absolute bioavailability and effects of food, Maalox or omeprazole on atomoxetine bioavailability. AAPS Annual Meeting and Exposition; 2001 Oct 21–25; Denver DeSante K, Long A, Smith B, et al. Atomoxetine absolute bioavailability and effects of food, Maalox or omeprazole on atomoxetine bioavailability. AAPS Annual Meeting and Exposition; 2001 Oct 21–25; Denver
41.
Zurück zum Zitat Herman JL, Kou F, Sauer JM, et al. Tissue disposition of 14C-tomoxetine in male Fischer 344 rats following a single oral dose administration. Society for Whole-Body Autoradiography Meeting; 1999 Apr 18–20; St Louis Herman JL, Kou F, Sauer JM, et al. Tissue disposition of 14C-tomoxetine in male Fischer 344 rats following a single oral dose administration. Society for Whole-Body Autoradiography Meeting; 1999 Apr 18–20; St Louis
42.
Zurück zum Zitat Hamilton MM, Herman JL, Kou F, et al. Placental transfer and milk excretion in rats after a single oral 50 mg/kg dose of [14C]atomoxetine administered as the hydrochloride salt. European Society for Whole Body Autoradiography; 2000, Paris Hamilton MM, Herman JL, Kou F, et al. Placental transfer and milk excretion in rats after a single oral 50 mg/kg dose of [14C]atomoxetine administered as the hydrochloride salt. European Society for Whole Body Autoradiography; 2000, Paris
43.
Zurück zum Zitat Ring BJ, Gillespie JS, Eckstein JA, et al. Identification of the human cytochromes P450 responsible for atomoxetine metabolism. Drug Metab Dispos 2002; 30: 319–23PubMedCrossRef Ring BJ, Gillespie JS, Eckstein JA, et al. Identification of the human cytochromes P450 responsible for atomoxetine metabolism. Drug Metab Dispos 2002; 30: 319–23PubMedCrossRef
44.
Zurück zum Zitat Segel IH. Enzyme kinetics. New York: John Wiley and Sons, Inc., 1975 Segel IH. Enzyme kinetics. New York: John Wiley and Sons, Inc., 1975
45.
Zurück zum Zitat Oberlender R, Nichols DE, Ramachandran PV, et al. Tomoxetine and the stereoselectivity of drug action. J Pharm Pharmacol 1987; 39: 1055–6PubMedCrossRef Oberlender R, Nichols DE, Ramachandran PV, et al. Tomoxetine and the stereoselectivity of drug action. J Pharm Pharmacol 1987; 39: 1055–6PubMedCrossRef
46.
Zurück zum Zitat Gehlert DR, Gackenheimer SL, Robertson DW. Localization of rat brain binding sites for [3H]tomoxetine, an enantiomerically pure ligand for norepinephrine reuptake sites. Neurosci Lett 1993; 157: 203–6PubMedCrossRef Gehlert DR, Gackenheimer SL, Robertson DW. Localization of rat brain binding sites for [3H]tomoxetine, an enantiomerically pure ligand for norepinephrine reuptake sites. Neurosci Lett 1993; 157: 203–6PubMedCrossRef
47.
Zurück zum Zitat Gehlert DR, Schober DA, Gackenheimer SL. Comparison of (R)-[3H]tomoxetine and (R/S)-[3H]nisoxetine binding in rat brain. J Neurochem 1995; 64: 2792–800PubMedCrossRef Gehlert DR, Schober DA, Gackenheimer SL. Comparison of (R)-[3H]tomoxetine and (R/S)-[3H]nisoxetine binding in rat brain. J Neurochem 1995; 64: 2792–800PubMedCrossRef
48.
Zurück zum Zitat Heil SH, Holmes HW, Bickel WK, et al. Comparison of the subjective, physiological, and psychomotor effects of atomoxetine and methylphenidate in light drug users. Drug Alcohol Depend 2002; 67: 149–56PubMedCrossRef Heil SH, Holmes HW, Bickel WK, et al. Comparison of the subjective, physiological, and psychomotor effects of atomoxetine and methylphenidate in light drug users. Drug Alcohol Depend 2002; 67: 149–56PubMedCrossRef
49.
Zurück zum Zitat Wheeler WJ, Bymaster FP, Calligaro DO, et al. Strattera® (atomoxetine HCl), an inhibitor of the norepinephrine transporter. I: the preparation of C-14 labeled atomoxetine, and two of its metabolites; II: The preparation and biological evaluation of some additional putative metabolites of atomoxetine. In: Dean DC, Filer CN, McCarthy KE, editors. Synthesis and applications of isotopically labelled compounds. Vol 8. New York: John Wiley and Sons, Inc., 2004: 357–60 Wheeler WJ, Bymaster FP, Calligaro DO, et al. Strattera® (atomoxetine HCl), an inhibitor of the norepinephrine transporter. I: the preparation of C-14 labeled atomoxetine, and two of its metabolites; II: The preparation and biological evaluation of some additional putative metabolites of atomoxetine. In: Dean DC, Filer CN, McCarthy KE, editors. Synthesis and applications of isotopically labelled compounds. Vol 8. New York: John Wiley and Sons, Inc., 2004: 357–60
50.
Zurück zum Zitat Fuller RW, Hemrick-Luecke SK. Antagonism by tomoxetine of the depletion of norepinephrine and epinephrine in rat brain by alpha-methyl-m-tyrosine. Res Commun Chem Path Pharmacol 1983; 41: 169–72 Fuller RW, Hemrick-Luecke SK. Antagonism by tomoxetine of the depletion of norepinephrine and epinephrine in rat brain by alpha-methyl-m-tyrosine. Res Commun Chem Path Pharmacol 1983; 41: 169–72
51.
Zurück zum Zitat Mattiuz EL, Ponsler GD, Barbuch RJ, et al. Disposition and metabolic fate of atomoxetine hydrochloride: pharmacokinetics, metabolism, and excretion in the fischer 344 rat and beagle dog. Drug Metab Dispos 2003; 31: 88–97PubMedCrossRef Mattiuz EL, Ponsler GD, Barbuch RJ, et al. Disposition and metabolic fate of atomoxetine hydrochloride: pharmacokinetics, metabolism, and excretion in the fischer 344 rat and beagle dog. Drug Metab Dispos 2003; 31: 88–97PubMedCrossRef
52.
Zurück zum Zitat Tidey JW, Bergman J. Drug discrimination in methamphetamine-trained monkeys: agonist and antagonist effects of dopaminergic drugs. J Pharmacol Exp Ther 1998; 285: 1163–74PubMed Tidey JW, Bergman J. Drug discrimination in methamphetamine-trained monkeys: agonist and antagonist effects of dopaminergic drugs. J Pharmacol Exp Ther 1998; 285: 1163–74PubMed
53.
Zurück zum Zitat Wernicke JF, Kratochvil CJ. Safety profile of atomoxetine in the treatment of children and adolescents with ADHD. J Clin Psychiatry 2002; 63 Suppl. 12: 50–5PubMed Wernicke JF, Kratochvil CJ. Safety profile of atomoxetine in the treatment of children and adolescents with ADHD. J Clin Psychiatry 2002; 63 Suppl. 12: 50–5PubMed
54.
Zurück zum Zitat Wernicke JF, Allen AJ, Faries D, et al. Safety of tomoxetine in clinical trials [abstract]. Biol Psychiatry 2001; 49(8 Suppl.): 159S Wernicke JF, Allen AJ, Faries D, et al. Safety of tomoxetine in clinical trials [abstract]. Biol Psychiatry 2001; 49(8 Suppl.): 159S
55.
Zurück zum Zitat Spencer T, Heiligenstein JH, Biederman J, et al. Results from 2 proof-of-concept, placebo-controlled studies of atomoxetine in children with attention-deficit/hyperactivity disorder. J Clin Psychiatry 2002; 63: 1140–7PubMedCrossRef Spencer T, Heiligenstein JH, Biederman J, et al. Results from 2 proof-of-concept, placebo-controlled studies of atomoxetine in children with attention-deficit/hyperactivity disorder. J Clin Psychiatry 2002; 63: 1140–7PubMedCrossRef
56.
Zurück zum Zitat Wernicke JF, Faries D, Girod D, et al. Cardiovascular effects of atomoxetine in children, adolescents, and adults. Drug Saf 2003; 26: 729–40PubMedCrossRef Wernicke JF, Faries D, Girod D, et al. Cardiovascular effects of atomoxetine in children, adolescents, and adults. Drug Saf 2003; 26: 729–40PubMedCrossRef
57.
Zurück zum Zitat Chouinard G, Annable L, Bradwejn J. An early phase II clinical trial of tomoxetine (LY139603) in the treatment of newly admitted depressed patients. Psychopharmacologia 1984; 83: 126–8CrossRef Chouinard G, Annable L, Bradwejn J. An early phase II clinical trial of tomoxetine (LY139603) in the treatment of newly admitted depressed patients. Psychopharmacologia 1984; 83: 126–8CrossRef
58.
Zurück zum Zitat Zerbe RL, Rowe H, Enas GG, et al. Clinical pharmacology of tomoxetine, a potential antidepressant. J Pharmacol Exp Ther 1985; 232: 139–43PubMed Zerbe RL, Rowe H, Enas GG, et al. Clinical pharmacology of tomoxetine, a potential antidepressant. J Pharmacol Exp Ther 1985; 232: 139–43PubMed
59.
Zurück zum Zitat Allen AJ, Wernicke JF, Dunn D, et al. Safety and efficacy of atomoxetine in pediatric CYP2D6 extensive and poor metabolizers. Biol Psychiatry 2001; 49(8 Suppl.): 37S Allen AJ, Wernicke JF, Dunn D, et al. Safety and efficacy of atomoxetine in pediatric CYP2D6 extensive and poor metabolizers. Biol Psychiatry 2001; 49(8 Suppl.): 37S
60.
Zurück zum Zitat Caccia S. Metabolism of the newer antidepressants: an overview of the pharmacological and pharmacokinetic implications. Clin Pharmacokinet 1998; 34: 281–302PubMedCrossRef Caccia S. Metabolism of the newer antidepressants: an overview of the pharmacological and pharmacokinetic implications. Clin Pharmacokinet 1998; 34: 281–302PubMedCrossRef
61.
Zurück zum Zitat Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors: an overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet 1997; 32S: 1–21PubMedCrossRef Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors: an overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet 1997; 32S: 1–21PubMedCrossRef
62.
Zurück zum Zitat Brøsen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55PubMedCrossRef Brøsen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55PubMedCrossRef
63.
Zurück zum Zitat Özdemir V, Naranjo CA, Herrmann N, et al. Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition in vivo. Clin Pharmacol Ther 1997; 62: 334–47PubMedCrossRef Özdemir V, Naranjo CA, Herrmann N, et al. Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition in vivo. Clin Pharmacol Ther 1997; 62: 334–47PubMedCrossRef
64.
Zurück zum Zitat Alderman J, Preskorn SH, Greenblatt DJ, et al. Desipramine pharmacokinetics when coadministered with paroxetine or sertraline in extensive metabolizers. J Clin Psychopharmacol 1997; 17: 284–91PubMedCrossRef Alderman J, Preskorn SH, Greenblatt DJ, et al. Desipramine pharmacokinetics when coadministered with paroxetine or sertraline in extensive metabolizers. J Clin Psychopharmacol 1997; 17: 284–91PubMedCrossRef
65.
Zurück zum Zitat Hemeryck A, Lefebvre RA, De Vriendt C, et al, editor. Paroxetine affects metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Drug Metab Dispos 2001; 29: 656–63PubMed Hemeryck A, Lefebvre RA, De Vriendt C, et al, editor. Paroxetine affects metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Drug Metab Dispos 2001; 29: 656–63PubMed
66.
Zurück zum Zitat Kobayashi K, Yamamoto T, Chiba K, et al. The effects of selective serotonin reuptake inhibitors and their metablites on S-mephenytoin 4′-hydroxylase activity in human liver microsomes. Br J Clin Pharmacol 1995; 40: 481–5PubMedCrossRef Kobayashi K, Yamamoto T, Chiba K, et al. The effects of selective serotonin reuptake inhibitors and their metablites on S-mephenytoin 4′-hydroxylase activity in human liver microsomes. Br J Clin Pharmacol 1995; 40: 481–5PubMedCrossRef
67.
Zurück zum Zitat von Moltke LL, Greenblatt DJ, Court MH, et al. Inhibition of alprazolam and desipramine hydroxylation in vitro by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants. J Clin Psychopharmacol 1995; 15: 125–31CrossRef von Moltke LL, Greenblatt DJ, Court MH, et al. Inhibition of alprazolam and desipramine hydroxylation in vitro by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants. J Clin Psychopharmacol 1995; 15: 125–31CrossRef
68.
Zurück zum Zitat Jeppesen U, Gram LF, Vistisen K, et al. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 1996; 51: 73–8PubMedCrossRef Jeppesen U, Gram LF, Vistisen K, et al. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 1996; 51: 73–8PubMedCrossRef
69.
Zurück zum Zitat Martin DE, Zussman BD, Everitt DE, et al. Paroxetine does not affect the cardiac safety and pharmacokinetics of terfenadine in healthy adult men. J Clin Psychopharmacol 1997; 17: 451–9PubMedCrossRef Martin DE, Zussman BD, Everitt DE, et al. Paroxetine does not affect the cardiac safety and pharmacokinetics of terfenadine in healthy adult men. J Clin Psychopharmacol 1997; 17: 451–9PubMedCrossRef
70.
Zurück zum Zitat Schmider J, Greenblatt DJ, von Moltke LL, et al. Inhibition of CYP2C9 by selective serotonin reuptake inhibitors in vitro: studies of phenytoin p-hydroxylation. Br J Clin Pharmacol 1997; 44: 495–8PubMedCrossRef Schmider J, Greenblatt DJ, von Moltke LL, et al. Inhibition of CYP2C9 by selective serotonin reuptake inhibitors in vitro: studies of phenytoin p-hydroxylation. Br J Clin Pharmacol 1997; 44: 495–8PubMedCrossRef
71.
Zurück zum Zitat Hemeryck A, De Vriendt C, Belpaire FM. Inhibition of CYP2C9 by selective serotonin reuptake inhibitors: in vitro studies with tolbutamide and (S)-warfarin using human liver microsomes. Eur J Clin Pharmacol 1999; 54: 947–51PubMedCrossRef Hemeryck A, De Vriendt C, Belpaire FM. Inhibition of CYP2C9 by selective serotonin reuptake inhibitors: in vitro studies with tolbutamide and (S)-warfarin using human liver microsomes. Eur J Clin Pharmacol 1999; 54: 947–51PubMedCrossRef
72.
Zurück zum Zitat Long A, Witcher J, Smith B, et al. Atomoxetine does not alter the plasma pharmacokinetics of desipramine in healthy subjects. AAPS Annual Meeting and Exposition; 2001 Oct 21–25, Denver Long A, Witcher J, Smith B, et al. Atomoxetine does not alter the plasma pharmacokinetics of desipramine in healthy subjects. AAPS Annual Meeting and Exposition; 2001 Oct 21–25, Denver
73.
Zurück zum Zitat Spina E, Avenoso A, Campo GM, et al. Effect of ketoconazole on the pharmacokinetics of imipramine and desipramine in healthy subjects. Br J Clin Pharmacol 1997; 43: 315–8PubMedCrossRef Spina E, Avenoso A, Campo GM, et al. Effect of ketoconazole on the pharmacokinetics of imipramine and desipramine in healthy subjects. Br J Clin Pharmacol 1997; 43: 315–8PubMedCrossRef
74.
Zurück zum Zitat Sanburn N, Long A, Witcher J, et al. Co-administration of atomoxetine hydrochloride and midazolam results in no clinically significant drug-drug interaction. AAPS Annual Meeting and Exposition; 2001 Oct 21–25, Denver Sanburn N, Long A, Witcher J, et al. Co-administration of atomoxetine hydrochloride and midazolam results in no clinically significant drug-drug interaction. AAPS Annual Meeting and Exposition; 2001 Oct 21–25, Denver
75.
Zurück zum Zitat Kronbach T, Mathys D, Umeno M, et al. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol 1989; 36: 89–96PubMed Kronbach T, Mathys D, Umeno M, et al. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol 1989; 36: 89–96PubMed
76.
Zurück zum Zitat Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 55: 481–5PubMedCrossRef Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 55: 481–5PubMedCrossRef
77.
Zurück zum Zitat Yuan R, Flockhart D, Balian J. Pharmacokinetic and pharmacodynamic consequences of metabolism-based drug interactions with alprazolam, midazolam, and triazolam. J Clin Pharmacol 1999; 39: 1109–25PubMed Yuan R, Flockhart D, Balian J. Pharmacokinetic and pharmacodynamic consequences of metabolism-based drug interactions with alprazolam, midazolam, and triazolam. J Clin Pharmacol 1999; 39: 1109–25PubMed
78.
Zurück zum Zitat Witcher JW, Kurtz DL, Sauer JM, et al. Pharmacokinetic/pharmacodynamic relationship of atomoxetine exposure and efficacy in child and adolescent ADHD patients. Philadelphia (PA): American Psychiatric Association, 2002 Witcher JW, Kurtz DL, Sauer JM, et al. Pharmacokinetic/pharmacodynamic relationship of atomoxetine exposure and efficacy in child and adolescent ADHD patients. Philadelphia (PA): American Psychiatric Association, 2002
79.
Zurück zum Zitat Horai Y, Nakano M, Ishizaki T, et al. Metoprolol and mephenytoin oxidation polymorphisms in Far Eastern Oriental subjects: Japanese versus mainland Chinese. Clin Pharmacol Ther 1989; 46: 198–207PubMedCrossRef Horai Y, Nakano M, Ishizaki T, et al. Metoprolol and mephenytoin oxidation polymorphisms in Far Eastern Oriental subjects: Japanese versus mainland Chinese. Clin Pharmacol Ther 1989; 46: 198–207PubMedCrossRef
80.
Zurück zum Zitat Zanger UM, Eichelbaum M. CYP2D6. In: Levy RH, Thummel KE, Trager WF, et al, editors. Metabolic drug interactions. New York: Lippincott Williams & Wilkins, 2000: 87–94 Zanger UM, Eichelbaum M. CYP2D6. In: Levy RH, Thummel KE, Trager WF, et al, editors. Metabolic drug interactions. New York: Lippincott Williams & Wilkins, 2000: 87–94
81.
Zurück zum Zitat McLellan RA, Oscarson M, Seidegard J, et al. Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians. Pharmacogenetics 1997; 7: 187–91PubMedCrossRef McLellan RA, Oscarson M, Seidegard J, et al. Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians. Pharmacogenetics 1997; 7: 187–91PubMedCrossRef
82.
Zurück zum Zitat Griese EU, Asante-Poku S, Ofori-Adjei D, et al. Analysis of the CYP2D6 gene mutations and their consequences for enzyme function in a West African population. Pharmacogenetics 1999; 9: 715–23PubMedCrossRef Griese EU, Asante-Poku S, Ofori-Adjei D, et al. Analysis of the CYP2D6 gene mutations and their consequences for enzyme function in a West African population. Pharmacogenetics 1999; 9: 715–23PubMedCrossRef
83.
Zurück zum Zitat Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2002; 3: 229–43PubMedCrossRef Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2002; 3: 229–43PubMedCrossRef
84.
Zurück zum Zitat Evans W, Relling M, Petros W, et al. Dextromethorphan and caffeine as probes for simultaneous determination of debrisoquin-oxidation and N-acetylation phenotypes in children. Clin Pharmacol Ther 1989; 45: 568–73PubMedCrossRef Evans W, Relling M, Petros W, et al. Dextromethorphan and caffeine as probes for simultaneous determination of debrisoquin-oxidation and N-acetylation phenotypes in children. Clin Pharmacol Ther 1989; 45: 568–73PubMedCrossRef
85.
Zurück zum Zitat Relling M, Cherrie J, Schell M, et al. Lower prevalence of the debrisoquin oxidative poor metabolizer phenotype in American black versus white subjects. Clin Pharmacol Ther 1991; 50: 308–13PubMedCrossRef Relling M, Cherrie J, Schell M, et al. Lower prevalence of the debrisoquin oxidative poor metabolizer phenotype in American black versus white subjects. Clin Pharmacol Ther 1991; 50: 308–13PubMedCrossRef
Metadaten
Titel
Clinical Pharmacokinetics of Atomoxetine
verfasst von
John-Michael Sauer
Barbara J. Ring
Dr Jennifer W. Witcher
Publikationsdatum
01.06.2005
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 6/2005
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200544060-00002

Weitere Artikel der Ausgabe 6/2005

Clinical Pharmacokinetics 6/2005 Zur Ausgabe