Skip to main content
Erschienen in: CNS Drugs 9/2003

01.08.2003 | Review Article

The Glutamatergic System and Alzheimer’s Disease

Therapeutic Implications

verfasst von: Prof. D. Allan Butterfield, Chava B. Pocernich

Erschienen in: CNS Drugs | Ausgabe 9/2003

Einloggen, um Zugang zu erhalten

Abstract

Alzheimer’s disease affects nearly 5 million Americans currently and, as a result of the baby boomer cohort, is predicted to affect 14 million Americans and 22 million persons totally worldwide in just a few decades. Alzheimer’s disease is present in nearly half of individuals aged 85 years.
The main symptom of Alzheimer’s disease is a gradual loss of cognitive function. Glutamatergic neurotransmission, an important process in learning and memory, is severely disrupted in patients with Alzheimer’s disease. Loss of glutamatergic function in Alzheimer’s disease may be related to the increase in oxidative stress associated with the amyloid β-peptide that is found in the brains of individuals who have the disease. Therefore, therapeutic strategies directed at the glutamatergic system may hold promise. Therapies addressing oxidative stress induced by hyperactivity of glutamate receptors include supplementation with estrogen and antioxidants such as tocopherol (vitamin E) and acetylcysteine (N-acetylcysteine). Therapy for hypoactivity of glutamate receptors is aimed at inducing the NMDA receptor with glycine and cycloserine (D-cycloserine). Recently, memantine, an NMDA receptor antagonist that addresses the hyperactivity of these receptors, has been approved in some countries for use in Alzheimer’s disease.
Literatur
1.
Zurück zum Zitat Katzman R, Saitoh T. Advances in Alzheimer’s disease. FASEB J 1991; 5: 278–86PubMed Katzman R, Saitoh T. Advances in Alzheimer’s disease. FASEB J 1991; 5: 278–86PubMed
2.
Zurück zum Zitat Katzman R. Epidemiology of Alzheimer’s disease. Neurobiol Aging 2000; 21 Suppl.: S1CrossRef Katzman R. Epidemiology of Alzheimer’s disease. Neurobiol Aging 2000; 21 Suppl.: S1CrossRef
3.
Zurück zum Zitat Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120: 885–90PubMedCrossRef Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120: 885–90PubMedCrossRef
4.
Zurück zum Zitat Masters CL, Simms G, Weinman NA, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 1985; 82: 4245–9PubMedCrossRef Masters CL, Simms G, Weinman NA, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 1985; 82: 4245–9PubMedCrossRef
5.
Zurück zum Zitat Yankner BA, Dawes LR, Fisher S, et al. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 1989; 245: 417–20PubMedCrossRef Yankner BA, Dawes LR, Fisher S, et al. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 1989; 245: 417–20PubMedCrossRef
6.
Zurück zum Zitat Frautschy SA, Baird A, Cole GM. Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc Natl Acad Sci U S A 1991; 88: 8362–6PubMedCrossRef Frautschy SA, Baird A, Cole GM. Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc Natl Acad Sci U S A 1991; 88: 8362–6PubMedCrossRef
7.
Zurück zum Zitat Kowall NW, Beal MF, Busciglio J, et al. An in vivo model for the neurodegenerative effects of beta amyloid and protection by substance P. Proc Natl Acad Sci U S A 1991; 88: 7247–51PubMedCrossRef Kowall NW, Beal MF, Busciglio J, et al. An in vivo model for the neurodegenerative effects of beta amyloid and protection by substance P. Proc Natl Acad Sci U S A 1991; 88: 7247–51PubMedCrossRef
8.
Zurück zum Zitat Pike CJ, Walencewicz AJ, Glabe CG, et al. In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 1991; 563: 311–4PubMedCrossRef Pike CJ, Walencewicz AJ, Glabe CG, et al. In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 1991; 563: 311–4PubMedCrossRef
9.
Zurück zum Zitat Howlett DR, Jennings KH, Lee DC, et al. Aggregation state and neurotoxic properties of Alzheimer beta-amyloid peptide. Neurodegeneration 1995; 4: 23–32PubMedCrossRef Howlett DR, Jennings KH, Lee DC, et al. Aggregation state and neurotoxic properties of Alzheimer beta-amyloid peptide. Neurodegeneration 1995; 4: 23–32PubMedCrossRef
10.
Zurück zum Zitat Harris ME, Hensley K, Butterfield DA, et al. Direct evidence of oxidative injury produced by the Alzheimer’s beta-amyloid peptide (1-40) in cultured hippocampal neurons. Exp Neurol 1995; 131: 193–202PubMedCrossRef Harris ME, Hensley K, Butterfield DA, et al. Direct evidence of oxidative injury produced by the Alzheimer’s beta-amyloid peptide (1-40) in cultured hippocampal neurons. Exp Neurol 1995; 131: 193–202PubMedCrossRef
11.
Zurück zum Zitat Aksenov MY, Aksenova MV, Butterfield DA, et al. Glutamine synthetase-induced enhancement of beta-amyloid peptide A beta (1-40) neurotoxicity accompanied by abrogation of fibril formation and A beta fragmentation. J Neurochem 1996; 66: 2050–6PubMedCrossRef Aksenov MY, Aksenova MV, Butterfield DA, et al. Glutamine synthetase-induced enhancement of beta-amyloid peptide A beta (1-40) neurotoxicity accompanied by abrogation of fibril formation and A beta fragmentation. J Neurochem 1996; 66: 2050–6PubMedCrossRef
12.
Zurück zum Zitat Aksenov MY, Aksenova MV, Markesbery WR, et al. Amyloid beta-peptide (1-40)-mediated oxidative stress in cultured hippocampal neurons: protein carbonyl formation, CK BB expression, and the level of Cu, Zn, and Mn SOD mRNA. J Mol Neurosci 1998; 10: 181–92PubMedCrossRef Aksenov MY, Aksenova MV, Markesbery WR, et al. Amyloid beta-peptide (1-40)-mediated oxidative stress in cultured hippocampal neurons: protein carbonyl formation, CK BB expression, and the level of Cu, Zn, and Mn SOD mRNA. J Mol Neurosci 1998; 10: 181–92PubMedCrossRef
13.
Zurück zum Zitat Yatin SM, Aksenov M, Butterfield DA. The antioxidant vitamin E modulates amyloid beta-peptide-induced creatine kinase activity inhibition and increased protein oxidation: implications for the free radical hypothesis of Alzheimer’s disease. Neurochem Res 1999; 24: 427–35PubMedCrossRef Yatin SM, Aksenov M, Butterfield DA. The antioxidant vitamin E modulates amyloid beta-peptide-induced creatine kinase activity inhibition and increased protein oxidation: implications for the free radical hypothesis of Alzheimer’s disease. Neurochem Res 1999; 24: 427–35PubMedCrossRef
14.
Zurück zum Zitat Yatin SM, Varadarajan S, Link C, et al. In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1-42). Neurobiol Aging 1999; 20: 325–30PubMedCrossRef Yatin SM, Varadarajan S, Link C, et al. In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1-42). Neurobiol Aging 1999; 20: 325–30PubMedCrossRef
15.
Zurück zum Zitat Yatin SM, Aksenova M, Aksenov M, et al. Effect of transglutaminase on Aβ(1-40) fibril formation and neurotoxicity. Alzheimer Rep 1999; 2: 165–70 Yatin SM, Aksenova M, Aksenov M, et al. Effect of transglutaminase on Aβ(1-40) fibril formation and neurotoxicity. Alzheimer Rep 1999; 2: 165–70
16.
Zurück zum Zitat Varadarajan S, Yatin S, Kanski J, et al. Methionine residue 35 is important in amyloid beta-peptide-associated free radical oxidative stress. Brain Res Bull 1999; 50: 133–41PubMedCrossRef Varadarajan S, Yatin S, Kanski J, et al. Methionine residue 35 is important in amyloid beta-peptide-associated free radical oxidative stress. Brain Res Bull 1999; 50: 133–41PubMedCrossRef
17.
Zurück zum Zitat Varadarajan S, Yatin S, Aksenova M, et al. Review: Alzheimer’s amyloid-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 2000; 130: 184–208PubMedCrossRef Varadarajan S, Yatin S, Aksenova M, et al. Review: Alzheimer’s amyloid-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 2000; 130: 184–208PubMedCrossRef
18.
Zurück zum Zitat Aksenov MY, Aksenova MV, Harris ME, et al. Enhancement of beta-amyloid peptide A beta(1-40)-mediated neurotoxicity by glutamine synthetase. J Neurochem 1995; 65: 1899–902PubMedCrossRef Aksenov MY, Aksenova MV, Harris ME, et al. Enhancement of beta-amyloid peptide A beta(1-40)-mediated neurotoxicity by glutamine synthetase. J Neurochem 1995; 65: 1899–902PubMedCrossRef
19.
Zurück zum Zitat Yatin SM, Yatin M, Aulick T, et al. Alzheimer’s amyloid betapeptide associated free radicals increase rat embryonic neuronal polyamine uptake and ornithine decarboxylase activity: protective effect of vitamin E. Neurosci Lett 1999; 263: 17–20PubMedCrossRef Yatin SM, Yatin M, Aulick T, et al. Alzheimer’s amyloid betapeptide associated free radicals increase rat embryonic neuronal polyamine uptake and ornithine decarboxylase activity: protective effect of vitamin E. Neurosci Lett 1999; 263: 17–20PubMedCrossRef
20.
Zurück zum Zitat Selkoe DJ. Amyloid beta-protein and the genetics of Alzheimer’s disease. J Biol Chem 1996; 271: 18295–8PubMed Selkoe DJ. Amyloid beta-protein and the genetics of Alzheimer’s disease. J Biol Chem 1996; 271: 18295–8PubMed
21.
Zurück zum Zitat Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 1996; 8: 864–70CrossRef Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 1996; 8: 864–70CrossRef
22.
Zurück zum Zitat Teller JK, Russo C, DeBusk L, et al. Presence of soluble amyloid beta-peptide precedes amyloid plaque formation in Down’s syndrome. Nat Med 1996; 2: 93–5PubMedCrossRef Teller JK, Russo C, DeBusk L, et al. Presence of soluble amyloid beta-peptide precedes amyloid plaque formation in Down’s syndrome. Nat Med 1996; 2: 93–5PubMedCrossRef
23.
Zurück zum Zitat Games D, Adams D, Alessandrini R, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 1995; 373: 523–7PubMedCrossRef Games D, Adams D, Alessandrini R, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 1995; 373: 523–7PubMedCrossRef
24.
Zurück zum Zitat Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996; 274: 99–102PubMedCrossRef Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996; 274: 99–102PubMedCrossRef
25.
Zurück zum Zitat Hsiao K. Transgenic mice expressing Alzheimer amyloid precursor proteins. Exp Gerontol 1998; 33: 883–9PubMedCrossRef Hsiao K. Transgenic mice expressing Alzheimer amyloid precursor proteins. Exp Gerontol 1998; 33: 883–9PubMedCrossRef
26.
Zurück zum Zitat Masliah E, Sisk A, Mallory M, et al. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer’s disease. J Neurosci 1996; 16: 5795–811PubMed Masliah E, Sisk A, Mallory M, et al. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer’s disease. J Neurosci 1996; 16: 5795–811PubMed
27.
Zurück zum Zitat Irizarry MC, McNamara M, Fedorchak K, et al. APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA 1. J Neuropathol Exp Neurol 1997; 56: 965–73PubMedCrossRef Irizarry MC, McNamara M, Fedorchak K, et al. APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA 1. J Neuropathol Exp Neurol 1997; 56: 965–73PubMedCrossRef
28.
Zurück zum Zitat Sturchler-Pierrat C, Abramowski D, Duke M, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 1997; 94: 13287–92PubMedCrossRef Sturchler-Pierrat C, Abramowski D, Duke M, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 1997; 94: 13287–92PubMedCrossRef
29.
Zurück zum Zitat Calhoun ME, Wiederhold KH, Abramowski D, et al. Neuron loss in APP transgenic mice. Nature 1998; 395: 755–6PubMedCrossRef Calhoun ME, Wiederhold KH, Abramowski D, et al. Neuron loss in APP transgenic mice. Nature 1998; 395: 755–6PubMedCrossRef
30.
Zurück zum Zitat Frautschy SA, Yang F, Irrizarry M, et al. Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 1998; 152: 307–17PubMed Frautschy SA, Yang F, Irrizarry M, et al. Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 1998; 152: 307–17PubMed
31.
Zurück zum Zitat Pappolla MA, Chyan YJ, Omar RA, et al. Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 1998; 152: 871–7PubMed Pappolla MA, Chyan YJ, Omar RA, et al. Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 1998; 152: 871–7PubMed
32.
Zurück zum Zitat Smith MA, Hirai K, Hsiao K, et al. Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 1998; 70: 2212–5PubMedCrossRef Smith MA, Hirai K, Hsiao K, et al. Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 1998; 70: 2212–5PubMedCrossRef
33.
Zurück zum Zitat Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Abetal-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 1998; 95: 6448–53PubMedCrossRef Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Abetal-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 1998; 95: 6448–53PubMedCrossRef
34.
Zurück zum Zitat Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002; 416: 535–9PubMedCrossRef Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002; 416: 535–9PubMedCrossRef
35.
Zurück zum Zitat Drake J, Link CD, Butterfield DA. Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid β-peptide (1-42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging 2003; 24: 415–20PubMedCrossRef Drake J, Link CD, Butterfield DA. Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid β-peptide (1-42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging 2003; 24: 415–20PubMedCrossRef
36.
Zurück zum Zitat Butterfield DA, Drake J, Pocernich C, et al. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med 2001; 7: 548–54PubMedCrossRef Butterfield DA, Drake J, Pocernich C, et al. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med 2001; 7: 548–54PubMedCrossRef
37.
Zurück zum Zitat Varadarajan S, Kanski J, Aksenova M, et al. Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s A beta(1-42) and A beta(25-35). J Am Chem Soc 2001; 123: 5625–31PubMedCrossRef Varadarajan S, Kanski J, Aksenova M, et al. Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s A beta(1-42) and A beta(25-35). J Am Chem Soc 2001; 123: 5625–31PubMedCrossRef
38.
Zurück zum Zitat Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid-peptide-associated free radical oxidative stress. Free Radie Biol Med 2002; 32: 1050–60CrossRef Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid-peptide-associated free radical oxidative stress. Free Radie Biol Med 2002; 32: 1050–60CrossRef
39.
Zurück zum Zitat Butterfield DA, Castegna A, Lauderback CM, et al. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contributes to neuronal death. Neurobiol Aging 2002; 23: 655–64PubMedCrossRef Butterfield DA, Castegna A, Lauderback CM, et al. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contributes to neuronal death. Neurobiol Aging 2002; 23: 655–64PubMedCrossRef
40.
Zurück zum Zitat Lauderback CM, Hackett JM, Huang FF, et al. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Aβ1-42. J Neurochem 2001; 78: 413–6PubMedCrossRef Lauderback CM, Hackett JM, Huang FF, et al. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Aβ1-42. J Neurochem 2001; 78: 413–6PubMedCrossRef
41.
Zurück zum Zitat Aksenov MY, Aksenova MV, Carney JM, et al. Oxidative modification of glutamine synthetase by amyloid beta peptide. Free Radic Res 1997; 27: 267–81PubMedCrossRef Aksenov MY, Aksenova MV, Carney JM, et al. Oxidative modification of glutamine synthetase by amyloid beta peptide. Free Radic Res 1997; 27: 267–81PubMedCrossRef
42.
Zurück zum Zitat Butterfield DA, Hensley K, Cole P, et al. Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: relevance to Alzheimer’s disease. J Neurochem 1997; 68: 2451–7PubMedCrossRef Butterfield DA, Hensley K, Cole P, et al. Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: relevance to Alzheimer’s disease. J Neurochem 1997; 68: 2451–7PubMedCrossRef
43.
Zurück zum Zitat Mattson MP, Cheng B, Culwell AR, et al. Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 1993; 10: 243–54PubMedCrossRef Mattson MP, Cheng B, Culwell AR, et al. Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 1993; 10: 243–54PubMedCrossRef
44.
Zurück zum Zitat Culcasi M, Lafon-Cazal M, Pietri S, et al. Glutamate receptors induce a burst of superoxide via activation of nitric oxide synthase in arginine-depleted neurons. J Biol Chem 1994; 269: 12589–93PubMed Culcasi M, Lafon-Cazal M, Pietri S, et al. Glutamate receptors induce a burst of superoxide via activation of nitric oxide synthase in arginine-depleted neurons. J Biol Chem 1994; 269: 12589–93PubMed
45.
Zurück zum Zitat Kennedy MB. Signal-processing machines at the postsynaptic density. Science 2000; 290: 750–4PubMedCrossRef Kennedy MB. Signal-processing machines at the postsynaptic density. Science 2000; 290: 750–4PubMedCrossRef
46.
Zurück zum Zitat Sheng M, Kim MJ. Postsynaptic signaling and plasticity mechanisms. Science 2002; 298: 776–80PubMedCrossRef Sheng M, Kim MJ. Postsynaptic signaling and plasticity mechanisms. Science 2002; 298: 776–80PubMedCrossRef
47.
48.
Zurück zum Zitat Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572–80PubMedCrossRef Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572–80PubMedCrossRef
49.
Zurück zum Zitat Davies CA, Mann DM, Sumpter PQ, et al. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 1987; 78: 151–64PubMedCrossRef Davies CA, Mann DM, Sumpter PQ, et al. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 1987; 78: 151–64PubMedCrossRef
50.
Zurück zum Zitat Collingridge GL, Singer W. Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci 1990; 11: 290–6PubMedCrossRef Collingridge GL, Singer W. Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci 1990; 11: 290–6PubMedCrossRef
51.
Zurück zum Zitat Myhrer T. Adverse psychological impact, glutamatergic dysfunction, and risk factors for Alzheimer’s disease. Neurosci Biobehav Rev 1998; 23: 131–9PubMedCrossRef Myhrer T. Adverse psychological impact, glutamatergic dysfunction, and risk factors for Alzheimer’s disease. Neurosci Biobehav Rev 1998; 23: 131–9PubMedCrossRef
52.
Zurück zum Zitat Furuta A, Rothstein JD, Martin JL. Glutamate transporter protein subtypes are expressed differentially during rat central nervous system development. J Neurosci 1997; 17: 8363–75PubMed Furuta A, Rothstein JD, Martin JL. Glutamate transporter protein subtypes are expressed differentially during rat central nervous system development. J Neurosci 1997; 17: 8363–75PubMed
53.
Zurück zum Zitat Sims KD, Robinson MB. Expression patterns and regulation of glutamate transporters in the developing and adult nervous system. Crit Rev Neurobiol 1999; 13: 169–97PubMed Sims KD, Robinson MB. Expression patterns and regulation of glutamate transporters in the developing and adult nervous system. Crit Rev Neurobiol 1999; 13: 169–97PubMed
54.
Zurück zum Zitat Lehre KP, Levy LM, Otterson OP, et al. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 1995; 15: 1835–53PubMed Lehre KP, Levy LM, Otterson OP, et al. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 1995; 15: 1835–53PubMed
55.
Zurück zum Zitat Greenamyre JT, Young AB. Excitatory amino acids and Alzheimer’s disease. Neurobiol Aging 1989; 10: 593–602PubMedCrossRef Greenamyre JT, Young AB. Excitatory amino acids and Alzheimer’s disease. Neurobiol Aging 1989; 10: 593–602PubMedCrossRef
56.
Zurück zum Zitat Gordon-Krajcer W, Salinska E, Lazarewicz JW. N-methyl-d-aspartate receptor-mediated processing of beta-amyloid precursor protein in rat hippocampal slices: in vitro-superfusion study. Folia Neuropathol 2002; 40: 13–7PubMed Gordon-Krajcer W, Salinska E, Lazarewicz JW. N-methyl-d-aspartate receptor-mediated processing of beta-amyloid precursor protein in rat hippocampal slices: in vitro-superfusion study. Folia Neuropathol 2002; 40: 13–7PubMed
57.
Zurück zum Zitat Kamenetz F, Tomita T, Hsieh H, et al. APP processing and synaptic function. Neuron 2003; 37: 925–37PubMedCrossRef Kamenetz F, Tomita T, Hsieh H, et al. APP processing and synaptic function. Neuron 2003; 37: 925–37PubMedCrossRef
58.
Zurück zum Zitat Raymond CR, Ireland DR, Abraham WC. NMDA receptor regulation by amyloid-beta does not account for its inhibition of LTP in rat hippocampus. Brain Res 2003; 968: 263–72PubMedCrossRef Raymond CR, Ireland DR, Abraham WC. NMDA receptor regulation by amyloid-beta does not account for its inhibition of LTP in rat hippocampus. Brain Res 2003; 968: 263–72PubMedCrossRef
59.
Zurück zum Zitat Greenamyre JT. The role of glutamate in neurotransmission and neurologic disease. Arch Neurol 1986; 43: 1058–63PubMedCrossRef Greenamyre JT. The role of glutamate in neurotransmission and neurologic disease. Arch Neurol 1986; 43: 1058–63PubMedCrossRef
60.
Zurück zum Zitat Maragos WF, Greenamyre JT, Penney JB, et al. Glutamate dysfunction in Alzheimer’s disease: an hypothesis. TINS 1987; 10: 65–8 Maragos WF, Greenamyre JT, Penney JB, et al. Glutamate dysfunction in Alzheimer’s disease: an hypothesis. TINS 1987; 10: 65–8
61.
Zurück zum Zitat Palmer AM, Gershon S. Is the neuronal basis of Alzheimer’s disease cholinergic or glutamatergic? FASEB J 1990; 4: 2745–52PubMed Palmer AM, Gershon S. Is the neuronal basis of Alzheimer’s disease cholinergic or glutamatergic? FASEB J 1990; 4: 2745–52PubMed
62.
Zurück zum Zitat Antuono PG, Jones JL, Wang Y, et al. Decreased glutamate + glutamine in Alzheimer’s disease detected in vivo with 1H-MRS at 0.5T. Neurology 2001; 56: 737–42PubMedCrossRef Antuono PG, Jones JL, Wang Y, et al. Decreased glutamate + glutamine in Alzheimer’s disease detected in vivo with 1H-MRS at 0.5T. Neurology 2001; 56: 737–42PubMedCrossRef
63.
Zurück zum Zitat Moats RA, Ernst T, Shonk TK, et al. Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 1994; 32: 110–5PubMedCrossRef Moats RA, Ernst T, Shonk TK, et al. Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 1994; 32: 110–5PubMedCrossRef
64.
Zurück zum Zitat Ernst T, Chang L, Melchor R, et al. Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy. Radiology 1997; 203: 829–36PubMed Ernst T, Chang L, Melchor R, et al. Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy. Radiology 1997; 203: 829–36PubMed
65.
Zurück zum Zitat Castegna A, Aksenov M, Aksenova M, et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 2002; 33: 562–71PubMedCrossRef Castegna A, Aksenov M, Aksenova M, et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 2002; 33: 562–71PubMedCrossRef
66.
Zurück zum Zitat Hensley K, Hall N, Subramaniam R, et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 1995; 65: 2146–56PubMedCrossRef Hensley K, Hall N, Subramaniam R, et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 1995; 65: 2146–56PubMedCrossRef
67.
Zurück zum Zitat Butterfield DA. Beta-amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Chem Res Toxicol 1997; 10: 495–506PubMedCrossRef Butterfield DA. Beta-amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Chem Res Toxicol 1997; 10: 495–506PubMedCrossRef
68.
Zurück zum Zitat Masliah E, Alford M, DeTeresa R, et al. Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 1996; 40: 759–66PubMedCrossRef Masliah E, Alford M, DeTeresa R, et al. Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 1996; 40: 759–66PubMedCrossRef
69.
Zurück zum Zitat Scott HL, Tannenberg A, Dodd PR. Variant forms of neuronal glutamate transporter sites in Alzheimer’s disease cerebral cortex. J Neurochem 1995; 64: 2193–202PubMedCrossRef Scott HL, Tannenberg A, Dodd PR. Variant forms of neuronal glutamate transporter sites in Alzheimer’s disease cerebral cortex. J Neurochem 1995; 64: 2193–202PubMedCrossRef
70.
Zurück zum Zitat Butterfield DA, Hensley K, Harris M, et al. beta-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem Biophys Res Commun 1994; 200(2): 710–5PubMedCrossRef Butterfield DA, Hensley K, Harris M, et al. beta-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem Biophys Res Commun 1994; 200(2): 710–5PubMedCrossRef
71.
Zurück zum Zitat Thal DR. Excitatory amino acid transporter EAAT-2 in tangle-bearing neurons in Alzheimer’s disease. Brain Pathol 2002; 12: 405–11CrossRef Thal DR. Excitatory amino acid transporter EAAT-2 in tangle-bearing neurons in Alzheimer’s disease. Brain Pathol 2002; 12: 405–11CrossRef
72.
Zurück zum Zitat Boissiere F, Faucheux B, Duyckaerts C, et al. Striatal expression of glutamic acid decarboxylase gene in Alzheimer’s disease. Neurochem 1998; 71: 767–74CrossRef Boissiere F, Faucheux B, Duyckaerts C, et al. Striatal expression of glutamic acid decarboxylase gene in Alzheimer’s disease. Neurochem 1998; 71: 767–74CrossRef
73.
Zurück zum Zitat Hertz L, Drejer J, Schousboe A. Energy metabolism in glutamatergic neurons, GABAergic neurons and astrocytes in primary cultures. Neurochem Res 1988; 13: 605–10PubMedCrossRef Hertz L, Drejer J, Schousboe A. Energy metabolism in glutamatergic neurons, GABAergic neurons and astrocytes in primary cultures. Neurochem Res 1988; 13: 605–10PubMedCrossRef
74.
Zurück zum Zitat Marczynski TJ. GABAergic deafferentation hypothesis of brain aging and Alzheimer’s disease revisited. Brain Res Bull 1998; 45: 341–79PubMedCrossRef Marczynski TJ. GABAergic deafferentation hypothesis of brain aging and Alzheimer’s disease revisited. Brain Res Bull 1998; 45: 341–79PubMedCrossRef
75.
Zurück zum Zitat Haug LS, Ostvold AC, Cowburn RF, et al. Decreased inositol (1,4,5)-trisphosphate receptor levels in Alzheimer’s disease cerebral cortex: selectivity of changes and possible correlation to pathological severity. Neurodegeneration 1996; 5: 169–76PubMedCrossRef Haug LS, Ostvold AC, Cowburn RF, et al. Decreased inositol (1,4,5)-trisphosphate receptor levels in Alzheimer’s disease cerebral cortex: selectivity of changes and possible correlation to pathological severity. Neurodegeneration 1996; 5: 169–76PubMedCrossRef
76.
Zurück zum Zitat Kowall NW, Beal MF. Glutamate-, glutaminase-, and taurine-immunoreactive neurons develop neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1991; 29: 162–7PubMedCrossRef Kowall NW, Beal MF. Glutamate-, glutaminase-, and taurine-immunoreactive neurons develop neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1991; 29: 162–7PubMedCrossRef
77.
Zurück zum Zitat Olney JW, Wozniak DF, Farber NB. Excitotoxic neurodegeneration in Alzheimer’s disease: new hypothesis and new therapeutic strategies. Arch Neurol 1997; 54: 1234–40PubMedCrossRef Olney JW, Wozniak DF, Farber NB. Excitotoxic neurodegeneration in Alzheimer’s disease: new hypothesis and new therapeutic strategies. Arch Neurol 1997; 54: 1234–40PubMedCrossRef
78.
Zurück zum Zitat Drake J, Kanski J, Varadarajan S, et al. Elevation of brain glutathione by glutamylcysteine ethyl ester protects against peroxynitrite-induced oxidative stress. J Neurosci Res 2002; 68: 776–84PubMedCrossRef Drake J, Kanski J, Varadarajan S, et al. Elevation of brain glutathione by glutamylcysteine ethyl ester protects against peroxynitrite-induced oxidative stress. J Neurosci Res 2002; 68: 776–84PubMedCrossRef
79.
Zurück zum Zitat Butterfield DA, Pocernich CB, Drake J. Elevated glutathione as a therapeutic strategy in Alzheimer’s disease. Drug Dev Res 2002; 56: 428–37CrossRef Butterfield DA, Pocernich CB, Drake J. Elevated glutathione as a therapeutic strategy in Alzheimer’s disease. Drug Dev Res 2002; 56: 428–37CrossRef
80.
Zurück zum Zitat Pocernich CB, Cardin AL, Racine CL, et al. Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem Int 2001; 39(2): 141–9PubMedCrossRef Pocernich CB, Cardin AL, Racine CL, et al. Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem Int 2001; 39(2): 141–9PubMedCrossRef
81.
Zurück zum Zitat Butterfield DA, Castenga A, Pocernich CB, et al. Nutritional approaches to combat oxidative stress in Alzheimer’s disease brain. J Nutr Biochem 2002; 13: 444–8PubMedCrossRef Butterfield DA, Castenga A, Pocernich CB, et al. Nutritional approaches to combat oxidative stress in Alzheimer’s disease brain. J Nutr Biochem 2002; 13: 444–8PubMedCrossRef
82.
Zurück zum Zitat Butterfield DA, Castegna A, Drake J, et al. Vitamin E and neurodegenerative disorders associated with oxidative stress. Nutr Neurosci 2002; 5: 229–39PubMedCrossRef Butterfield DA, Castegna A, Drake J, et al. Vitamin E and neurodegenerative disorders associated with oxidative stress. Nutr Neurosci 2002; 5: 229–39PubMedCrossRef
83.
Zurück zum Zitat Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease: the Alzheimer’s Disease Cooperative Study. N Engl J Med 1997; 336: 1216–22PubMedCrossRef Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease: the Alzheimer’s Disease Cooperative Study. N Engl J Med 1997; 336: 1216–22PubMedCrossRef
84.
Zurück zum Zitat Onofrj M, Thomas A, Luciano AL, et al. Donepezil versus vitamin E in Alzheimer’s disease. Part 2: mild versus moderate-severe Alzheimer’s disease. Clin Neuropharmacol 2002; 25: 207–15 Onofrj M, Thomas A, Luciano AL, et al. Donepezil versus vitamin E in Alzheimer’s disease. Part 2: mild versus moderate-severe Alzheimer’s disease. Clin Neuropharmacol 2002; 25: 207–15
85.
Zurück zum Zitat Adair JC, Knoefel JE, Morgan N. Controlled trial of N-acetylcysteine for patients with probable Alzheimer’s disease. Neurology 2001; 57: 1515–7PubMedCrossRef Adair JC, Knoefel JE, Morgan N. Controlled trial of N-acetylcysteine for patients with probable Alzheimer’s disease. Neurology 2001; 57: 1515–7PubMedCrossRef
86.
Zurück zum Zitat Gandolfi O, Bonfante V, Voltattorni M, et al. Anticonvulsant preclinical profile of CHF 3381: dopaminergic and glutamatergic mechanisms. Pharmacol Biochem Behav 2001; 70: 157–66PubMedCrossRef Gandolfi O, Bonfante V, Voltattorni M, et al. Anticonvulsant preclinical profile of CHF 3381: dopaminergic and glutamatergic mechanisms. Pharmacol Biochem Behav 2001; 70: 157–66PubMedCrossRef
87.
Zurück zum Zitat Coughenour LL, Barr BM. Use of trifluoroperazine isolates a [(3)H]ifenprodil binding site in rat brain membranes with the pharmacology of the voltage-independent ifenprodil site on N-methyl-D-aspartate receptors containing NR2B subunits. J Pharmacol Exp Ther 2001; 296: 150–9PubMed Coughenour LL, Barr BM. Use of trifluoroperazine isolates a [(3)H]ifenprodil binding site in rat brain membranes with the pharmacology of the voltage-independent ifenprodil site on N-methyl-D-aspartate receptors containing NR2B subunits. J Pharmacol Exp Ther 2001; 296: 150–9PubMed
88.
Zurück zum Zitat Rubin MA, Stiegemeier JA, Volkweis MA, et al. Intra-amygdala spermidine administration improves inhibitory avoidance performance in rats. Eur J Pharmacol 2001; 423: 35–9PubMedCrossRef Rubin MA, Stiegemeier JA, Volkweis MA, et al. Intra-amygdala spermidine administration improves inhibitory avoidance performance in rats. Eur J Pharmacol 2001; 423: 35–9PubMedCrossRef
89.
Zurück zum Zitat Zhang YH, Zhao XY, Chen XQ, et al. Spermidine antagonizes the inhibitory effect of huperzine A on [3H]dizocilpine (MK-801) binding in synaptic membrane of rat cerebral cortex. Neurosci Lett 2002; 319: 107–10PubMedCrossRef Zhang YH, Zhao XY, Chen XQ, et al. Spermidine antagonizes the inhibitory effect of huperzine A on [3H]dizocilpine (MK-801) binding in synaptic membrane of rat cerebral cortex. Neurosci Lett 2002; 319: 107–10PubMedCrossRef
90.
Zurück zum Zitat Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist: a review of preclinical data. Neuropharmacology 1999; 38: 735–67PubMedCrossRef Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist: a review of preclinical data. Neuropharmacology 1999; 38: 735–67PubMedCrossRef
91.
Zurück zum Zitat Leppik IE, Marienau K, Graves NM, et al. MK-801 for epilepsy: a pilot study [abstract]. Neurology 1988; 38: 405CrossRef Leppik IE, Marienau K, Graves NM, et al. MK-801 for epilepsy: a pilot study [abstract]. Neurology 1988; 38: 405CrossRef
92.
Zurück zum Zitat Sveinbjornsdottir S, Sander JWAS, Upton D, et al. The excitatory amino acid antagonist D-CPP-ene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res 1993; 16: 165–74PubMedCrossRef Sveinbjornsdottir S, Sander JWAS, Upton D, et al. The excitatory amino acid antagonist D-CPP-ene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res 1993; 16: 165–74PubMedCrossRef
93.
Zurück zum Zitat Yenari MA, Bell TE, Kotake AN, et al. Dose escalation safety and tolerance study of the competitive NMDA antagonist selfotel (CGS 19755) in neurosurgery patients. Clin Neuropharmacol 1998; 21: 28–34PubMed Yenari MA, Bell TE, Kotake AN, et al. Dose escalation safety and tolerance study of the competitive NMDA antagonist selfotel (CGS 19755) in neurosurgery patients. Clin Neuropharmacol 1998; 21: 28–34PubMed
94.
Zurück zum Zitat Barnes CA, Danysz W, Parsons CG. Effects of the uncompetitive NMDA receptor antagonist memantine on hippocampal long-term potentiation, short-term exploratory modulation and spatial memory in awake, freely moving rats. Eur J Neurosci 1996; 8: 565–71PubMedCrossRef Barnes CA, Danysz W, Parsons CG. Effects of the uncompetitive NMDA receptor antagonist memantine on hippocampal long-term potentiation, short-term exploratory modulation and spatial memory in awake, freely moving rats. Eur J Neurosci 1996; 8: 565–71PubMedCrossRef
95.
Zurück zum Zitat Zajaczkowski W, Quack G, Danysz W. Infusion of (+)-MK-801 and memantine: contrasting effects on radial maze learning in rats with entorhinal cortex lesion. Eur J Pharmacol 1996; 296: 239–46PubMedCrossRef Zajaczkowski W, Quack G, Danysz W. Infusion of (+)-MK-801 and memantine: contrasting effects on radial maze learning in rats with entorhinal cortex lesion. Eur J Pharmacol 1996; 296: 239–46PubMedCrossRef
96.
Zurück zum Zitat Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R, et al. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid(1-40). Brain Res 2002; 958: 210–21PubMedCrossRef Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R, et al. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid(1-40). Brain Res 2002; 958: 210–21PubMedCrossRef
97.
Zurück zum Zitat Winblad B, Poritis N. Memantine in severe dementia: results of the 9M-Best Study (benefit and efficacy in severely demented patients during treatment with memantine). Int J Geriatr Psychiatry 1999; 14: 135–46PubMedCrossRef Winblad B, Poritis N. Memantine in severe dementia: results of the 9M-Best Study (benefit and efficacy in severely demented patients during treatment with memantine). Int J Geriatr Psychiatry 1999; 14: 135–46PubMedCrossRef
99.
Zurück zum Zitat Reisberg B, Doody R, Stoffler A, et al. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 2003; 348: 1333–41PubMedCrossRef Reisberg B, Doody R, Stoffler A, et al. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 2003; 348: 1333–41PubMedCrossRef
100.
Zurück zum Zitat Wimo A, Winblad B, Stoffler A, et al. Resource utilisation and cost analysis of memantine in patients with moderate to severe Alzheimer’s disease. Pharmacoeconomics 2003; 21: 327–40PubMedCrossRef Wimo A, Winblad B, Stoffler A, et al. Resource utilisation and cost analysis of memantine in patients with moderate to severe Alzheimer’s disease. Pharmacoeconomics 2003; 21: 327–40PubMedCrossRef
101.
Zurück zum Zitat Ferris SH, Schmidt F, Doody R, et al. Long-term treatment with the NMDA antagonist, memantine: results of a 24-week, open-label extension study in advanced Alzheimer’s disease [poster]. Annual Meeting of the American College of Neuropsychopharmacology; 2001 Dec 9–13; Waikoloa Village (HI) Ferris SH, Schmidt F, Doody R, et al. Long-term treatment with the NMDA antagonist, memantine: results of a 24-week, open-label extension study in advanced Alzheimer’s disease [poster]. Annual Meeting of the American College of Neuropsychopharmacology; 2001 Dec 9–13; Waikoloa Village (HI)
102.
Zurück zum Zitat Kilpatrick GJ, Tilbrook GS. Memantine: Merz. Curr Opin Investig Drugs 2002; 3: 798–806PubMed Kilpatrick GJ, Tilbrook GS. Memantine: Merz. Curr Opin Investig Drugs 2002; 3: 798–806PubMed
103.
Zurück zum Zitat Jain KK. Evaluation of memantine for neuroprotection in dementia. Expert Opin Investig Drugs 2000; 9: 1397–406PubMedCrossRef Jain KK. Evaluation of memantine for neuroprotection in dementia. Expert Opin Investig Drugs 2000; 9: 1397–406PubMedCrossRef
104.
Zurück zum Zitat Wenk GL, Quack G, Moebius HJ, et al. No interaction of memantine with acetylcholinesterase inhibitors approved for clinical use. Life Sci 2000; 66: 1079–83PubMedCrossRef Wenk GL, Quack G, Moebius HJ, et al. No interaction of memantine with acetylcholinesterase inhibitors approved for clinical use. Life Sci 2000; 66: 1079–83PubMedCrossRef
105.
Zurück zum Zitat Farlow MR, Tariot PN, Grossberg GT, et al. Memantine/donepezil dual therapy is superior to placebo/donepezil therapy for treatment of moderate to severe Alzheimer’s disease [abstract no. 1035]. Neurology 2003; 60Suppl. 1: A412 Farlow MR, Tariot PN, Grossberg GT, et al. Memantine/donepezil dual therapy is superior to placebo/donepezil therapy for treatment of moderate to severe Alzheimer’s disease [abstract no. 1035]. Neurology 2003; 60Suppl. 1: A412
106.
Zurück zum Zitat Danysz W, Parsons CG, Jirgensons A, et al. Amino-alkylcyclohexanes as a novel class of uncompetitive NMDA receptor antagonists. Curr Pharm Des 2002; 8: 835–43PubMedCrossRef Danysz W, Parsons CG, Jirgensons A, et al. Amino-alkylcyclohexanes as a novel class of uncompetitive NMDA receptor antagonists. Curr Pharm Des 2002; 8: 835–43PubMedCrossRef
107.
Zurück zum Zitat Liang Z, Valla J, Sefidvash-Hockley S, et al. Effects of estrogen treatment on glutamate uptake in cultured human astrocytes derived from cortex of Alzheimer’s disease patients. J Neurochem 2002; 80: 807–14PubMedCrossRef Liang Z, Valla J, Sefidvash-Hockley S, et al. Effects of estrogen treatment on glutamate uptake in cultured human astrocytes derived from cortex of Alzheimer’s disease patients. J Neurochem 2002; 80: 807–14PubMedCrossRef
108.
Zurück zum Zitat Xu H, Gouras GK, Greenfield JP, et al. Estrogen reduces neuronal generation of Alzheimer beta-amyloid peptides. Nat Med 1998; 4: 447–51PubMedCrossRef Xu H, Gouras GK, Greenfield JP, et al. Estrogen reduces neuronal generation of Alzheimer beta-amyloid peptides. Nat Med 1998; 4: 447–51PubMedCrossRef
109.
Zurück zum Zitat Li R, Shen Y, Yang L-B, et al. Estrogen enhances uptake of amyloid protein by microglia derived from the human cortex. J Neurochem 2000; 75: 14447–54 Li R, Shen Y, Yang L-B, et al. Estrogen enhances uptake of amyloid protein by microglia derived from the human cortex. J Neurochem 2000; 75: 14447–54
110.
Zurück zum Zitat Zheng H, Xu H, Uljon SN, et al. Modulation of A(beta) peptides by estrogen in mouse models. J Neurochem 2002; 80: 191–6PubMedCrossRef Zheng H, Xu H, Uljon SN, et al. Modulation of A(beta) peptides by estrogen in mouse models. J Neurochem 2002; 80: 191–6PubMedCrossRef
111.
Zurück zum Zitat Keller JN, Germeyer A, Begley JG, et al. 17-Estradiol attenuates oxidative impairment of synaptic Na/K-ATPase activity, glucose transport, and glutamate transport induced by amyloid b-peptide and ion. J Neurosci Res 1997; 50: 522–30PubMedCrossRef Keller JN, Germeyer A, Begley JG, et al. 17-Estradiol attenuates oxidative impairment of synaptic Na/K-ATPase activity, glucose transport, and glutamate transport induced by amyloid b-peptide and ion. J Neurosci Res 1997; 50: 522–30PubMedCrossRef
112.
Zurück zum Zitat Trotti D, Danbolt NC, Volterra A. Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 1998; 19: 328–34PubMedCrossRef Trotti D, Danbolt NC, Volterra A. Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 1998; 19: 328–34PubMedCrossRef
113.
Zurück zum Zitat Singer C, Rogers KL, Strickland TM, et al. Estrogen protects primary cortical neurons from glutamate toxicity. Neurosci Lett 1996; 212: 13–6PubMedCrossRef Singer C, Rogers KL, Strickland TM, et al. Estrogen protects primary cortical neurons from glutamate toxicity. Neurosci Lett 1996; 212: 13–6PubMedCrossRef
114.
Zurück zum Zitat Green PS, Perez EJ, Calloway T, et al. Estradiol attenuation of beta-amyloid-induced toxicity: a comparison of MTT and calcein AM assays. J Neurocytol 2000; 29: 419–23PubMedCrossRef Green PS, Perez EJ, Calloway T, et al. Estradiol attenuation of beta-amyloid-induced toxicity: a comparison of MTT and calcein AM assays. J Neurocytol 2000; 29: 419–23PubMedCrossRef
115.
Zurück zum Zitat Asthana S, Craft S, Baker LD, et al. Cognitive and neuroendocrine response to transdermal estrogen in postmenopausal women with Alzheimer’s disease: results of a placebo-controlled, double-blind, pilot study. Psychoneuroendocrinology 1999; 24: 657–77PubMedCrossRef Asthana S, Craft S, Baker LD, et al. Cognitive and neuroendocrine response to transdermal estrogen in postmenopausal women with Alzheimer’s disease: results of a placebo-controlled, double-blind, pilot study. Psychoneuroendocrinology 1999; 24: 657–77PubMedCrossRef
116.
Zurück zum Zitat Asthana S, Baker LD, Craft S, et al. High-dose estradiol improves cognition for women with AD: results of a randomized study. Neurology 2001; 57: 605–12PubMedCrossRef Asthana S, Baker LD, Craft S, et al. High-dose estradiol improves cognition for women with AD: results of a randomized study. Neurology 2001; 57: 605–12PubMedCrossRef
117.
Zurück zum Zitat Yoon BK, Kim DK, Kang Y, et al. Hormone replacement therapy in postmenopausal women with Alzheimer’s disease: a randomized, prospective study. Fertil Steril 2003; 79: 274–80PubMedCrossRef Yoon BK, Kim DK, Kang Y, et al. Hormone replacement therapy in postmenopausal women with Alzheimer’s disease: a randomized, prospective study. Fertil Steril 2003; 79: 274–80PubMedCrossRef
118.
Zurück zum Zitat Thal LJ, Thomas RG, Mulnard R, et al. Estrogen levels do not correlate with improvement in cognition. Arch Neurol 2003; 60: 209–12PubMedCrossRef Thal LJ, Thomas RG, Mulnard R, et al. Estrogen levels do not correlate with improvement in cognition. Arch Neurol 2003; 60: 209–12PubMedCrossRef
119.
Zurück zum Zitat Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial: Alzheimer’s Disease Cooperative Study. JAMA 2000; 283: 1007–15PubMedCrossRef Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial: Alzheimer’s Disease Cooperative Study. JAMA 2000; 283: 1007–15PubMedCrossRef
120.
Zurück zum Zitat Henderson VW, Paganini-Hill A, Miller BL, et al. Estrogen for Alzheimer’s disease in women: randomized, double-blind, placebo-controlled trial. Neurology 2000; 54: 295–301PubMedCrossRef Henderson VW, Paganini-Hill A, Miller BL, et al. Estrogen for Alzheimer’s disease in women: randomized, double-blind, placebo-controlled trial. Neurology 2000; 54: 295–301PubMedCrossRef
121.
Zurück zum Zitat Rigaud AS, Andre G, Vellas B, et al. No additional benefit of HRT on response to rivastigmine in menopausal women with AD. Neurology 2003; 60: 148–9PubMedCrossRef Rigaud AS, Andre G, Vellas B, et al. No additional benefit of HRT on response to rivastigmine in menopausal women with AD. Neurology 2003; 60: 148–9PubMedCrossRef
122.
Zurück zum Zitat Owens CT. Estrogen replacement therapy for Alzheimer disease in postmenopausal women. Ann Pharmacother 2002; 36: 1273–6PubMedCrossRef Owens CT. Estrogen replacement therapy for Alzheimer disease in postmenopausal women. Ann Pharmacother 2002; 36: 1273–6PubMedCrossRef
123.
Zurück zum Zitat Shumaker SA, Reboussin BA, Espeland MA, et al. The Women’s Health Initiative Memory Study (WHIMS): a trial of the effect of estrogen therapy in preventing and slowing the progression of dementia. Control Clin Trials 1998; 19: 604–21PubMedCrossRef Shumaker SA, Reboussin BA, Espeland MA, et al. The Women’s Health Initiative Memory Study (WHIMS): a trial of the effect of estrogen therapy in preventing and slowing the progression of dementia. Control Clin Trials 1998; 19: 604–21PubMedCrossRef
124.
Zurück zum Zitat MacLennan AH, Paine BJ, Marley JE. WISDOM: will Australian women participate? Aust Fam Physician 2000; 29: 797–801PubMed MacLennan AH, Paine BJ, Marley JE. WISDOM: will Australian women participate? Aust Fam Physician 2000; 29: 797–801PubMed
125.
Zurück zum Zitat Myhrer T. Animal models of Alzheimer’s disease: glutamatergic denervation as an alternative approach to cholinergic denervation. Neurosci Biobehav Rev 1993; 17: 192–202CrossRef Myhrer T. Animal models of Alzheimer’s disease: glutamatergic denervation as an alternative approach to cholinergic denervation. Neurosci Biobehav Rev 1993; 17: 192–202CrossRef
126.
Zurück zum Zitat Steele JE, Palmer AM, Stratmann GC, et al. The N-methyl-D-aspartate receptor complex in Alzheimer’s disease: reduced regulation by glycine but not zinc. Brain Res 1989; 500: 369–73PubMedCrossRef Steele JE, Palmer AM, Stratmann GC, et al. The N-methyl-D-aspartate receptor complex in Alzheimer’s disease: reduced regulation by glycine but not zinc. Brain Res 1989; 500: 369–73PubMedCrossRef
127.
Zurück zum Zitat Herting RL. Milacemide and other drugs active at glutamate NMDA receptors as potential treatment for dementia. Ann N Y Acad Sci 1991; 640: 237–40PubMed Herting RL. Milacemide and other drugs active at glutamate NMDA receptors as potential treatment for dementia. Ann N Y Acad Sci 1991; 640: 237–40PubMed
128.
Zurück zum Zitat Schwartz BL, Hashtroudi RL, Herting H, et al. Glycine prodrug facilitates memory retrieval in humans. Neurology 1991; 41: 1341–3PubMedCrossRef Schwartz BL, Hashtroudi RL, Herting H, et al. Glycine prodrug facilitates memory retrieval in humans. Neurology 1991; 41: 1341–3PubMedCrossRef
129.
Zurück zum Zitat Flood JF, Morley JE, Lanthorn TH. Effect on memory processing by D-cycloserine, an agonist of the NMDA/glycine receptor. Eur J Pharmacol 1992; 221: 249–54PubMedCrossRef Flood JF, Morley JE, Lanthorn TH. Effect on memory processing by D-cycloserine, an agonist of the NMDA/glycine receptor. Eur J Pharmacol 1992; 221: 249–54PubMedCrossRef
130.
Zurück zum Zitat Monahan JB, Handelmann GE, Hood WF, et al. D-cycloserine, a positive modulator of the N-methyl-D-aspartate receptor enhances performance of learning tasks in rats. Pharmacol Biochem Behav 1989; 34: 649–53PubMedCrossRef Monahan JB, Handelmann GE, Hood WF, et al. D-cycloserine, a positive modulator of the N-methyl-D-aspartate receptor enhances performance of learning tasks in rats. Pharmacol Biochem Behav 1989; 34: 649–53PubMedCrossRef
131.
Zurück zum Zitat Chessell IP, Proctor AW, Francis PT, et al. D-cycloserine, a putative cognitive enhancer, facilitates activation of N-methyl-D-aspartate receptor-ionophore complex in Alzheimer brain. Brain Res 1991; 565: 345–8PubMedCrossRef Chessell IP, Proctor AW, Francis PT, et al. D-cycloserine, a putative cognitive enhancer, facilitates activation of N-methyl-D-aspartate receptor-ionophore complex in Alzheimer brain. Brain Res 1991; 565: 345–8PubMedCrossRef
132.
Zurück zum Zitat Schwartz BL, Hashtroudi S, Herting RL, et al. D-cycloserine enhances implicit memory in Alzheimer patients. Neurology 1996; 46: 420PubMedCrossRef Schwartz BL, Hashtroudi S, Herting RL, et al. D-cycloserine enhances implicit memory in Alzheimer patients. Neurology 1996; 46: 420PubMedCrossRef
133.
Zurück zum Zitat Shimada A, Spangler EL, London ED, et al. Spermidine potentiates dizocilpine-induced impairment of learning performance by rats in a 14-unit T-maze. Eur J Pharmacol 1994; 263: 293–30PubMedCrossRef Shimada A, Spangler EL, London ED, et al. Spermidine potentiates dizocilpine-induced impairment of learning performance by rats in a 14-unit T-maze. Eur J Pharmacol 1994; 263: 293–30PubMedCrossRef
134.
Zurück zum Zitat Zhang S, Kashii S, Yasuyoshi H, et al. Protective effects of ifenprodil against glutamate-induced neurotoxicity in cultured retinal neurons. Graefes Arch Clin Exp Ophthalmol 2000; 238: 846–52PubMedCrossRef Zhang S, Kashii S, Yasuyoshi H, et al. Protective effects of ifenprodil against glutamate-induced neurotoxicity in cultured retinal neurons. Graefes Arch Clin Exp Ophthalmol 2000; 238: 846–52PubMedCrossRef
135.
Zurück zum Zitat Gmiro VE, Serdiuk SE. Bis-ammonium adamantane derivatives: novel modulators of polyamine binding sites. Eksp Klin Farmakol 2000; 63: 16–20 Gmiro VE, Serdiuk SE. Bis-ammonium adamantane derivatives: novel modulators of polyamine binding sites. Eksp Klin Farmakol 2000; 63: 16–20
136.
Zurück zum Zitat Yatin SM, Yatin M, Varadarajan S, et al. Role of spermine in amyloid beta-peptide-associated free radical-induced neurotoxicity. J Neurosci Res 2001; 63: 395–401PubMedCrossRef Yatin SM, Yatin M, Varadarajan S, et al. Role of spermine in amyloid beta-peptide-associated free radical-induced neurotoxicity. J Neurosci Res 2001; 63: 395–401PubMedCrossRef
137.
Zurück zum Zitat Guldbrandt M, Johansen TN, Frydenvang K, et al. Glutamate receptor ligands: synthesis, stereochemistry, and enantiopharmacology of methylated 2-aminoadipic acid analogs. Chirality 2002; 14: 351–63PubMedCrossRef Guldbrandt M, Johansen TN, Frydenvang K, et al. Glutamate receptor ligands: synthesis, stereochemistry, and enantiopharmacology of methylated 2-aminoadipic acid analogs. Chirality 2002; 14: 351–63PubMedCrossRef
Metadaten
Titel
The Glutamatergic System and Alzheimer’s Disease
Therapeutic Implications
verfasst von
Prof. D. Allan Butterfield
Chava B. Pocernich
Publikationsdatum
01.08.2003
Verlag
Springer International Publishing
Erschienen in
CNS Drugs / Ausgabe 9/2003
Print ISSN: 1172-7047
Elektronische ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200317090-00004

Weitere Artikel der Ausgabe 9/2003

CNS Drugs 9/2003 Zur Ausgabe

Adis Drug Profile

SLI-381 (Adderall XR®)

Adis Drug Profile

SLI-381 (Adderall XR®)

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.