Skip to main content
Erschienen in: BioDrugs 5/2005

01.09.2005 | Mechanisms and Targets

Mechanisms of Action for Treatments in Multiple Sclerosis

Does a Heterogeneous Disease Demand a Multi-Targeted Therapeutic Approach?

verfasst von: Dr Michel Chofflon

Erschienen in: BioDrugs | Ausgabe 5/2005

Einloggen, um Zugang zu erhalten

Abstract

The etiology of multiple sclerosis (MS) is incompletely understood, and evidence suggests there may be more than one underlying cause in this disorder. Furthermore, this complex and heterogeneous autoimmune disease shows a high degree of clinical variability between patients. Therefore, in the absence of a single therapeutic target for MS, it is difficult to apply conventional drug design strategies in the search for new treatments. We review the potential mechanisms of action of several effective therapies for MS that are currently available or in development. The effects of each treatment are described in terms of their actions on key processes in a five-step model of MS pathogenesis. Conventional immunosuppressants targeting intracellular ligands (e.g. mitoxantrone) have broad cytotoxic effects on B cells, T cells, and macrophages. This suppresses the pathogenic immune response in MS with high efficacy but is also associated with high toxicity, limiting the long-term use of these agents. Monoclonal antibodies (e.g. natalizumab and alemtuzumab) are a new generation of immunosuppressants that act on immune-cell surface ligands. These agents have narrower immunosuppressive actions and different safety profiles compared with conventional immunosuppressants. Immunomodulators (interferon-β and glatiramer acetate), which shift the immune balance toward an anti-inflammatory response, are at the frontline of treatments for MS. Immunomodulators have targeted actions on the immune system, but affect a greater number of immunopathogenic processes than monoclonal antibodies. Given the inherent heterogeneity of MS, such treatments, which act at many levels of the disease, may achieve the best clinical results. Using our understanding of the interplay between mechanism of action and clinical effects in MS therapies may help us to better design and select new treatments for the future.
Fußnoten
1
The use of trade names is for product identification purposes only and does not imply endorsement
 
Literatur
1.
Zurück zum Zitat Lucchinetti C, Brück W, Parisi J, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47(6): 707–17PubMedCrossRef Lucchinetti C, Brück W, Parisi J, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47(6): 707–17PubMedCrossRef
2.
Zurück zum Zitat Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 1996; 46: 907–11PubMedCrossRef Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 1996; 46: 907–11PubMedCrossRef
3.
Zurück zum Zitat Goodin DS, Frohman EM, Garmany GP, et al. Disease modifying therapies in multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the MS Council for Clinical Practice Guidelines. Neurology 2002; 58(2): 169–78PubMedCrossRef Goodin DS, Frohman EM, Garmany GP, et al. Disease modifying therapies in multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the MS Council for Clinical Practice Guidelines. Neurology 2002; 58(2): 169–78PubMedCrossRef
4.
Zurück zum Zitat Neuhaus O, Archelos JJ, Hartung H-P. Immunomodulation in multiple sclerosis: from immunosuppression to neuroprotection. Trends Pharmacol Sci 2003; 24(3): 131–8PubMedCrossRef Neuhaus O, Archelos JJ, Hartung H-P. Immunomodulation in multiple sclerosis: from immunosuppression to neuroprotection. Trends Pharmacol Sci 2003; 24(3): 131–8PubMedCrossRef
5.
Zurück zum Zitat PRISMS Study Group. PRISMS-4: long-term efficacy of interferon-β-1a in relapsing MS. University of British Columbia MS/MRI Analysis Group. Neurology 2001; 56(12): 1628–36CrossRef PRISMS Study Group. PRISMS-4: long-term efficacy of interferon-β-1a in relapsing MS. University of British Columbia MS/MRI Analysis Group. Neurology 2001; 56(12): 1628–36CrossRef
6.
Zurück zum Zitat Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis. Ann Neurol 2001; 49(3): 290–7PubMedCrossRef Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis. Ann Neurol 2001; 49(3): 290–7PubMedCrossRef
7.
Zurück zum Zitat Hartung H-P, Gonsette R, Konig N, et al. Mitoxantrone in progressive multiple sclerosis: a placebo controlled, double-blind, randomised, multicentre trial. Lancet 2002; 360: 2018–25PubMedCrossRef Hartung H-P, Gonsette R, Konig N, et al. Mitoxantrone in progressive multiple sclerosis: a placebo controlled, double-blind, randomised, multicentre trial. Lancet 2002; 360: 2018–25PubMedCrossRef
8.
Zurück zum Zitat Miller DH, Khan OA, Sheremata WA, et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2003; 348(1): 15–23PubMedCrossRef Miller DH, Khan OA, Sheremata WA, et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2003; 348(1): 15–23PubMedCrossRef
9.
Zurück zum Zitat Coles AJ, Wing M, Smith S, et al. Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet 1999; 354(9191): 1691–5PubMedCrossRef Coles AJ, Wing M, Smith S, et al. Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet 1999; 354(9191): 1691–5PubMedCrossRef
10.
Zurück zum Zitat Rice GPA, Filippi M, Comi G. Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Neurology 2000; 54: 1145–55PubMedCrossRef Rice GPA, Filippi M, Comi G. Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Neurology 2000; 54: 1145–55PubMedCrossRef
11.
Zurück zum Zitat Gonsette RE. New immunosuppressants with potential implication in multiple sclerosis. J Neurol Sci 2004; 223: 87–93PubMedCrossRef Gonsette RE. New immunosuppressants with potential implication in multiple sclerosis. J Neurol Sci 2004; 223: 87–93PubMedCrossRef
12.
Zurück zum Zitat Edan G, Morrissey S, Le Page E. Rationale for the use of mitoxantrone in multiple sclerosis. J Neurol Sci 2004; 223: 35–9PubMedCrossRef Edan G, Morrissey S, Le Page E. Rationale for the use of mitoxantrone in multiple sclerosis. J Neurol Sci 2004; 223: 35–9PubMedCrossRef
13.
Zurück zum Zitat Ghalie RG, Edan G, Laurent M, et al. Cardiac adverse effects associated with mitoxantrone (Novantrone) therapy in patients with MS. Neurology 2002; 59: 909–13PubMedCrossRef Ghalie RG, Edan G, Laurent M, et al. Cardiac adverse effects associated with mitoxantrone (Novantrone) therapy in patients with MS. Neurology 2002; 59: 909–13PubMedCrossRef
14.
Zurück zum Zitat Mittelbrunn M, Molina A, Escribese MM, et al. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses. Proc Natl Acad Sci U S A 2004; 101(30): 11058–63PubMedCrossRef Mittelbrunn M, Molina A, Escribese MM, et al. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses. Proc Natl Acad Sci U S A 2004; 101(30): 11058–63PubMedCrossRef
15.
16.
Zurück zum Zitat Chan A, Weilbach FX, Toyka KV, et al. Mitoxantrone induces cell death in peripheral blood leucocytes of multiple sclerosis patients. Clin Exp Immunol 2005; 139: 152–8PubMedCrossRef Chan A, Weilbach FX, Toyka KV, et al. Mitoxantrone induces cell death in peripheral blood leucocytes of multiple sclerosis patients. Clin Exp Immunol 2005; 139: 152–8PubMedCrossRef
17.
Zurück zum Zitat Ota K, Matsui M, Milford EL, et al. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 1990; 346: 183–7PubMedCrossRef Ota K, Matsui M, Milford EL, et al. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 1990; 346: 183–7PubMedCrossRef
18.
Zurück zum Zitat Pette M, Fujita K, Kitze B, et al. Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 1990; 40: 1770–6PubMedCrossRef Pette M, Fujita K, Kitze B, et al. Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 1990; 40: 1770–6PubMedCrossRef
19.
Zurück zum Zitat Hartung H-P, Bar-Or A. What do we know about the mechanism of action of disease-modifying treatments in MS? J Neurol 2004; 251Suppl. 5: V12–29PubMedCrossRef Hartung H-P, Bar-Or A. What do we know about the mechanism of action of disease-modifying treatments in MS? J Neurol 2004; 251Suppl. 5: V12–29PubMedCrossRef
20.
Zurück zum Zitat Yong VW, Chabot S, Stuve O, et al. Interferon beta in the treatment of multiple sclerosis: mechanisms of action. Neurology 1998; 51: 682–9PubMedCrossRef Yong VW, Chabot S, Stuve O, et al. Interferon beta in the treatment of multiple sclerosis: mechanisms of action. Neurology 1998; 51: 682–9PubMedCrossRef
21.
Zurück zum Zitat Benczik M, Gaffen SL. The interleukin (IL)-2 family cytokines: survival and proliferation signaling pathways in T lymphocytes. Immunol Invest 2004; 33(2): 109–42PubMedCrossRef Benczik M, Gaffen SL. The interleukin (IL)-2 family cytokines: survival and proliferation signaling pathways in T lymphocytes. Immunol Invest 2004; 33(2): 109–42PubMedCrossRef
22.
Zurück zum Zitat Yong VW. Differential mechanisms of action of interferon-beta and glatiramer acetate in MS. Neurology 2002; 59: 802–8PubMedCrossRef Yong VW. Differential mechanisms of action of interferon-beta and glatiramer acetate in MS. Neurology 2002; 59: 802–8PubMedCrossRef
23.
Zurück zum Zitat Brown KA. Factors modifying the migration of lymphocytes across the blood-brain barrier. Int Immunopharmacol 2001; 1(12): 2043–62PubMedCrossRef Brown KA. Factors modifying the migration of lymphocytes across the blood-brain barrier. Int Immunopharmacol 2001; 1(12): 2043–62PubMedCrossRef
24.
Zurück zum Zitat Correale J, Bassani Molinas Mde L. Temporal variations of adhesion molecules and matrix metalloproteinases in the course of MS. J Neuroimmunol 2003; 140(1–2): 198–209PubMedCrossRef Correale J, Bassani Molinas Mde L. Temporal variations of adhesion molecules and matrix metalloproteinases in the course of MS. J Neuroimmunol 2003; 140(1–2): 198–209PubMedCrossRef
25.
Zurück zum Zitat Zhang Y, Da R-R, Guo W, et al. Axon reactive B cells clonally expanded in the cerebrospinal fluid of patients with multiple sclerosis. J Clin Immunol 2005; 25(3): 254–64PubMedCrossRef Zhang Y, Da R-R, Guo W, et al. Axon reactive B cells clonally expanded in the cerebrospinal fluid of patients with multiple sclerosis. J Clin Immunol 2005; 25(3): 254–64PubMedCrossRef
26.
Zurück zum Zitat Friese MA, Fugger L. Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 2005; 128: 1747–63PubMedCrossRef Friese MA, Fugger L. Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 2005; 128: 1747–63PubMedCrossRef
27.
Zurück zum Zitat Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004; 364: 2106–12PubMedCrossRef Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004; 364: 2106–12PubMedCrossRef
28.
Zurück zum Zitat PRISMS Study Group. Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. Lancet 1998; 352(9139): 1498–504CrossRef PRISMS Study Group. Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. Lancet 1998; 352(9139): 1498–504CrossRef
29.
Zurück zum Zitat Weinstock-Guttman B, Badgett D, Patrick K, et al. Genomic effects of IFN-beta in multiple sclerosis patients. J Immunol 2003; 171(5): 2694–702PubMed Weinstock-Guttman B, Badgett D, Patrick K, et al. Genomic effects of IFN-beta in multiple sclerosis patients. J Immunol 2003; 171(5): 2694–702PubMed
30.
Zurück zum Zitat Huynh HK, Oger J, Dorovini-Zis K. Interferon-β downregulates interferon-gamma-induced class II MHC molecule expression and morphological changes in primary cultures of human brain microvessel endothelial cells. J Neuroimmunol 1995; 60: 63–73PubMedCrossRef Huynh HK, Oger J, Dorovini-Zis K. Interferon-β downregulates interferon-gamma-induced class II MHC molecule expression and morphological changes in primary cultures of human brain microvessel endothelial cells. J Neuroimmunol 1995; 60: 63–73PubMedCrossRef
31.
Zurück zum Zitat Miller A, Lanir N, Shapiro S, et al. Immunoregulatory effects of interferon-β and interacting cytokines on human vascular endothelial cells: implications for multiple sclerosis and other autoimmune diseases. J Neuroimmunol 1996; 64: 151–61PubMedCrossRef Miller A, Lanir N, Shapiro S, et al. Immunoregulatory effects of interferon-β and interacting cytokines on human vascular endothelial cells: implications for multiple sclerosis and other autoimmune diseases. J Neuroimmunol 1996; 64: 151–61PubMedCrossRef
32.
Zurück zum Zitat Soilu-Hänninen M, Salmi A, Salonen R. Interferon-β downregulates expression of VLA-4 antigen and antagonizes interferon-gamma-induced expression of HLA-DQ on human peripheral blood monocytes. J Neuroimmunol 1995; 60: 99–106PubMedCrossRef Soilu-Hänninen M, Salmi A, Salonen R. Interferon-β downregulates expression of VLA-4 antigen and antagonizes interferon-gamma-induced expression of HLA-DQ on human peripheral blood monocytes. J Neuroimmunol 1995; 60: 99–106PubMedCrossRef
33.
Zurück zum Zitat Schreiner B, Mitsdoerffer M, Kieseier BC, et al. Interferon-beta enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. J Neuroimmunol 2004; 155: 172–82PubMedCrossRef Schreiner B, Mitsdoerffer M, Kieseier BC, et al. Interferon-beta enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. J Neuroimmunol 2004; 155: 172–82PubMedCrossRef
34.
Zurück zum Zitat Giorelli M, Livrea P, Defazio G, et al. IFN-beta la modulates the expression of CTLA-4 and CD28 splice variants in human mononuclear cells: induction of soluble isoforms. J Interferon Cytokine Res 2001; 21(10): 809–12PubMedCrossRef Giorelli M, Livrea P, Defazio G, et al. IFN-beta la modulates the expression of CTLA-4 and CD28 splice variants in human mononuclear cells: induction of soluble isoforms. J Interferon Cytokine Res 2001; 21(10): 809–12PubMedCrossRef
35.
Zurück zum Zitat Liu Z, Pelfrey CM, Cotleur A, et al. Immunomodulatory effects of interferon beta-la in multiple sclerosis. J Immunol 2001; 112: 153–62 Liu Z, Pelfrey CM, Cotleur A, et al. Immunomodulatory effects of interferon beta-la in multiple sclerosis. J Immunol 2001; 112: 153–62
36.
Zurück zum Zitat Genc K, Dona DL, Reder AT. Increased CD80+ B cells in active multiple sclerosis and reversal by interferon β-1b therapy. J Clin Invest 1997; 99: 2664–71PubMedCrossRef Genc K, Dona DL, Reder AT. Increased CD80+ B cells in active multiple sclerosis and reversal by interferon β-1b therapy. J Clin Invest 1997; 99: 2664–71PubMedCrossRef
37.
Zurück zum Zitat Kawanokuchi J, Mizuno T, Kato H, et al. Effects of interferon-beta on microglial functions as inflammatory and antigen presenting cells in the central nervous system. Neuropharmacology 2004; 46(5): 734–42PubMedCrossRef Kawanokuchi J, Mizuno T, Kato H, et al. Effects of interferon-beta on microglial functions as inflammatory and antigen presenting cells in the central nervous system. Neuropharmacology 2004; 46(5): 734–42PubMedCrossRef
38.
Zurück zum Zitat Shapiro S, Galboiz Y, Lahat N, et al. The ‘immunological-synapse’ at its APC side in relapsing and secondary-progressive multiple sclerosis: modulation by interferon-β. J Neuroimmunol 2003; 144: 116–24PubMedCrossRef Shapiro S, Galboiz Y, Lahat N, et al. The ‘immunological-synapse’ at its APC side in relapsing and secondary-progressive multiple sclerosis: modulation by interferon-β. J Neuroimmunol 2003; 144: 116–24PubMedCrossRef
39.
Zurück zum Zitat Sharief MK, Semra YK, Seidi OA, et al. Interferon-β therapy downregulates the anti-apoptosis protein FLIP in T cells from patients with multiple sclerosis. J Neuroimmunol 2001; 120: 199–207PubMedCrossRef Sharief MK, Semra YK, Seidi OA, et al. Interferon-β therapy downregulates the anti-apoptosis protein FLIP in T cells from patients with multiple sclerosis. J Neuroimmunol 2001; 120: 199–207PubMedCrossRef
40.
Zurück zum Zitat Ahn J, Feng X, Patel N, et al. Abnormal levels of interferon-gamma receptors in active multiple sclerosis are normalized by IFN-β therapy: implications for control of apoptosis. Frontiers in Bioscience 2004; 9: 1547–55PubMedCrossRef Ahn J, Feng X, Patel N, et al. Abnormal levels of interferon-gamma receptors in active multiple sclerosis are normalized by IFN-β therapy: implications for control of apoptosis. Frontiers in Bioscience 2004; 9: 1547–55PubMedCrossRef
41.
Zurück zum Zitat Billiau A, Kieseier BC, Hartung H-P. Biologic role of interferon beta in multiple sclerosis. J Neurol 2004; 251Suppl. 2: II/10–14 Billiau A, Kieseier BC, Hartung H-P. Biologic role of interferon beta in multiple sclerosis. J Neurol 2004; 251Suppl. 2: II/10–14
42.
Zurück zum Zitat Zang YC, Skinner SM, Robinson RR, et al. Regulation of differentiation and functional properties of monocytes and monocyte-derived dendritic cells by interferon beta in multiple sclerosis. Mult Scler 2004; 10(5): 499–506PubMedCrossRef Zang YC, Skinner SM, Robinson RR, et al. Regulation of differentiation and functional properties of monocytes and monocyte-derived dendritic cells by interferon beta in multiple sclerosis. Mult Scler 2004; 10(5): 499–506PubMedCrossRef
43.
Zurück zum Zitat Sega S, Wraber B, Mesec A, et al. IFN-beta la and IFN-beta 1b have different patterns of influence on cytokines. Clin Neurol Neurosurg 2004; 106(3): 255–8PubMedCrossRef Sega S, Wraber B, Mesec A, et al. IFN-beta la and IFN-beta 1b have different patterns of influence on cytokines. Clin Neurol Neurosurg 2004; 106(3): 255–8PubMedCrossRef
44.
Zurück zum Zitat Nagai T, Devergne O, Mueller TF, et al. Timing of IFN-beta exposure during human dendritic cell maturation and naive Th cell stimulation has contrasting effects on Th1 subset generation: a role for IFN-beta-mediated regulation of IL-12 family cytokines. J Immunol 2003; 171(10): 5233–43PubMed Nagai T, Devergne O, Mueller TF, et al. Timing of IFN-beta exposure during human dendritic cell maturation and naive Th cell stimulation has contrasting effects on Th1 subset generation: a role for IFN-beta-mediated regulation of IL-12 family cytokines. J Immunol 2003; 171(10): 5233–43PubMed
45.
Zurück zum Zitat Maguire van Seventer J, Nagai T, VanSeventer GA. Interferon-β differentially regulates expression of the IL-12 family members p35, p40, pl9, and EB 13 in activated human dendritic cells. J Neuroimmunol 2002; 133: 60–71CrossRef Maguire van Seventer J, Nagai T, VanSeventer GA. Interferon-β differentially regulates expression of the IL-12 family members p35, p40, pl9, and EB 13 in activated human dendritic cells. J Neuroimmunol 2002; 133: 60–71CrossRef
46.
Zurück zum Zitat Hussien Y, Sanna A, Söderström M, et al. Glatiramer acetate and IFN-β act on dendritic cells in multiple sclerosis. J Neuroimmunol 2001; 121: 102–10PubMedCrossRef Hussien Y, Sanna A, Söderström M, et al. Glatiramer acetate and IFN-β act on dendritic cells in multiple sclerosis. J Neuroimmunol 2001; 121: 102–10PubMedCrossRef
47.
Zurück zum Zitat Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003; 421(6924): 744–8PubMedCrossRef Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003; 421(6924): 744–8PubMedCrossRef
48.
Zurück zum Zitat Brombacher F, Kastelein RA, Alber G. Novel IL-12 family members shed light on the orchestration of Th1 responses. Trends Immunol 2003; 24(4): 207–12PubMedCrossRef Brombacher F, Kastelein RA, Alber G. Novel IL-12 family members shed light on the orchestration of Th1 responses. Trends Immunol 2003; 24(4): 207–12PubMedCrossRef
49.
Zurück zum Zitat Vandenbroeck K, Alloza I, Gadina M, et al. Inhibiting cytokines of the interleukin-12 family: recent advances and novel challenges. J Pharm Pharmacol 2004; 56(2): 145–60PubMedCrossRef Vandenbroeck K, Alloza I, Gadina M, et al. Inhibiting cytokines of the interleukin-12 family: recent advances and novel challenges. J Pharm Pharmacol 2004; 56(2): 145–60PubMedCrossRef
50.
Zurück zum Zitat Noronha A, Toscas A, Jensen MA. IFN-beta decreases T cell activation and IFN-gamma production in multiple sclerosis. J Neuroimmunol 1993; 46: 145–54PubMedCrossRef Noronha A, Toscas A, Jensen MA. IFN-beta decreases T cell activation and IFN-gamma production in multiple sclerosis. J Neuroimmunol 1993; 46: 145–54PubMedCrossRef
51.
Zurück zum Zitat Iarlori C, Reale M, Lugaresi A, et al. RANTES production and expression is reduced in relapsing-remitting multiple sclerosis patients treated with interfer-on-β-1b. J Neuroimmunol 2000; 107(1): 100–7PubMedCrossRef Iarlori C, Reale M, Lugaresi A, et al. RANTES production and expression is reduced in relapsing-remitting multiple sclerosis patients treated with interfer-on-β-1b. J Neuroimmunol 2000; 107(1): 100–7PubMedCrossRef
52.
Zurück zum Zitat Zang YCQ, Haider JB, Samanta AK, et al. Regulation of chemokine receptor CCR5 and production of RANTES and MIP-1α by interferon-β. J Neuroimmunol 2001; 112(1-2): 174–80PubMedCrossRef Zang YCQ, Haider JB, Samanta AK, et al. Regulation of chemokine receptor CCR5 and production of RANTES and MIP-1α by interferon-β. J Neuroimmunol 2001; 112(1-2): 174–80PubMedCrossRef
53.
Zurück zum Zitat Lund BT, Ashikian N, Ta HQ, et al. Increased CXCL8 (IL-8) expression in multiple sclerosis. J Neuroimmunol 2004; 155(1–2): 161–71PubMedCrossRef Lund BT, Ashikian N, Ta HQ, et al. Increased CXCL8 (IL-8) expression in multiple sclerosis. J Neuroimmunol 2004; 155(1–2): 161–71PubMedCrossRef
54.
Zurück zum Zitat Von Andrian UH, Engelhardt B. Alpha4 integrins as therapeutic targets in autoimmune disease. N Engl J Med 2003; 348(1): 68–72CrossRef Von Andrian UH, Engelhardt B. Alpha4 integrins as therapeutic targets in autoimmune disease. N Engl J Med 2003; 348(1): 68–72CrossRef
55.
Zurück zum Zitat Muraro PA, Leist T, Biekekova B, et al. VLA-4/CD49d downregulated on primed T lymphocytes during interferon-beta therapy in multiple sclerosis. J Neuroimmunol 2000; 111(192): 186–94PubMedCrossRef Muraro PA, Leist T, Biekekova B, et al. VLA-4/CD49d downregulated on primed T lymphocytes during interferon-beta therapy in multiple sclerosis. J Neuroimmunol 2000; 111(192): 186–94PubMedCrossRef
56.
Zurück zum Zitat Muraro PA, Liberati L, Bonanni L, et al. Decreased integrin gene expression in patients with MS responding to interferon-β treatment. J Neuroimmunol 2004; 150: 123–31PubMedCrossRef Muraro PA, Liberati L, Bonanni L, et al. Decreased integrin gene expression in patients with MS responding to interferon-β treatment. J Neuroimmunol 2004; 150: 123–31PubMedCrossRef
57.
Zurück zum Zitat Jensen J, Krakauer M, Sellebjerg F. Cytokines and adhesion molecules in multiple sclerosis patients treated with interferon-beta 1b. Cytokine 2005; 29(1): 24–30PubMed Jensen J, Krakauer M, Sellebjerg F. Cytokines and adhesion molecules in multiple sclerosis patients treated with interferon-beta 1b. Cytokine 2005; 29(1): 24–30PubMed
58.
Zurück zum Zitat Graber J, Zhan M, Ford D, et al. Inteferon-β-1a induces increases in vascular cell adhesion molecule: implications for its mode of action in multiple sclerosis. J Neuroimmunol 2005; 161: 169–76PubMedCrossRef Graber J, Zhan M, Ford D, et al. Inteferon-β-1a induces increases in vascular cell adhesion molecule: implications for its mode of action in multiple sclerosis. J Neuroimmunol 2005; 161: 169–76PubMedCrossRef
59.
Zurück zum Zitat Trojano M, Avolio C, Liuzzi GM, et al. Changes of serum sICAM-1and MMP-9 induced by rIFNbeta-1b treatment in relapsing-remitting MS. Neurology 1999; 53: 1402–8PubMedCrossRef Trojano M, Avolio C, Liuzzi GM, et al. Changes of serum sICAM-1and MMP-9 induced by rIFNbeta-1b treatment in relapsing-remitting MS. Neurology 1999; 53: 1402–8PubMedCrossRef
60.
Zurück zum Zitat Calabresi PA, Tranquill LR, Dambrosia JM, et al. Increases in soluble VCAM-1 correlate with a decrease in MRI lesions in multiple sclerosis treated with interferon β-1b. Ann Neurol 1997; 41: 669–74PubMedCrossRef Calabresi PA, Tranquill LR, Dambrosia JM, et al. Increases in soluble VCAM-1 correlate with a decrease in MRI lesions in multiple sclerosis treated with interferon β-1b. Ann Neurol 1997; 41: 669–74PubMedCrossRef
61.
Zurück zum Zitat Calabresi PA, Pelfrey CM, Tranquill LR, et al. VLA-4 expression on peripheral blood lymphocytes is downregulated after treatment of multiple sclerosis with interferon beta. Neurology 1997; 49: 1111–6PubMedCrossRef Calabresi PA, Pelfrey CM, Tranquill LR, et al. VLA-4 expression on peripheral blood lymphocytes is downregulated after treatment of multiple sclerosis with interferon beta. Neurology 1997; 49: 1111–6PubMedCrossRef
62.
Zurück zum Zitat Kraus J, Bauer R, Chatzimanolis N, et al. Interferon-β1b leads to a short-term increase of soluble but long-term stabilisation of cell surface bound adhesion molecules in multiple sclerosis. J Neurol 2004; 251: 464–72PubMedCrossRef Kraus J, Bauer R, Chatzimanolis N, et al. Interferon-β1b leads to a short-term increase of soluble but long-term stabilisation of cell surface bound adhesion molecules in multiple sclerosis. J Neurol 2004; 251: 464–72PubMedCrossRef
63.
Zurück zum Zitat Calabresi PA, Prat A, Biernacki K, et al. T lymphocytes conditioned with interferon beta induce membrane and soluble VCAM on human brain endothelial cells. J Neuroimmunol 2001; 115(1–2): 161–7PubMedCrossRef Calabresi PA, Prat A, Biernacki K, et al. T lymphocytes conditioned with interferon beta induce membrane and soluble VCAM on human brain endothelial cells. J Neuroimmunol 2001; 115(1–2): 161–7PubMedCrossRef
64.
Zurück zum Zitat Matusevicius D, Kivisakk P, Navikas VV, et al. Influence of IFN-beta lb (Betafer-on) on cytokine mRNA profiles in blood mononuclear cells and plasma levels of soluble VCAM-1 in multiple sclerosis. Eur J Neurol 1998; 5(3): 265–75PubMedCrossRef Matusevicius D, Kivisakk P, Navikas VV, et al. Influence of IFN-beta lb (Betafer-on) on cytokine mRNA profiles in blood mononuclear cells and plasma levels of soluble VCAM-1 in multiple sclerosis. Eur J Neurol 1998; 5(3): 265–75PubMedCrossRef
65.
Zurück zum Zitat Stuve O, Dooley NP, Uhm JH, et al. Interferon beta-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann Neurol 1996; 40: 853–63PubMedCrossRef Stuve O, Dooley NP, Uhm JH, et al. Interferon beta-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann Neurol 1996; 40: 853–63PubMedCrossRef
66.
Zurück zum Zitat Leppert D, Waubant E, Burk MR, et al. Interferon beta-1b inhibits gelatinase secretion and in vitro migration of human T cells: a possible mechanism for treatment efficacy in multiple sclerosis. Ann Neurol 1996; 40: 846–52PubMedCrossRef Leppert D, Waubant E, Burk MR, et al. Interferon beta-1b inhibits gelatinase secretion and in vitro migration of human T cells: a possible mechanism for treatment efficacy in multiple sclerosis. Ann Neurol 1996; 40: 846–52PubMedCrossRef
67.
Zurück zum Zitat Ozenci V, Kouwenhoven M, Teleshova N, et al. Multiple sclerosis: pro-and anti-inflammatory cytokines and metalloproteinases are affected differentially by treatment with IFN-beta. J Neuroimmunol 2000; 108(1–2): 236–43PubMedCrossRef Ozenci V, Kouwenhoven M, Teleshova N, et al. Multiple sclerosis: pro-and anti-inflammatory cytokines and metalloproteinases are affected differentially by treatment with IFN-beta. J Neuroimmunol 2000; 108(1–2): 236–43PubMedCrossRef
68.
Zurück zum Zitat Galboiz Y, Shapiro S, Lahat N, et al. Matrix metalloproteinases and their tissue inhibitors as markers of disease subtype and response to interferon-β therapy in relapsing and secondary-progressive multiple sclerosis patients. Ann Neurol 2001; 50: 443–51PubMedCrossRef Galboiz Y, Shapiro S, Lahat N, et al. Matrix metalloproteinases and their tissue inhibitors as markers of disease subtype and response to interferon-β therapy in relapsing and secondary-progressive multiple sclerosis patients. Ann Neurol 2001; 50: 443–51PubMedCrossRef
69.
Zurück zum Zitat Kraus J, Ling AK, Hamm S, et al. Interferon-beta stabilizes barrier characteristics of brain endothelial cells in vitro. Ann Neurol 2004; 56(2): 192–205PubMedCrossRef Kraus J, Ling AK, Hamm S, et al. Interferon-beta stabilizes barrier characteristics of brain endothelial cells in vitro. Ann Neurol 2004; 56(2): 192–205PubMedCrossRef
70.
Zurück zum Zitat Hua LL, Kim MO, Brosnan CF, et al. Modulation of astrocyte inducible nitric oxide synthase and cytokine expression by interferon beta is associated with induction and inhibition of interferon gamma-activated sequence binding activity. J Neurochem 2002; 83(5): 1120–8PubMedCrossRef Hua LL, Kim MO, Brosnan CF, et al. Modulation of astrocyte inducible nitric oxide synthase and cytokine expression by interferon beta is associated with induction and inhibition of interferon gamma-activated sequence binding activity. J Neurochem 2002; 83(5): 1120–8PubMedCrossRef
71.
Zurück zum Zitat Lucas M, Sanchez-Solino O, Solano F, et al. Interferon beta-1b inhibits reactive oxygen species production in peripheral blood monocytes of patients with relapsing-remitting multiple sclerosis. Neurochem Int 1998; 33: 101–2PubMedCrossRef Lucas M, Sanchez-Solino O, Solano F, et al. Interferon beta-1b inhibits reactive oxygen species production in peripheral blood monocytes of patients with relapsing-remitting multiple sclerosis. Neurochem Int 1998; 33: 101–2PubMedCrossRef
72.
Zurück zum Zitat Lucas M, Rodriguez MC, Gata JM, et al. Regulation by interferon beta-1a of reactive oxygen metabolites production by lymphocytes and monocytes and serum sulfhydryls in relapsing multiple sclerosis patients. Neurochem Int 2003; 42(1): 67–71PubMedCrossRef Lucas M, Rodriguez MC, Gata JM, et al. Regulation by interferon beta-1a of reactive oxygen metabolites production by lymphocytes and monocytes and serum sulfhydryls in relapsing multiple sclerosis patients. Neurochem Int 2003; 42(1): 67–71PubMedCrossRef
73.
Zurück zum Zitat Hong J, Tejada-Simon MV, Rivera VM, et al. Anti-viral properties of interferon beta treatment in patients with multiple sclerosis. Mult Scler 2002; 8: 237–42PubMedCrossRef Hong J, Tejada-Simon MV, Rivera VM, et al. Anti-viral properties of interferon beta treatment in patients with multiple sclerosis. Mult Scler 2002; 8: 237–42PubMedCrossRef
74.
Zurück zum Zitat Alvarez-Lafuente R, De Las Heras V, Bartolome M, et al. Beta-interferon treatment reduces human herpesvirus-6 viral load in multiple sclerosis relapses but not in remission. Eur J Neurol 2004; 52(2): 87–91CrossRef Alvarez-Lafuente R, De Las Heras V, Bartolome M, et al. Beta-interferon treatment reduces human herpesvirus-6 viral load in multiple sclerosis relapses but not in remission. Eur J Neurol 2004; 52(2): 87–91CrossRef
75.
Zurück zum Zitat Boutros T, Croze E, Yong VW. Interferon-β is a potent promoter of nerve growth factor production by astrocytes. J Neurochem 1997; 69: 939–46PubMedCrossRef Boutros T, Croze E, Yong VW. Interferon-β is a potent promoter of nerve growth factor production by astrocytes. J Neurochem 1997; 69: 939–46PubMedCrossRef
76.
Zurück zum Zitat Plioplys AV, Massimini N. Alpha/beta interferon is a neuronal growth factor. Neuroimmunomodulation 1995; 2(1): 31–5PubMedCrossRef Plioplys AV, Massimini N. Alpha/beta interferon is a neuronal growth factor. Neuroimmunomodulation 1995; 2(1): 31–5PubMedCrossRef
77.
Zurück zum Zitat Neuhaus O, Farina C, Wekerle H, et al. Mechanisms of action of glatiramer acetate in multiple sclerosis. Neurology 2001; 56: 702–8PubMedCrossRef Neuhaus O, Farina C, Wekerle H, et al. Mechanisms of action of glatiramer acetate in multiple sclerosis. Neurology 2001; 56: 702–8PubMedCrossRef
78.
Zurück zum Zitat Gran B, Tranquill LR, Chen M, et al. Mechanisms of immunomodulation by glatiramer acetate. Neurology 2000; 5556: 1704–14CrossRef Gran B, Tranquill LR, Chen M, et al. Mechanisms of immunomodulation by glatiramer acetate. Neurology 2000; 5556: 1704–14CrossRef
79.
Zurück zum Zitat Sela M, Teitelbaum D. Glatiramer acetate in the treatment of multiple sclerosis. Expert Opin Pharmacother 2001; 2(7): 1149–65PubMedCrossRef Sela M, Teitelbaum D. Glatiramer acetate in the treatment of multiple sclerosis. Expert Opin Pharmacother 2001; 2(7): 1149–65PubMedCrossRef
80.
Zurück zum Zitat Miller A, Shapiro S, Gershtein R, et al. Treatment of multiple sclerosis with copolymer-1 (Copaxone): implicating mechanisms of Th1 to Th2/Th3 immune-deviation. J Neuroimmunol 1998; 92(1–2): 113–21PubMedCrossRef Miller A, Shapiro S, Gershtein R, et al. Treatment of multiple sclerosis with copolymer-1 (Copaxone): implicating mechanisms of Th1 to Th2/Th3 immune-deviation. J Neuroimmunol 1998; 92(1–2): 113–21PubMedCrossRef
81.
Zurück zum Zitat Neuhaus O, Farina C, Yassouridis A, et al. Multiple sclerosis: comparison of copolymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci 2000; 97(13): 7452–7PubMedCrossRef Neuhaus O, Farina C, Yassouridis A, et al. Multiple sclerosis: comparison of copolymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci 2000; 97(13): 7452–7PubMedCrossRef
82.
Zurück zum Zitat Duda PW, Schmied MC, Cook SL, et al. Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 2000; 105: 967–76PubMedCrossRef Duda PW, Schmied MC, Cook SL, et al. Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 2000; 105: 967–76PubMedCrossRef
83.
Zurück zum Zitat Allie R, Hu L, Mullen KM, et al. Bystander modulation of chemokine receptor expression on peripheral blood T lymphocytes mediated by glatiramer therapy. Arch Neurol 2005; 62: 889–94PubMedCrossRef Allie R, Hu L, Mullen KM, et al. Bystander modulation of chemokine receptor expression on peripheral blood T lymphocytes mediated by glatiramer therapy. Arch Neurol 2005; 62: 889–94PubMedCrossRef
84.
Zurück zum Zitat Prat A, Biernacki K, Antel JP. Th1 and Th2 lymphocyte migration across the human BBB is specifically regulated by interferon-β and copolymer-1. J Autoimmun 2005; 24: 119–24PubMedCrossRef Prat A, Biernacki K, Antel JP. Th1 and Th2 lymphocyte migration across the human BBB is specifically regulated by interferon-β and copolymer-1. J Autoimmun 2005; 24: 119–24PubMedCrossRef
85.
Zurück zum Zitat Dabbert D, Rosner S, Kramer M, et al. Glatiramer acetate (copolymer-1)-specific, human T cell lines: cytokine profile and suppression of T cell lines reactive against myelin basic protein. Neurosci Lett 2000; 289(3): 205–8PubMedCrossRef Dabbert D, Rosner S, Kramer M, et al. Glatiramer acetate (copolymer-1)-specific, human T cell lines: cytokine profile and suppression of T cell lines reactive against myelin basic protein. Neurosci Lett 2000; 289(3): 205–8PubMedCrossRef
86.
Zurück zum Zitat Burns J, Littlefield K. Failure of copolymer I to inhibit the human T-cell response to myelin basic protein. Neurology 1991; 41(8): 1317–9PubMedCrossRef Burns J, Littlefield K. Failure of copolymer I to inhibit the human T-cell response to myelin basic protein. Neurology 1991; 41(8): 1317–9PubMedCrossRef
87.
Zurück zum Zitat Ziemssen T. Neuroprotection and glatiramer acetate: the possible role in the treatment of multiple sclerosis. Adv Exp Med Biol 2004; 541: 111–34PubMedCrossRef Ziemssen T. Neuroprotection and glatiramer acetate: the possible role in the treatment of multiple sclerosis. Adv Exp Med Biol 2004; 541: 111–34PubMedCrossRef
88.
Zurück zum Zitat Ziemssen T, Kumpfel T, Klinkert WE, et al. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain 2002; 125 (Pt 11): 2381–91PubMedCrossRef Ziemssen T, Kumpfel T, Klinkert WE, et al. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain 2002; 125 (Pt 11): 2381–91PubMedCrossRef
89.
Zurück zum Zitat Neuhaus O. Multiple sclerosis: immunological effects of mitoxantrone in vitro reveal antigen-presenting cells as major targets [abstract]. Eur J Neurol 2002; 9Suppl. 2: 130 Neuhaus O. Multiple sclerosis: immunological effects of mitoxantrone in vitro reveal antigen-presenting cells as major targets [abstract]. Eur J Neurol 2002; 9Suppl. 2: 130
90.
Zurück zum Zitat Fidler JM, DeJoy SQ, Gibbons JJ. Selective immunomodulation by the antineo-plastic agent mitoxantrone: I. Suppression of B lymphocyte function. J Immunol 1986; 137(2): 727–32PubMed Fidler JM, DeJoy SQ, Gibbons JJ. Selective immunomodulation by the antineo-plastic agent mitoxantrone: I. Suppression of B lymphocyte function. J Immunol 1986; 137(2): 727–32PubMed
91.
Zurück zum Zitat Gbadamosi J, Buhmann C, Tessmer W, et al. Effects of mitoxantrone on multiple sclerosis patients’ lymphocyte subpopulations and production of immunoglobulin, TNF-alpha and IL-10. Eur Neurol 2003; 49: 137–41PubMedCrossRef Gbadamosi J, Buhmann C, Tessmer W, et al. Effects of mitoxantrone on multiple sclerosis patients’ lymphocyte subpopulations and production of immunoglobulin, TNF-alpha and IL-10. Eur Neurol 2003; 49: 137–41PubMedCrossRef
92.
Zurück zum Zitat Berger JR, Koralnik IJ. Progressive multifocal leukoencephalopathy and natalizumab: unforseen consequences. N Eng J Med. Epub 2005 Jun 9 Berger JR, Koralnik IJ. Progressive multifocal leukoencephalopathy and natalizumab: unforseen consequences. N Eng J Med. Epub 2005 Jun 9
93.
Zurück zum Zitat Kleinschmidt-DeMasters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Eng J Med. Epub 2005 Jun 9 Kleinschmidt-DeMasters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Eng J Med. Epub 2005 Jun 9
94.
Zurück zum Zitat Langer-Gould A, Atlas SW, Bollen AW, et al. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Eng J Med. Epub 2005 Jun 9 Langer-Gould A, Atlas SW, Bollen AW, et al. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Eng J Med. Epub 2005 Jun 9
95.
Zurück zum Zitat Van Assche G, van Ranst M, Sciot R, et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N Eng J Med. Epub 2005 Jun 9 Van Assche G, van Ranst M, Sciot R, et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N Eng J Med. Epub 2005 Jun 9
96.
Zurück zum Zitat Goldblum R, Messersmith E, Freedman S, et al. Mechanism of action (MOA) of natalizumab in inflammatory conditions [presentation nr 764; poster board nr 144]. American College of Rheumatology 68th Annual Scientific Meeting; 2004 Oct 16–21; Texas [online]. Available from URL: http://www.abstractsonline.com [Accessed 2005 Aug 19] Goldblum R, Messersmith E, Freedman S, et al. Mechanism of action (MOA) of natalizumab in inflammatory conditions [presentation nr 764; poster board nr 144]. American College of Rheumatology 68th Annual Scientific Meeting; 2004 Oct 16–21; Texas [online]. Available from URL: http://​www.​abstractsonline.​com [Accessed 2005 Aug 19]
97.
Zurück zum Zitat Tubridy N, Behan PO, Capildeo R, et al. The effect of anti-α4 integrin antibody on brain lesion activity in MS. Neurology 1999; 53: 466–72PubMedCrossRef Tubridy N, Behan PO, Capildeo R, et al. The effect of anti-α4 integrin antibody on brain lesion activity in MS. Neurology 1999; 53: 466–72PubMedCrossRef
98.
Zurück zum Zitat Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110(6): 673–87PubMedCrossRef Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110(6): 673–87PubMedCrossRef
99.
Zurück zum Zitat Qian F, Vaux DL, Weissman IL. Expression of the integrin alpha 4 beta 1 on melanoma cells can inhibit the invasive stage of metastasis formation. Cell 1994, 77335 Qian F, Vaux DL, Weissman IL. Expression of the integrin alpha 4 beta 1 on melanoma cells can inhibit the invasive stage of metastasis formation. Cell 1994, 77335
100.
Zurück zum Zitat Zhu Z, Sanchez-Sweatman O, Huang X, et al. Anoikis and metastatic potential of cloudman S91 melanoma cells. Cancer Res 2001; 61: 1707–16PubMed Zhu Z, Sanchez-Sweatman O, Huang X, et al. Anoikis and metastatic potential of cloudman S91 melanoma cells. Cancer Res 2001; 61: 1707–16PubMed
102.
Zurück zum Zitat Moreau T, Coles A, Wing M, et al. CAMPATH-IH in multiple sclerosis. Mult Scler 1996; 1: 357–65PubMed Moreau T, Coles A, Wing M, et al. CAMPATH-IH in multiple sclerosis. Mult Scler 1996; 1: 357–65PubMed
103.
Zurück zum Zitat Paolillo A, Coles AJ, Molyneux PD, et al. Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody campath 1H. Neurology 1999; 53: 751–7PubMedCrossRef Paolillo A, Coles AJ, Molyneux PD, et al. Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody campath 1H. Neurology 1999; 53: 751–7PubMedCrossRef
104.
Zurück zum Zitat Moreau T, Coles A, Wing M, et al. Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain 1996; 119: 225–37PubMedCrossRef Moreau T, Coles A, Wing M, et al. Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain 1996; 119: 225–37PubMedCrossRef
105.
Zurück zum Zitat Bieber AJ, Kerr S, Rodriguez M. Efficient central nervous system remyelination requires T cells. Ann Neurol 2003; 53(5): 680–4PubMedCrossRef Bieber AJ, Kerr S, Rodriguez M. Efficient central nervous system remyelination requires T cells. Ann Neurol 2003; 53(5): 680–4PubMedCrossRef
106.
Zurück zum Zitat Bjartmar C, Trapp BD. Azonal degeneration and progressive neurologic disability in multiple sclerosis. Neurotox Res 2003; 5(1-2): 157–64PubMedCrossRef Bjartmar C, Trapp BD. Azonal degeneration and progressive neurologic disability in multiple sclerosis. Neurotox Res 2003; 5(1-2): 157–64PubMedCrossRef
Metadaten
Titel
Mechanisms of Action for Treatments in Multiple Sclerosis
Does a Heterogeneous Disease Demand a Multi-Targeted Therapeutic Approach?
verfasst von
Dr Michel Chofflon
Publikationsdatum
01.09.2005
Verlag
Springer International Publishing
Erschienen in
BioDrugs / Ausgabe 5/2005
Print ISSN: 1173-8804
Elektronische ISSN: 1179-190X
DOI
https://doi.org/10.2165/00063030-200519050-00003

Weitere Artikel der Ausgabe 5/2005

BioDrugs 5/2005 Zur Ausgabe

Adis Drug Evaluation

Darbepoetin Alfa