Skip to main content
Erschienen in: Clinical Pharmacokinetics 12/2009

01.12.2009 | Review Article

Polymorphism of Human Cytochrome P450 2D6 and Its Clinical Significance

Part II

verfasst von: Shu-Feng Zhou

Erschienen in: Clinical Pharmacokinetics | Ausgabe 12/2009

Einloggen, um Zugang zu erhalten

Abstract

Part I of this article discussed the potential functional importance of genetic mutations and alleles of the human cytochrome P450 2D6 (CYP2D6) gene. The impact of CYP2D6 polymorphisms on the clearance of and response to a series of cardiovascular drugs was addressed. Since CYP2D6 plays a major role in the metabolism of a large number of other drugs, Part II of the article highlights the impact of CYP2D6 polymorphisms on the response to other groups of clinically used drugs.
Although clinical studies have observed a gene-dose effect for some tricyclic antidepressants, it is difficult to establish clear relationships of their pharmacokinetics and pharmacodynamic parameters to genetic variations of CYP2D6; therefore, dosage adjustment based on the CYP2D6 phenotype cannot be recommended at present. There is initial evidence for a gene-dose effect on commonly used selective serotonin reuptake inhibitors (SSRIs), but data on the effect of the CYP2D6 genotype/phenotype on the response to SSRIs and their adverse effects are scanty. Therefore, recommendations for dose adjustment of prescribed SSRIs based on the CYP2D6 genotype/phenotype may be premature.
A number of clinical studies have indicated that there are significant relationships between the CYP2D6 genotype and steady-state concentrations of perphenazine, zuclopenthixol, risperidone and haloperidol. However, findings on the relationships between the CYP2D6 genotype and parkinsonism or tardive dyskinesia treatment with traditional antipsychotics are conflicting, probably because of small sample size, inclusion of antipsychotics with variable CYP2D6 metabolism, and co-medication. CYP2D6 phenotyping and genotyping appear to be useful in predicting steady-state concentrations of some classical antipsychotic drugs, but their usefulness in predicting clinical effects must be explored. Therapeutic drug monitoring has been strongly recommended for many antipsychotics, including haloperidol, chlorpromazine, fluphenazine, perphenazine, risperidone and thioridazine, which are all metabolized by CYP2D6. It is possible to merge therapeutic drug monitoring and pharmacogenetic testing for CYP2D6 into clinical practice.
There is a clear gene-dose effect on the formation of O-demethylated metabolites from multiple opioids, but the clinical significance of this may be minimal, as the analgesic effect is not altered in poor metabolizers (PMs). Genetically caused inactivity of CYP2D6 renders codeine ineffective owing to lack of morphine formation, decreases the efficacy of tramadol owing to reduced formation of the active O-desmethyltramadol and reduces the clearance of methadone. Genetically precipitated drug interactions might render a standard opioid dose toxic.
Because of the important role of CYP2D6 in tamoxifen metabolism and activation, PMs are likely to exhibit therapeutic failure, and ultrarapid metabolizers (UMs) are likely to experience adverse effects and toxicities. There is a clear gene-concentration effect for the formation of endoxifen and 4-OH-tamoxifen. Tamoxifen-treated cancer patients carrying CYP2D6*4, *5, *10, or *41 associated with significantly decreased formation of antiestrogenic metabolites had significantly more recurrences of breast cancer and shorter relapse-free periods. Many studies have identified the genetic CYP2D6 status as an independent predictor of the outcome of tamoxifen treatment in women with breast cancer, but others have not observed this relationship. Thus, more favourable tamoxifen treatment seems to be feasible through a priori genetic assessment of CYP2D6, and proper dose adjustment may be needed when the CYP2D6 genotype is determined in a patient.
Dolasetron, ondansetron and tropisetron, all in part metabolized by CYP2D6, are less effective in UMs than in other patients. Overall, there is a strong gene-concentration relationship only for tropisetron. CYP2D6 genotype screening prior to antiemetic treatment may allow for modification of antiemetic dosing. An alternative is to use a serotonin agent that is metabolized independently of CYP2D6, such as granisetron, which would obviate the need for genotyping and may lead to an improved drug response.
To date, the functional impact of most CYP2D6 alleles has not been systematically assessed for most clinically important drugs that are mainly metabolized by CYP2D6, though some initial evidence has been identified for a very limited number of drugs. The majority of reported in vivo pharmacogenetic data on CYP2D6 are from single-dose and steady-state pharmacokinetic studies of a small number of drugs. Pharmacodynamic data on CYP2D6 polymorphisms are scanty for most drug studies. Given that genotype testing for CYP2D6 is not routinely performed in clinical practice and there is uncertainty regarding genotype-phenotype, gene-concentration and gene-dose relationships, further prospective studies on the clinical impact of CYP2D6-dependent metabolism of drugs are warranted in large cohorts.
Literatur
1.
Zurück zum Zitat Zhou S-F. Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin Pharmacokinet 2009; 48: 689–723PubMedCrossRef Zhou S-F. Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin Pharmacokinet 2009; 48: 689–723PubMedCrossRef
2.
Zurück zum Zitat Bertilsson L. Metabolism of antidepressant and neuroleptic drugs by cytochrome P450s: clinical and interethnic aspects. Clin Pharmacol Ther 2007; 82: 606–9PubMedCrossRef Bertilsson L. Metabolism of antidepressant and neuroleptic drugs by cytochrome P450s: clinical and interethnic aspects. Clin Pharmacol Ther 2007; 82: 606–9PubMedCrossRef
3.
Zurück zum Zitat Hollister LE. Tricyclic antidepressants (first of two parts). N Engl J Med 1978; 299: 1106–9PubMedCrossRef Hollister LE. Tricyclic antidepressants (first of two parts). N Engl J Med 1978; 299: 1106–9PubMedCrossRef
4.
Zurück zum Zitat Mellstrom B, von Bahr C. Demethylation and hydroxylation of amitriptyline, nortriptyline, and 10-hydroxyamitriptyline in human liver microsomes. Drug Metab Dispos 1981; 9: 565–8PubMed Mellstrom B, von Bahr C. Demethylation and hydroxylation of amitriptyline, nortriptyline, and 10-hydroxyamitriptyline in human liver microsomes. Drug Metab Dispos 1981; 9: 565–8PubMed
5.
Zurück zum Zitat Venkatakrishnan K, Von Moltke LL, Obach RS, et al. Microsomal binding of amitriptyline: effect on estimation of enzyme kinetic parameters in vitro. J Pharmacol Exp Ther 2000; 293: 343–50PubMed Venkatakrishnan K, Von Moltke LL, Obach RS, et al. Microsomal binding of amitriptyline: effect on estimation of enzyme kinetic parameters in vitro. J Pharmacol Exp Ther 2000; 293: 343–50PubMed
6.
Zurück zum Zitat Venkatakrishnan K, Schmider J, Harmatz JS, et al. Relative contribution of CYP3A to amitriptyline clearance in humans: in vitro and in vivo studies. J Clin Pharmacol 2001; 41: 1043–54PubMedCrossRef Venkatakrishnan K, Schmider J, Harmatz JS, et al. Relative contribution of CYP3A to amitriptyline clearance in humans: in vitro and in vivo studies. J Clin Pharmacol 2001; 41: 1043–54PubMedCrossRef
7.
Zurück zum Zitat Olesen OV, Linnet K. Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isozymes. Drug Metab Dispos 1997; 25: 740–4PubMed Olesen OV, Linnet K. Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isozymes. Drug Metab Dispos 1997; 25: 740–4PubMed
8.
Zurück zum Zitat Breyer-Pfaff U. The metabolic fate of amitriptyline, nortriptyline and amitriptylinoxide in man. Drug Metab Rev 2004; 36: 723–46PubMedCrossRef Breyer-Pfaff U. The metabolic fate of amitriptyline, nortriptyline and amitriptylinoxide in man. Drug Metab Rev 2004; 36: 723–46PubMedCrossRef
9.
Zurück zum Zitat Breyer-Pfaff U, Pfandl B, Nill K, et al. Enantioselective amitriptyline metabolism in patients phenotyped for two cytochrome P450 isozymes. Clin Pharmacol Ther 1992; 52: 350–8PubMedCrossRef Breyer-Pfaff U, Pfandl B, Nill K, et al. Enantioselective amitriptyline metabolism in patients phenotyped for two cytochrome P450 isozymes. Clin Pharmacol Ther 1992; 52: 350–8PubMedCrossRef
10.
Zurück zum Zitat Dahl ML, Nordin C, Bertilsson L. Enantioselective hydroxylation of nortriptyline in human liver microsomes, intestinal homogenate, and patients treated with nortriptyline. Ther Drug Monit 1991; 13: 189–94PubMedCrossRef Dahl ML, Nordin C, Bertilsson L. Enantioselective hydroxylation of nortriptyline in human liver microsomes, intestinal homogenate, and patients treated with nortriptyline. Ther Drug Monit 1991; 13: 189–94PubMedCrossRef
11.
Zurück zum Zitat Nordin C, Bertilsson L. Active hydroxymetabolites of antidepressants: emphasis on E-10-hydroxy-nortriptyline. Clin Pharmacokinet 1995; 28: 26–40PubMedCrossRef Nordin C, Bertilsson L. Active hydroxymetabolites of antidepressants: emphasis on E-10-hydroxy-nortriptyline. Clin Pharmacokinet 1995; 28: 26–40PubMedCrossRef
12.
Zurück zum Zitat Mellstrom B, Sawe J, Bertilsson L, et al. Amitriptyline metabolism: association with debrisoquin hydroxylation in nonsmokers. Clin Pharmacol Ther 1986; 39: 369–71PubMedCrossRef Mellstrom B, Sawe J, Bertilsson L, et al. Amitriptyline metabolism: association with debrisoquin hydroxylation in nonsmokers. Clin Pharmacol Ther 1986; 39: 369–71PubMedCrossRef
13.
Zurück zum Zitat Dahl ML, Bertilsson L, Nordin C. Steady-state plasma levels of nortriptyline and its 10-hydroxy metabolite: relationship to the CYP2D6 genotype. Psychopharmacology (Berl) 1996; 123: 315–9CrossRef Dahl ML, Bertilsson L, Nordin C. Steady-state plasma levels of nortriptyline and its 10-hydroxy metabolite: relationship to the CYP2D6 genotype. Psychopharmacology (Berl) 1996; 123: 315–9CrossRef
14.
Zurück zum Zitat Mellstrom B, Bertilsson L, Sawe J, et al. E- and Z-10-hydroxylation of nortriptyline: relationship to polymorphic debrisoquine hydroxylation. Clin Pharmacol Ther 1981; 30: 189–93PubMedCrossRef Mellstrom B, Bertilsson L, Sawe J, et al. E- and Z-10-hydroxylation of nortriptyline: relationship to polymorphic debrisoquine hydroxylation. Clin Pharmacol Ther 1981; 30: 189–93PubMedCrossRef
15.
Zurück zum Zitat Gram LF, Brosen K, Kragh-Sorensen P, et al. Steady-state plasma levels of E- and Z-10-OH-nortriptyline in nortriptyline-treated patients: significance of concurrent medication and the sparteine oxidation phenotype. Ther Drug Monit 1989; 11: 508–14PubMedCrossRef Gram LF, Brosen K, Kragh-Sorensen P, et al. Steady-state plasma levels of E- and Z-10-OH-nortriptyline in nortriptyline-treated patients: significance of concurrent medication and the sparteine oxidation phenotype. Ther Drug Monit 1989; 11: 508–14PubMedCrossRef
16.
Zurück zum Zitat Dalen P, Dahl ML, Bernal Ruiz ML, et al. 10-Hydroxylation of nortriptyline in White persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 1998; 63: 444–52PubMedCrossRef Dalen P, Dahl ML, Bernal Ruiz ML, et al. 10-Hydroxylation of nortriptyline in White persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 1998; 63: 444–52PubMedCrossRef
17.
Zurück zum Zitat Yue QY, Zhong ZH, Tybring G, et al. Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther 1998; 64: 384–90PubMedCrossRef Yue QY, Zhong ZH, Tybring G, et al. Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther 1998; 64: 384–90PubMedCrossRef
18.
Zurück zum Zitat Morita S, Shimoda K, Someya T, et al. Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline. J Clin Psychopharmacol 2000; 20: 141–9PubMedCrossRef Morita S, Shimoda K, Someya T, et al. Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline. J Clin Psychopharmacol 2000; 20: 141–9PubMedCrossRef
19.
Zurück zum Zitat Halling J, Weihe P, Brosen K. The CYP2D6 polymorphism in relation to the metabolism of amitriptyline and nortriptyline in the Faroese population. Br J Clin Pharmacol 2008; 65: 134–8PubMedCrossRef Halling J, Weihe P, Brosen K. The CYP2D6 polymorphism in relation to the metabolism of amitriptyline and nortriptyline in the Faroese population. Br J Clin Pharmacol 2008; 65: 134–8PubMedCrossRef
20.
Zurück zum Zitat Steimer W, Zopf K, von Amelunxen S, et al. Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem 2005; 51: 376–85PubMedCrossRef Steimer W, Zopf K, von Amelunxen S, et al. Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem 2005; 51: 376–85PubMedCrossRef
21.
Zurück zum Zitat Roberts RL, Mulder RT, Joyce PR, et al. No evidence of increased adverse drug reactions in cytochrome P450 CYP2D6 poor metabolizers treated with fluoxetine or nortriptyline. Hum Psychopharmacol 2004; 19: 17–23PubMedCrossRef Roberts RL, Mulder RT, Joyce PR, et al. No evidence of increased adverse drug reactions in cytochrome P450 CYP2D6 poor metabolizers treated with fluoxetine or nortriptyline. Hum Psychopharmacol 2004; 19: 17–23PubMedCrossRef
22.
Zurück zum Zitat van der Kuy PH, Hooymans PM. Nortriptyline intoxication induced by terbinafine. BMJ 1998; 316: 441PubMedCrossRef van der Kuy PH, Hooymans PM. Nortriptyline intoxication induced by terbinafine. BMJ 1998; 316: 441PubMedCrossRef
23.
Zurück zum Zitat Bertilsson L, Aberg-Wistedt A, Gustafsson LL, et al. Extremely rapid hydroxylation of debrisoquine: a case report with implication for treatment with nortriptyline and other tricyclic antidepressants. Ther Drug Monit 1985; 7: 478–80PubMedCrossRef Bertilsson L, Aberg-Wistedt A, Gustafsson LL, et al. Extremely rapid hydroxylation of debrisoquine: a case report with implication for treatment with nortriptyline and other tricyclic antidepressants. Ther Drug Monit 1985; 7: 478–80PubMedCrossRef
24.
Zurück zum Zitat Peters II MD, Davis SK, Austin LS. Clomipramine: an antiobsessional tricyclic antidepressant. Clin Pharm 1990; 9: 165–78PubMed Peters II MD, Davis SK, Austin LS. Clomipramine: an antiobsessional tricyclic antidepressant. Clin Pharm 1990; 9: 165–78PubMed
25.
Zurück zum Zitat Balant-Gorgia AE, Gex-Fabry M, Balant LP. Clinical pharmacokinetics of clomipramine. Clin Pharmacokinet 1991; 20: 447–62PubMedCrossRef Balant-Gorgia AE, Gex-Fabry M, Balant LP. Clinical pharmacokinetics of clomipramine. Clin Pharmacokinet 1991; 20: 447–62PubMedCrossRef
26.
Zurück zum Zitat Nielsen KK, Flinois JP, Beaune P, et al. The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. J Pharmacol Exp Ther 1996; 277: 1659–64PubMed Nielsen KK, Flinois JP, Beaune P, et al. The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. J Pharmacol Exp Ther 1996; 277: 1659–64PubMed
27.
Zurück zum Zitat Nielsen KK, Brosen K, Hansen MG, et al. Single-dose kinetics of clomipramine: relationship to the sparteine and S-mephenytoin oxidation polymorphisms. Clin Pharmacol Ther 1994; 55: 518–27PubMedCrossRef Nielsen KK, Brosen K, Hansen MG, et al. Single-dose kinetics of clomipramine: relationship to the sparteine and S-mephenytoin oxidation polymorphisms. Clin Pharmacol Ther 1994; 55: 518–27PubMedCrossRef
28.
Zurück zum Zitat Nielsen KK, Brosen K, Gram LF. Steady-state plasma levels of clomipramine and its metabolites: impact of the sparteine/debrisoquine oxidation polymorphism. Danish University Antidepressant Group. Eur J Clin Pharmacol 1992; 43:405–11PubMedCrossRef Nielsen KK, Brosen K, Gram LF. Steady-state plasma levels of clomipramine and its metabolites: impact of the sparteine/debrisoquine oxidation polymorphism. Danish University Antidepressant Group. Eur J Clin Pharmacol 1992; 43:405–11PubMedCrossRef
29.
Zurück zum Zitat Sindrup SH, Gram LF, Skjold T, et al. Clomipramine vs desipramine vs placebo in the treatment of diabetic neuropathy symptoms: a double-blind cross-over study. Br J Clin Pharmacol 1990; 30: 683–91PubMedCrossRef Sindrup SH, Gram LF, Skjold T, et al. Clomipramine vs desipramine vs placebo in the treatment of diabetic neuropathy symptoms: a double-blind cross-over study. Br J Clin Pharmacol 1990; 30: 683–91PubMedCrossRef
30.
Zurück zum Zitat Pinder RM, Brogden RN, Speight TM, et al. Doxepin up-to-date: a review of its pharmacological properties and therapeutic efficacy with particular reference to depression. Drugs 1977; 13: 161–218PubMedCrossRef Pinder RM, Brogden RN, Speight TM, et al. Doxepin up-to-date: a review of its pharmacological properties and therapeutic efficacy with particular reference to depression. Drugs 1977; 13: 161–218PubMedCrossRef
31.
Zurück zum Zitat Shu YZ, Hubbard JW, Cooper JK, et al. The identification of urinary metabolites of doxepin in patients. Drug Metab Dispos 1990; 18: 735–41PubMed Shu YZ, Hubbard JW, Cooper JK, et al. The identification of urinary metabolites of doxepin in patients. Drug Metab Dispos 1990; 18: 735–41PubMed
32.
Zurück zum Zitat Haritos VS, Ghabrial H, Ahokas JT, et al. Role of cytochrome P450 2D6 (CYP2D6) in the stereospecific metabolism of E- and Z-doxepin. Pharmacogenetics 2000; 10: 591–603PubMedCrossRef Haritos VS, Ghabrial H, Ahokas JT, et al. Role of cytochrome P450 2D6 (CYP2D6) in the stereospecific metabolism of E- and Z-doxepin. Pharmacogenetics 2000; 10: 591–603PubMedCrossRef
33.
Zurück zum Zitat Hartter S, Tybring G, Friedberg T, et al. The N-demethylation of the doxepin isomers is mainly catalyzed by the polymorphic CYP2C19. Pharm Res 2002; 19: 1034–7PubMedCrossRef Hartter S, Tybring G, Friedberg T, et al. The N-demethylation of the doxepin isomers is mainly catalyzed by the polymorphic CYP2C19. Pharm Res 2002; 19: 1034–7PubMedCrossRef
34.
Zurück zum Zitat Kirchheiner J, Meineke I, Muller G, et al. Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers. Pharmacogenetics 2002; 12: 571–80PubMedCrossRef Kirchheiner J, Meineke I, Muller G, et al. Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers. Pharmacogenetics 2002; 12: 571–80PubMedCrossRef
35.
Zurück zum Zitat Koski A, Ojanpera I, Sistonen J, et al. A fatal doxepin poisoning associated with a defective CYP2D6 genotype. Am J Forensic Med Pathol 2007; 28: 259–61PubMedCrossRef Koski A, Ojanpera I, Sistonen J, et al. A fatal doxepin poisoning associated with a defective CYP2D6 genotype. Am J Forensic Med Pathol 2007; 28: 259–61PubMedCrossRef
36.
Zurück zum Zitat Sallee FR, Pollock BG. Clinical pharmacokinetics of imipramine and desipramine. Clin Pharmacokinet 1990; 18: 346–64PubMedCrossRef Sallee FR, Pollock BG. Clinical pharmacokinetics of imipramine and desipramine. Clin Pharmacokinet 1990; 18: 346–64PubMedCrossRef
37.
Zurück zum Zitat Lemoine A, Gautier JC, Azoulay D, et al. Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol 1993; 43: 827–32PubMed Lemoine A, Gautier JC, Azoulay D, et al. Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol 1993; 43: 827–32PubMed
38.
Zurück zum Zitat Koyama E, Chiba K, Tani M, et al. Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther 1997; 281: 1199–210PubMed Koyama E, Chiba K, Tani M, et al. Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther 1997; 281: 1199–210PubMed
39.
Zurück zum Zitat Brosen K, Zeugin T, Meyer UA. Role of P450IID6, the target of the sparteinedebrisoquin oxidation polymorphism, in the metabolism of imipramine. Clin Pharmacol Ther 1991; 49: 609–17PubMedCrossRef Brosen K, Zeugin T, Meyer UA. Role of P450IID6, the target of the sparteinedebrisoquin oxidation polymorphism, in the metabolism of imipramine. Clin Pharmacol Ther 1991; 49: 609–17PubMedCrossRef
40.
Zurück zum Zitat Nakajima M, Tanaka E, Kobayashi T, et al. Imipramine N-glucuronidation in human liver microsomes: biphasic kinetics and characterization of UDP-glucuronosyltransferase isoforms. Drug Metab Dispos 2002; 30: 636–42PubMedCrossRef Nakajima M, Tanaka E, Kobayashi T, et al. Imipramine N-glucuronidation in human liver microsomes: biphasic kinetics and characterization of UDP-glucuronosyltransferase isoforms. Drug Metab Dispos 2002; 30: 636–42PubMedCrossRef
41.
Zurück zum Zitat Koyama E, Kikuchi Y, Echizen H, et al. Simultaneous high-performance liquid chromatography-electrochemical detection determination of imipramine, desipramine, their 2-hydroxylated metabolites, and imipramine N-oxide in human plasma and urine: preliminary application to oxidation pharmacogenetics. Ther Drug Monit 1993; 15: 224–35PubMedCrossRef Koyama E, Kikuchi Y, Echizen H, et al. Simultaneous high-performance liquid chromatography-electrochemical detection determination of imipramine, desipramine, their 2-hydroxylated metabolites, and imipramine N-oxide in human plasma and urine: preliminary application to oxidation pharmacogenetics. Ther Drug Monit 1993; 15: 224–35PubMedCrossRef
42.
Zurück zum Zitat Brosen K, Otton SV, Gram LF. Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 1986; 40: 543–9PubMedCrossRef Brosen K, Otton SV, Gram LF. Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 1986; 40: 543–9PubMedCrossRef
43.
Zurück zum Zitat Spina E, Steiner E, Ericsson O, et al. Hydroxylation of desmethylimipramine: dependence on the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 1987; 41: 314–9PubMedCrossRef Spina E, Steiner E, Ericsson O, et al. Hydroxylation of desmethylimipramine: dependence on the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 1987; 41: 314–9PubMedCrossRef
44.
Zurück zum Zitat Steiner E, Spina E. Differences in the inhibitory effect of cimetidine on desipramine metabolism between rapid and slow debrisoquin hydroxylators. Clin Pharmacol Ther 1987; 42: 278–82PubMedCrossRef Steiner E, Spina E. Differences in the inhibitory effect of cimetidine on desipramine metabolism between rapid and slow debrisoquin hydroxylators. Clin Pharmacol Ther 1987; 42: 278–82PubMedCrossRef
45.
Zurück zum Zitat Spina E, Gitto C, Avenoso A, et al. Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol 1997; 51: 395–8PubMedCrossRef Spina E, Gitto C, Avenoso A, et al. Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol 1997; 51: 395–8PubMedCrossRef
46.
Zurück zum Zitat Shimoda K, Morita S, Hirokane G, et al. Metabolism of desipramine in Japanese psychiatric patients: the impact of CYP2D6 genotype on the hydroxylation of desipramine. Pharmacol Toxicol 2000; 86: 245–9PubMedCrossRef Shimoda K, Morita S, Hirokane G, et al. Metabolism of desipramine in Japanese psychiatric patients: the impact of CYP2D6 genotype on the hydroxylation of desipramine. Pharmacol Toxicol 2000; 86: 245–9PubMedCrossRef
47.
Zurück zum Zitat Brosen K, Klysner R, Gram LF, et al. Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur J Clin Pharmacol 1986; 30: 679–84PubMedCrossRef Brosen K, Klysner R, Gram LF, et al. Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur J Clin Pharmacol 1986; 30: 679–84PubMedCrossRef
48.
Zurück zum Zitat Sindrup SH, Brosen K, Gram LF. Nonlinear kinetics of imipramine in low and medium plasma level ranges. Ther Drug Monit 1990; 12: 445–9PubMedCrossRef Sindrup SH, Brosen K, Gram LF. Nonlinear kinetics of imipramine in low and medium plasma level ranges. Ther Drug Monit 1990; 12: 445–9PubMedCrossRef
49.
Zurück zum Zitat Schenk PW, van Fessem MA, Verploegh-Van Rij S, et al. Association of graded allele-specific changes in CYP2D6 function with imipramine dose requirement in a large group of depressed patients. Mol Psychiatry 2008; 13: 597–605PubMedCrossRef Schenk PW, van Fessem MA, Verploegh-Van Rij S, et al. Association of graded allele-specific changes in CYP2D6 function with imipramine dose requirement in a large group of depressed patients. Mol Psychiatry 2008; 13: 597–605PubMedCrossRef
50.
Zurück zum Zitat Pinder RM, Brogden RN, Speight TM, et al. Maprotiline: a review of its pharmacological properties and therapeutic efficacy in mental depressive states. Drugs 1977; 13: 321–52PubMedCrossRef Pinder RM, Brogden RN, Speight TM, et al. Maprotiline: a review of its pharmacological properties and therapeutic efficacy in mental depressive states. Drugs 1977; 13: 321–52PubMedCrossRef
51.
Zurück zum Zitat Brachtendorf L, Jetter A, Beckurts KT, et al. Cytochrome P450 enzymes contributing to demethylation of maprotiline in man. Pharmacol Toxicol 2002; 90: 144–9PubMedCrossRef Brachtendorf L, Jetter A, Beckurts KT, et al. Cytochrome P450 enzymes contributing to demethylation of maprotiline in man. Pharmacol Toxicol 2002; 90: 144–9PubMedCrossRef
52.
Zurück zum Zitat Breyer-Pfaff U, Kroeker M, Winkler T, et al. Isolation and identification of hydroxylated maprotiline metabolites. Xenobiotica 1985; 15: 57–66PubMedCrossRef Breyer-Pfaff U, Kroeker M, Winkler T, et al. Isolation and identification of hydroxylated maprotiline metabolites. Xenobiotica 1985; 15: 57–66PubMedCrossRef
53.
Zurück zum Zitat Hartter S, Wetzel H, Hammes E, et al. Inhibition of antidepressant demethylation and hydroxylation by fluvoxamine in depressed patients. Psychopharmacology (Berl) 1993; 110: 302–8CrossRef Hartter S, Wetzel H, Hammes E, et al. Inhibition of antidepressant demethylation and hydroxylation by fluvoxamine in depressed patients. Psychopharmacology (Berl) 1993; 110: 302–8CrossRef
54.
Zurück zum Zitat Normann C, Lieb K, Walden J. Increased plasma concentration of maprotiline by coadministration of risperidone. J Clin Psychopharmacol 2002; 22: 92–4PubMedCrossRef Normann C, Lieb K, Walden J. Increased plasma concentration of maprotiline by coadministration of risperidone. J Clin Psychopharmacol 2002; 22: 92–4PubMedCrossRef
55.
Zurück zum Zitat Konig F, Wolfersdorf M, Loble M, et al. Trimipramine and maprotiline plasma levels during combined treatment with moclobemide in therapy-resistant depression. Pharmacopsychiatry 1997; 30: 125–7PubMedCrossRef Konig F, Wolfersdorf M, Loble M, et al. Trimipramine and maprotiline plasma levels during combined treatment with moclobemide in therapy-resistant depression. Pharmacopsychiatry 1997; 30: 125–7PubMedCrossRef
56.
Zurück zum Zitat Gram LF, Guentert TW, Grange S, et al. Moclobemide, a substrate of CYP2C19 and an inhibitor of CYP2C19, CYP2D6, and CYP1A2: a panel study. Clin Pharmacol Ther 1995; 57: 670–7PubMedCrossRef Gram LF, Guentert TW, Grange S, et al. Moclobemide, a substrate of CYP2C19 and an inhibitor of CYP2C19, CYP2D6, and CYP1A2: a panel study. Clin Pharmacol Ther 1995; 57: 670–7PubMedCrossRef
57.
Zurück zum Zitat Firkusny L, Gleiter CH. Maprotiline metabolism appears to co-segregate with the genetically-determined CYP2D6 polymorphic hydroxylation of debrisoquine. Br J Clin Pharmacol 1994; 37: 383–8PubMedCrossRef Firkusny L, Gleiter CH. Maprotiline metabolism appears to co-segregate with the genetically-determined CYP2D6 polymorphic hydroxylation of debrisoquine. Br J Clin Pharmacol 1994; 37: 383–8PubMedCrossRef
58.
Zurück zum Zitat Gastpar M. Clinical originality and new biology of trimipramine. Drugs 1989; 38 Suppl. 1: 43–8; discussion 49-50PubMedCrossRef Gastpar M. Clinical originality and new biology of trimipramine. Drugs 1989; 38 Suppl. 1: 43–8; discussion 49-50PubMedCrossRef
59.
Zurück zum Zitat Bolaji OO, Coutts RT, Baker GB. Metabolism of trimipramine in vitro by human CYP2D6 isozyme. Res Commun Chem Pathol Pharmacol 1993; 82: 111–20PubMed Bolaji OO, Coutts RT, Baker GB. Metabolism of trimipramine in vitro by human CYP2D6 isozyme. Res Commun Chem Pathol Pharmacol 1993; 82: 111–20PubMed
60.
Zurück zum Zitat Eap CB, Bender S, Gastpar M, et al. Steady state plasma levels of the enantiomers of trimipramine and of its metabolites in CYP2D6-, CYP2C19-and CYP3A4/5-phenotyped patients. Ther Drug Monit 2000; 22: 209–14PubMedCrossRef Eap CB, Bender S, Gastpar M, et al. Steady state plasma levels of the enantiomers of trimipramine and of its metabolites in CYP2D6-, CYP2C19-and CYP3A4/5-phenotyped patients. Ther Drug Monit 2000; 22: 209–14PubMedCrossRef
61.
Zurück zum Zitat Kirchheiner J, Muller G, Meineke I, et al. Effects of polymorphisms in CYP2D6, CYP2C9, and CYP2C19 on trimipramine pharmacokinetics. J Clin Psychopharmacol 2003; 23: 459–66PubMedCrossRef Kirchheiner J, Muller G, Meineke I, et al. Effects of polymorphisms in CYP2D6, CYP2C9, and CYP2C19 on trimipramine pharmacokinetics. J Clin Psychopharmacol 2003; 23: 459–66PubMedCrossRef
62.
Zurück zum Zitat Eap CB, Laurian S, Souche A, et al. Influence of quinidine on the pharmacokinetics of trimipramine and on its effect on the waking EEG of healthy volunteers: a pilot study on two subjects. Neuropsychobiology 1992; 25: 214–20PubMedCrossRef Eap CB, Laurian S, Souche A, et al. Influence of quinidine on the pharmacokinetics of trimipramine and on its effect on the waking EEG of healthy volunteers: a pilot study on two subjects. Neuropsychobiology 1992; 25: 214–20PubMedCrossRef
63.
Zurück zum Zitat Leinonen E, Koponen HJ, Lepola U. Paroxetine increases serum trimipramine concentration: a report of two cases. Human Psychopharmacol Clin Exp 2004; 10: 345–7CrossRef Leinonen E, Koponen HJ, Lepola U. Paroxetine increases serum trimipramine concentration: a report of two cases. Human Psychopharmacol Clin Exp 2004; 10: 345–7CrossRef
64.
Zurück zum Zitat Musshoff F, Schmidt P, Madea B. Fatality caused by a combined trimipramine-citalopram intoxication. Forensic Sci Int 1999; 106: 125–31PubMedCrossRef Musshoff F, Schmidt P, Madea B. Fatality caused by a combined trimipramine-citalopram intoxication. Forensic Sci Int 1999; 106: 125–31PubMedCrossRef
65.
Zurück zum Zitat Caccia S. Metabolism of the newer antidepressants: an overview of the pharmacological and pharmacokinetic implications. Clin Pharmacokinet 1998; 34: 281–302PubMedCrossRef Caccia S. Metabolism of the newer antidepressants: an overview of the pharmacological and pharmacokinetic implications. Clin Pharmacokinet 1998; 34: 281–302PubMedCrossRef
66.
Zurück zum Zitat Hiemke C, Hartter S. Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 2000; 85: 11–28PubMedCrossRef Hiemke C, Hartter S. Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 2000; 85: 11–28PubMedCrossRef
67.
Zurück zum Zitat Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors: an overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet 1997; 32 Suppl. 1: 1–21PubMedCrossRef Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors: an overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet 1997; 32 Suppl. 1: 1–21PubMedCrossRef
68.
Zurück zum Zitat Fogelman SM, Schmider J, Venkatakrishnan K, et al. O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants. Neuropsychopharmacology 1999; 20: 480–90PubMedCrossRef Fogelman SM, Schmider J, Venkatakrishnan K, et al. O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants. Neuropsychopharmacology 1999; 20: 480–90PubMedCrossRef
69.
70.
Zurück zum Zitat Olesen OV, Linnet K. Studies on the stereoselective metabolism of citalopram by human liver microsomes and cDNA-expressed cytochrome P450 enzymes. Pharmacology 1999; 59: 298–309PubMedCrossRef Olesen OV, Linnet K. Studies on the stereoselective metabolism of citalopram by human liver microsomes and cDNA-expressed cytochrome P450 enzymes. Pharmacology 1999; 59: 298–309PubMedCrossRef
71.
Zurück zum Zitat von Moltke LL, Greenblatt DJ, Giancarlo GM, et al. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos 2001; 29: 1102–9 von Moltke LL, Greenblatt DJ, Giancarlo GM, et al. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos 2001; 29: 1102–9
72.
Zurück zum Zitat Herrlin K, Yasui-Furukori N, Tybring G, et al. Metabolism of citalopram enantiomers in CYP2C19/CYP2D6 phenotyped panels of healthy Swedes. Br J Clin Pharmacol 2003; 56: 415–21PubMedCrossRef Herrlin K, Yasui-Furukori N, Tybring G, et al. Metabolism of citalopram enantiomers in CYP2C19/CYP2D6 phenotyped panels of healthy Swedes. Br J Clin Pharmacol 2003; 56: 415–21PubMedCrossRef
73.
Zurück zum Zitat Peters EJ, Slager SL, Kraft JB, et al. Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLoS ONE 2008; 3: e1872PubMedCrossRef Peters EJ, Slager SL, Kraft JB, et al. Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLoS ONE 2008; 3: e1872PubMedCrossRef
74.
Zurück zum Zitat Reis M, Lundmark J, Bengtsson F. Therapeutic drug monitoring of racemic citalopram: a 5-year experience in Sweden, 1992–1997. Ther Drug Monit 2003; 25: 183–91PubMedCrossRef Reis M, Lundmark J, Bengtsson F. Therapeutic drug monitoring of racemic citalopram: a 5-year experience in Sweden, 1992–1997. Ther Drug Monit 2003; 25: 183–91PubMedCrossRef
75.
Zurück zum Zitat Figgitt DP, McClellan KJ. Fluvoxamine: an updated review of its use in the management of adults with anxiety disorders. Drugs 2000; 60: 925–54PubMedCrossRef Figgitt DP, McClellan KJ. Fluvoxamine: an updated review of its use in the management of adults with anxiety disorders. Drugs 2000; 60: 925–54PubMedCrossRef
76.
Zurück zum Zitat Wilde MI, Plosker GL, Benfield P. Fluvoxamine: an updated review of its pharmacology, and therapeutic use in depressive illness. Drugs 1993; 46: 895–924PubMedCrossRef Wilde MI, Plosker GL, Benfield P. Fluvoxamine: an updated review of its pharmacology, and therapeutic use in depressive illness. Drugs 1993; 46: 895–924PubMedCrossRef
77.
Zurück zum Zitat Spigset O, Granberg K, Hagg S, et al. Non-linear fluvoxamine disposition. Br J Clin Pharmacol 1998; 45: 257–63PubMedCrossRef Spigset O, Granberg K, Hagg S, et al. Non-linear fluvoxamine disposition. Br J Clin Pharmacol 1998; 45: 257–63PubMedCrossRef
78.
Zurück zum Zitat Perucca E, Gatti G, Spina E. Clinical pharmacokinetics of fluvoxamine. Clin Pharmacokinet 1994; 27: 175–90PubMedCrossRef Perucca E, Gatti G, Spina E. Clinical pharmacokinetics of fluvoxamine. Clin Pharmacokinet 1994; 27: 175–90PubMedCrossRef
79.
Zurück zum Zitat Spigset O, Axelsson S, Norstrom A, et al. The major fluvoxamine metabolite in urine is formed by CYP2D6. Eur J Clin Pharmacol 2001; 57: 653–8PubMedCrossRef Spigset O, Axelsson S, Norstrom A, et al. The major fluvoxamine metabolite in urine is formed by CYP2D6. Eur J Clin Pharmacol 2001; 57: 653–8PubMedCrossRef
80.
Zurück zum Zitat DeVane CL, Gill HS. Clinical pharmacokinetics of fluvoxamine: applications to dosage regimen design. J Clin Psychiatry 1997; 58 Suppl. 5: 7–14PubMed DeVane CL, Gill HS. Clinical pharmacokinetics of fluvoxamine: applications to dosage regimen design. J Clin Psychiatry 1997; 58 Suppl. 5: 7–14PubMed
81.
Zurück zum Zitat van Harten J. Overview of the pharmacokinetics of fluvoxamine. Clin Pharmacokinet 1995; 29 Suppl. 1: 1–9PubMedCrossRef van Harten J. Overview of the pharmacokinetics of fluvoxamine. Clin Pharmacokinet 1995; 29 Suppl. 1: 1–9PubMedCrossRef
82.
Zurück zum Zitat Spina E, Santoro V, D’Arrigo C. Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: an update. Clin Ther 2008; 30: 1206–27PubMedCrossRef Spina E, Santoro V, D’Arrigo C. Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: an update. Clin Ther 2008; 30: 1206–27PubMedCrossRef
83.
Zurück zum Zitat Wagner W, Vause EW. Fluvoxamine: a review of global drug-drug interaction data. Clin Pharmacokinet 1995; 29 Suppl. 1: 26–31; discussion 31-2PubMedCrossRef Wagner W, Vause EW. Fluvoxamine: a review of global drug-drug interaction data. Clin Pharmacokinet 1995; 29 Suppl. 1: 26–31; discussion 31-2PubMedCrossRef
84.
Zurück zum Zitat Christensen M, Tybring G, Mihara K, et al. Low daily 10-mg and 20-mg doses of fluvoxamine inhibit the metabolism of both caffeine (cytochrome P4501A2) and omeprazole (cytochrome P4502C19). Clin Pharmacol Ther 2002; 71: 141–52PubMedCrossRef Christensen M, Tybring G, Mihara K, et al. Low daily 10-mg and 20-mg doses of fluvoxamine inhibit the metabolism of both caffeine (cytochrome P4501A2) and omeprazole (cytochrome P4502C19). Clin Pharmacol Ther 2002; 71: 141–52PubMedCrossRef
85.
Zurück zum Zitat Suzuki Y, Sawamura K, Someya T. Polymorphisms in the 5-hydroxytryptamine 2A receptor and cytochrome P4502D6 genes synergistically predict fluvoxamine-induced side effects in Japanese depressed patients. Neuropsychopharmacology 2006; 31: 825–31PubMedCrossRef Suzuki Y, Sawamura K, Someya T. Polymorphisms in the 5-hydroxytryptamine 2A receptor and cytochrome P4502D6 genes synergistically predict fluvoxamine-induced side effects in Japanese depressed patients. Neuropsychopharmacology 2006; 31: 825–31PubMedCrossRef
86.
Zurück zum Zitat Kirchheiner J, Brosen K, Dahl ML, et al. CYP2D6 and CYP2C19 genotypebased dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104: 173–92PubMedCrossRef Kirchheiner J, Brosen K, Dahl ML, et al. CYP2D6 and CYP2C19 genotypebased dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104: 173–92PubMedCrossRef
87.
Zurück zum Zitat Mandrioli R, Forti GC, Raggi MA. Fluoxetine metabolism and pharmacological interactions: the role of cytochrome P450. Curr Drug Metab 2006; 7: 127–33PubMedCrossRef Mandrioli R, Forti GC, Raggi MA. Fluoxetine metabolism and pharmacological interactions: the role of cytochrome P450. Curr Drug Metab 2006; 7: 127–33PubMedCrossRef
88.
Zurück zum Zitat Margolis JM, O’Donnell JP, Mankowski DC, et al. (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos 2000; 28: 1187–91PubMed Margolis JM, O’Donnell JP, Mankowski DC, et al. (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos 2000; 28: 1187–91PubMed
89.
Zurück zum Zitat Ring BJ, Eckstein JA, Gillespie JS, et al. Identification of the human cytochromes P450 responsible for in vitro formation of R- and S-norfluoxetine. J Pharmacol Exp Ther 2001; 297: 1044–50PubMed Ring BJ, Eckstein JA, Gillespie JS, et al. Identification of the human cytochromes P450 responsible for in vitro formation of R- and S-norfluoxetine. J Pharmacol Exp Ther 2001; 297: 1044–50PubMed
90.
Zurück zum Zitat Hamelin BA, Turgeon J, Vallee F, et al. The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin. Clin Pharmacol Ther 1996; 60: 512–21PubMedCrossRef Hamelin BA, Turgeon J, Vallee F, et al. The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin. Clin Pharmacol Ther 1996; 60: 512–21PubMedCrossRef
91.
Zurück zum Zitat Fjordside L, Jeppesen U, Eap CB, et al. The stereoselective metabolism of fluoxetine in poor and extensive metabolizers of sparteine. Pharmacogenetics 1999; 9: 55–60PubMedCrossRef Fjordside L, Jeppesen U, Eap CB, et al. The stereoselective metabolism of fluoxetine in poor and extensive metabolizers of sparteine. Pharmacogenetics 1999; 9: 55–60PubMedCrossRef
92.
Zurück zum Zitat Scordo MG, Spina E, Dahl ML, et al. Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol 2005; 97: 296–301PubMedCrossRef Scordo MG, Spina E, Dahl ML, et al. Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol 2005; 97: 296–301PubMedCrossRef
93.
Zurück zum Zitat Stedman CA, Begg EJ, Kennedy MA, et al. Cytochrome P450 2D6 genotype does not predict SSRI (fluoxetine or paroxetine) induced hyponatraemia. Hum Psychopharmacol 2002; 17: 187–90PubMedCrossRef Stedman CA, Begg EJ, Kennedy MA, et al. Cytochrome P450 2D6 genotype does not predict SSRI (fluoxetine or paroxetine) induced hyponatraemia. Hum Psychopharmacol 2002; 17: 187–90PubMedCrossRef
94.
Zurück zum Zitat Gunasekara NS, Noble S, Benfield P. Paroxetine: an update of its pharmacology and therapeutic use in depression and a review of its use in other disorders. Drugs 1998; 55: 85–120PubMedCrossRef Gunasekara NS, Noble S, Benfield P. Paroxetine: an update of its pharmacology and therapeutic use in depression and a review of its use in other disorders. Drugs 1998; 55: 85–120PubMedCrossRef
95.
Zurück zum Zitat Bloomer JC, Woods FR, Haddock RE, et al. The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. Br J Clin Pharmacol 1992; 33: 521–3PubMedCrossRef Bloomer JC, Woods FR, Haddock RE, et al. The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. Br J Clin Pharmacol 1992; 33: 521–3PubMedCrossRef
96.
Zurück zum Zitat Sindrup SH, Brosen K, Gram LF, et al. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 278–87PubMedCrossRef Sindrup SH, Brosen K, Gram LF, et al. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 278–87PubMedCrossRef
97.
Zurück zum Zitat Sindrup SH, Brosen K, Gram LF. Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine: nonlinearity and relation to the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 288–95PubMedCrossRef Sindrup SH, Brosen K, Gram LF. Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine: nonlinearity and relation to the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 288–95PubMedCrossRef
98.
Zurück zum Zitat Ozdemir V, Tyndale RF, Reed K, et al. Paroxetine steady-state plasma concentration in relation to CYP2D6 genotype in extensive metabolizers. J Clin Psychopharmacol 1999; 19: 472–5PubMedCrossRef Ozdemir V, Tyndale RF, Reed K, et al. Paroxetine steady-state plasma concentration in relation to CYP2D6 genotype in extensive metabolizers. J Clin Psychopharmacol 1999; 19: 472–5PubMedCrossRef
99.
Zurück zum Zitat Lam YW, Gaedigk A, Ereshefsky L, et al. CYP2D6 inhibition by selective serotonin reuptake inhibitors: analysis of achievable steady-state plasma concentrations and the effect of ultrarapid metabolism at CYP2D6. Pharmacotherapy 2002; 22: 1001–6PubMedCrossRef Lam YW, Gaedigk A, Ereshefsky L, et al. CYP2D6 inhibition by selective serotonin reuptake inhibitors: analysis of achievable steady-state plasma concentrations and the effect of ultrarapid metabolism at CYP2D6. Pharmacotherapy 2002; 22: 1001–6PubMedCrossRef
100.
Zurück zum Zitat Charlier C, Broly F, Lhermitte M, et al. Polymorphisms in the CYP2D6 gene: association with plasma concentrations of fluoxetine and paroxetine. Ther Drug Monit 2003; 25: 738–42PubMedCrossRef Charlier C, Broly F, Lhermitte M, et al. Polymorphisms in the CYP2D6 gene: association with plasma concentrations of fluoxetine and paroxetine. Ther Drug Monit 2003; 25: 738–42PubMedCrossRef
101.
Zurück zum Zitat Zourkova A, Hadasova E. Relationship between CYP 2D6 metabolic status and sexual dysfunction in paroxetine treatment. J Sex Marital Ther 2002; 28: 451–61PubMedCrossRef Zourkova A, Hadasova E. Relationship between CYP 2D6 metabolic status and sexual dysfunction in paroxetine treatment. J Sex Marital Ther 2002; 28: 451–61PubMedCrossRef
102.
Zurück zum Zitat Murphy Jr GM, Kremer C, Rodrigues S, et al. Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 2003; 160: 1830–5PubMedCrossRef Murphy Jr GM, Kremer C, Rodrigues S, et al. Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 2003; 160: 1830–5PubMedCrossRef
103.
Zurück zum Zitat Tanaka M, Kobayashi D, Murakami Y, et al. Genetic polymorphisms in the 5-hydroxytryptamine type 3B receptor gene and paroxetine-induced nausea. Int J Neuropsychopharmacol 2008; 11: 261–7PubMedCrossRef Tanaka M, Kobayashi D, Murakami Y, et al. Genetic polymorphisms in the 5-hydroxytryptamine type 3B receptor gene and paroxetine-induced nausea. Int J Neuropsychopharmacol 2008; 11: 261–7PubMedCrossRef
104.
Zurück zum Zitat Pinder RM, Van Delft AM. The potential therapeutic role of the enantiomers and metabolites of mianserin. Br J Clin Pharmacol 1983; 15 Suppl. 2: 269–76SCrossRef Pinder RM, Van Delft AM. The potential therapeutic role of the enantiomers and metabolites of mianserin. Br J Clin Pharmacol 1983; 15 Suppl. 2: 269–76SCrossRef
105.
Zurück zum Zitat Delbressine LP, Moonen ME, Kaspersen FM, et al. Biotransformation of mianserin in laboratory animals and man. Xenobiotica 1992; 22: 227–36PubMedCrossRef Delbressine LP, Moonen ME, Kaspersen FM, et al. Biotransformation of mianserin in laboratory animals and man. Xenobiotica 1992; 22: 227–36PubMedCrossRef
106.
Zurück zum Zitat Stormer E, von Moltke LL, Shader RI, et al. Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab Dispos 2000; 28: 1168–75PubMed Stormer E, von Moltke LL, Shader RI, et al. Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab Dispos 2000; 28: 1168–75PubMed
107.
Zurück zum Zitat Koyama E, Chiba K, Tani M, et al. Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers. J Pharmacol Exp Ther 1996; 278: 21–30PubMed Koyama E, Chiba K, Tani M, et al. Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers. J Pharmacol Exp Ther 1996; 278: 21–30PubMed
108.
Zurück zum Zitat Dahl ML, Tybring G, Elwin CE, et al. Stereoselective disposition of mianserin is related to debrisoquin hydroxylation polymorphism. Clin Pharmacol Ther 1994; 56: 176–83PubMedCrossRef Dahl ML, Tybring G, Elwin CE, et al. Stereoselective disposition of mianserin is related to debrisoquin hydroxylation polymorphism. Clin Pharmacol Ther 1994; 56: 176–83PubMedCrossRef
109.
Zurück zum Zitat Yasui N, Tybring G, Otani K, et al. Effects of thioridazine, an inhibitor of CYP2D6, on the steady-state plasma concentrations of the enantiomers of mianserin and its active metabolite, desmethylmianserin, in depressed Japanese patients. Pharmacogenetics 1997; 7: 369–74PubMedCrossRef Yasui N, Tybring G, Otani K, et al. Effects of thioridazine, an inhibitor of CYP2D6, on the steady-state plasma concentrations of the enantiomers of mianserin and its active metabolite, desmethylmianserin, in depressed Japanese patients. Pharmacogenetics 1997; 7: 369–74PubMedCrossRef
110.
Zurück zum Zitat Sindrup SH, Tuxen C, Gram LF, et al. Lack of effect of mianserin on the symptoms of diabetic neuropathy. Eur J Clin Pharmacol 1992; 43: 251–5PubMedCrossRef Sindrup SH, Tuxen C, Gram LF, et al. Lack of effect of mianserin on the symptoms of diabetic neuropathy. Eur J Clin Pharmacol 1992; 43: 251–5PubMedCrossRef
111.
Zurück zum Zitat Tacke U, Leinonen E, Lillsunde P, et al. Debrisoquine hydroxylation phenotypes of patients with high versus low to normal serum antidepressant concentrations. J Clin Psychopharmacol 1992; 12: 262–7PubMedCrossRef Tacke U, Leinonen E, Lillsunde P, et al. Debrisoquine hydroxylation phenotypes of patients with high versus low to normal serum antidepressant concentrations. J Clin Psychopharmacol 1992; 12: 262–7PubMedCrossRef
112.
Zurück zum Zitat Begg EJ, Sharman JR, Kidd JE, et al. Variability in the elimination of mianserin in elderly patients. Br J Clin Pharmacol 1989; 27: 445–51PubMedCrossRef Begg EJ, Sharman JR, Kidd JE, et al. Variability in the elimination of mianserin in elderly patients. Br J Clin Pharmacol 1989; 27: 445–51PubMedCrossRef
113.
Zurück zum Zitat Mihara K, Otani K, Tybring G, et al. The CYP2D6 genotype and plasma concentrations of mianserin enantiomers in relation to therapeutic response to mianserin in depressed Japanese patients. J Clin Psychopharmacol 1997; 17: 467–71PubMedCrossRef Mihara K, Otani K, Tybring G, et al. The CYP2D6 genotype and plasma concentrations of mianserin enantiomers in relation to therapeutic response to mianserin in depressed Japanese patients. J Clin Psychopharmacol 1997; 17: 467–71PubMedCrossRef
114.
Zurück zum Zitat Anttila SA, Leinonen EV. A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev 2001; 7: 249–64PubMedCrossRef Anttila SA, Leinonen EV. A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev 2001; 7: 249–64PubMedCrossRef
115.
Zurück zum Zitat Timmer CJ, Sitsen JM, Delbressine LP. Clinical pharmacokinetics of mirtazapine. Clin Pharmacokinet 2000; 38: 461–74PubMedCrossRef Timmer CJ, Sitsen JM, Delbressine LP. Clinical pharmacokinetics of mirtazapine. Clin Pharmacokinet 2000; 38: 461–74PubMedCrossRef
116.
Zurück zum Zitat Delbressine LP, Moonen ME, Kaspersen FM, et al. Pharmacokinetics and biotransformation of mirtazapine in human volunteers. Clin Drug Investig 1998; 15: 45–55PubMedCrossRef Delbressine LP, Moonen ME, Kaspersen FM, et al. Pharmacokinetics and biotransformation of mirtazapine in human volunteers. Clin Drug Investig 1998; 15: 45–55PubMedCrossRef
117.
Zurück zum Zitat Grasmader K, Verwohlt PL, Kuhn KU, et al. Population pharmacokinetic analysis of mirtazapine. Eur J Clin Pharmacol 2004; 60: 473–80PubMedCrossRef Grasmader K, Verwohlt PL, Kuhn KU, et al. Population pharmacokinetic analysis of mirtazapine. Eur J Clin Pharmacol 2004; 60: 473–80PubMedCrossRef
118.
Zurück zum Zitat Kirchheiner J, Henckel HB, Meineke I, et al. Impact of the CYP2D6 ultrarapid metabolizer genotype on mirtazapine pharmacokinetics and adverse events in healthy volunteers. J Clin Psychopharmacol 2004; 24: 647–52PubMedCrossRef Kirchheiner J, Henckel HB, Meineke I, et al. Impact of the CYP2D6 ultrarapid metabolizer genotype on mirtazapine pharmacokinetics and adverse events in healthy volunteers. J Clin Psychopharmacol 2004; 24: 647–52PubMedCrossRef
119.
Zurück zum Zitat Brockmoller J, Meineke I, Kirchheiner J. Pharmacokinetics of mirtazapine: enantioselective effects of the CYP2D6 ultra rapid metabolizer genotype and correlation with adverse effects. Clin Pharmacol Ther 2007; 81: 699–707PubMedCrossRef Brockmoller J, Meineke I, Kirchheiner J. Pharmacokinetics of mirtazapine: enantioselective effects of the CYP2D6 ultra rapid metabolizer genotype and correlation with adverse effects. Clin Pharmacol Ther 2007; 81: 699–707PubMedCrossRef
120.
Zurück zum Zitat Holliday SM, Benfield P. Venlafaxine: a review of its pharmacology and therapeutic potential in depression. Drugs 1995; 49: 280–94PubMedCrossRef Holliday SM, Benfield P. Venlafaxine: a review of its pharmacology and therapeutic potential in depression. Drugs 1995; 49: 280–94PubMedCrossRef
121.
Zurück zum Zitat Ellingrod VL, Perry PJ. Venlafaxine: a heterocyclic antidepressant. Am J Hosp Pharm 1994; 51: 3033–46PubMed Ellingrod VL, Perry PJ. Venlafaxine: a heterocyclic antidepressant. Am J Hosp Pharm 1994; 51: 3033–46PubMed
122.
Zurück zum Zitat Otton SV, Ball SE, Cheung SW, et al. Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol 1996; 41: 149–56PubMedCrossRef Otton SV, Ball SE, Cheung SW, et al. Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol 1996; 41: 149–56PubMedCrossRef
123.
Zurück zum Zitat Lindh JD, Annas A, Meurling L, et al. Effect of ketoconazole on venlafaxine plasma concentrations in extensive and poor metabolisers of debrisoquine. Eur J Clin Pharmacol 2003; 59: 401–6PubMedCrossRef Lindh JD, Annas A, Meurling L, et al. Effect of ketoconazole on venlafaxine plasma concentrations in extensive and poor metabolisers of debrisoquine. Eur J Clin Pharmacol 2003; 59: 401–6PubMedCrossRef
124.
Zurück zum Zitat Lessard E, Yessine MA, Hamelin BA, et al. Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 1999; 9: 435–43PubMedCrossRef Lessard E, Yessine MA, Hamelin BA, et al. Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 1999; 9: 435–43PubMedCrossRef
125.
Zurück zum Zitat Veefkind AH, Haffmans PM, Hoencamp E. Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 2000; 22: 202–8PubMedCrossRef Veefkind AH, Haffmans PM, Hoencamp E. Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 2000; 22: 202–8PubMedCrossRef
126.
Zurück zum Zitat Fukuda T, Nishida Y, Zhou Q, et al. The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur J Clin Pharmacol 2000; 56: 175–80PubMedCrossRef Fukuda T, Nishida Y, Zhou Q, et al. The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur J Clin Pharmacol 2000; 56: 175–80PubMedCrossRef
127.
Zurück zum Zitat Eap CB, Lessard E, Baumann P, et al. Role of CYP2D6 in the stereoselective disposition of venlafaxine in humans. Pharmacogenetics 2003; 13: 39–47PubMedCrossRef Eap CB, Lessard E, Baumann P, et al. Role of CYP2D6 in the stereoselective disposition of venlafaxine in humans. Pharmacogenetics 2003; 13: 39–47PubMedCrossRef
128.
Zurück zum Zitat Whyte EM, Romkes M, Mulsant BH, et al. CYP2D6 genotype and venlafaxine-XR concentrations in depressed elderly. Int J Geriatr Psychiatry 2006; 21: 542–9PubMedCrossRef Whyte EM, Romkes M, Mulsant BH, et al. CYP2D6 genotype and venlafaxine-XR concentrations in depressed elderly. Int J Geriatr Psychiatry 2006; 21: 542–9PubMedCrossRef
129.
Zurück zum Zitat Shams ME, Arneth B, Hiemke C, et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 2006; 31:493–502PubMedCrossRef Shams ME, Arneth B, Hiemke C, et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 2006; 31:493–502PubMedCrossRef
130.
Zurück zum Zitat Hermann M, Hendset M, Fosaas K, et al. Serum concentrations of venlafaxine and its metabolites O-desmethylvenlafaxine and N-desmethylvenlafaxine in heterozygous carriers of the CYP2D6*3, *4 or *5 allele. Eur J Clin Pharmacol 2008; 64: 483–7PubMedCrossRef Hermann M, Hendset M, Fosaas K, et al. Serum concentrations of venlafaxine and its metabolites O-desmethylvenlafaxine and N-desmethylvenlafaxine in heterozygous carriers of the CYP2D6*3, *4 or *5 allele. Eur J Clin Pharmacol 2008; 64: 483–7PubMedCrossRef
131.
Zurück zum Zitat McAlpine DE, O’Kane DJ, Black JL, et al. Cytochrome P450 2D6 genotype variation and venlafaxine dosage. Mayo Clin Proc 2007; 82: 1065–8PubMedCrossRef McAlpine DE, O’Kane DJ, Black JL, et al. Cytochrome P450 2D6 genotype variation and venlafaxine dosage. Mayo Clin Proc 2007; 82: 1065–8PubMedCrossRef
132.
Zurück zum Zitat Xu ZH, Wang W, Zhao XJ, et al. Evidence for involvement of polymorphic CYP2C19 and 2C9 in the N-demethylation of sertraline in human livermicrosomes. Br J Clin Pharmacol 1999; 48: 416–23PubMedCrossRef Xu ZH, Wang W, Zhao XJ, et al. Evidence for involvement of polymorphic CYP2C19 and 2C9 in the N-demethylation of sertraline in human livermicrosomes. Br J Clin Pharmacol 1999; 48: 416–23PubMedCrossRef
133.
Zurück zum Zitat Bertilsson L, Mellstrom B, Sjokvist F, et al. Slow hydroxylation of nortriptyline and concomitant poor debrisoquine hydroxylation: clinical implications. Lancet 1981; 1: 560–1PubMedCrossRef Bertilsson L, Mellstrom B, Sjokvist F, et al. Slow hydroxylation of nortriptyline and concomitant poor debrisoquine hydroxylation: clinical implications. Lancet 1981; 1: 560–1PubMedCrossRef
134.
Zurück zum Zitat Bluhm RE, Wilkinson GR, Shelton R, et al. Genetically determined drugmetabolizing activity and desipramine-associated cardiotoxicity: a case report. Clin Pharmacol Ther 1993; 53: 89–95PubMedCrossRef Bluhm RE, Wilkinson GR, Shelton R, et al. Genetically determined drugmetabolizing activity and desipramine-associated cardiotoxicity: a case report. Clin Pharmacol Ther 1993; 53: 89–95PubMedCrossRef
135.
Zurück zum Zitat Bertilsson L, Dahl ML, Sjoqvist F, et al. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet 1993; 341:63PubMedCrossRef Bertilsson L, Dahl ML, Sjoqvist F, et al. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet 1993; 341:63PubMedCrossRef
136.
Zurück zum Zitat Rau T, Wohlleben G, Wuttke H, et al. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants. A pilot study. Clin Pharmacol Ther 2004; 75: 386–93PubMedCrossRef Rau T, Wohlleben G, Wuttke H, et al. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants. A pilot study. Clin Pharmacol Ther 2004; 75: 386–93PubMedCrossRef
137.
Zurück zum Zitat Kawanishi C, Lundgren S, Agren H, et al. Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol 2004; 59: 803–7PubMedCrossRef Kawanishi C, Lundgren S, Agren H, et al. Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol 2004; 59: 803–7PubMedCrossRef
138.
Zurück zum Zitat Grasmader K, Verwohlt PL, Rietschel M, et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 2004; 60: 329–36PubMed Grasmader K, Verwohlt PL, Rietschel M, et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 2004; 60: 329–36PubMed
139.
Zurück zum Zitat Bijl MJ, Visser LE, Hofman A, et al. Influence of the CYP2D6*4 polymorphism on dose, switching and discontinuation of antidepressants. Br J Clin Pharmacol 2008; 65: 558–64PubMedCrossRef Bijl MJ, Visser LE, Hofman A, et al. Influence of the CYP2D6*4 polymorphism on dose, switching and discontinuation of antidepressants. Br J Clin Pharmacol 2008; 65: 558–64PubMedCrossRef
140.
Zurück zum Zitat Kwadijk-de Gijsel S, Bijl MJ, Visser LE, et al. Variation in the CYP2D6 gene is associated with a lower serum sodium concentration in patients on antidepressants. Br J Clin Pharmacol 2009; 68: 221–5PubMedCrossRef Kwadijk-de Gijsel S, Bijl MJ, Visser LE, et al. Variation in the CYP2D6 gene is associated with a lower serum sodium concentration in patients on antidepressants. Br J Clin Pharmacol 2009; 68: 221–5PubMedCrossRef
141.
Zurück zum Zitat Seeringer A, Kirchheiner J. Pharmacogenetics-guided dose modifications of antidepressants. Clin Lab Med 2008; 28: 619–26PubMedCrossRef Seeringer A, Kirchheiner J. Pharmacogenetics-guided dose modifications of antidepressants. Clin Lab Med 2008; 28: 619–26PubMedCrossRef
142.
Zurück zum Zitat Lieberman JA, Bymaster FP, Meltzer HY, et al. Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol Rev 2008; 60: 358–403PubMedCrossRef Lieberman JA, Bymaster FP, Meltzer HY, et al. Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol Rev 2008; 60: 358–403PubMedCrossRef
143.
Zurück zum Zitat Worrel JA, Marken PA, Beckman SE, et al. Atypical antipsychotic agents: a critical review. Am J Health Syst Pharm 2000; 57: 238–55PubMed Worrel JA, Marken PA, Beckman SE, et al. Atypical antipsychotic agents: a critical review. Am J Health Syst Pharm 2000; 57: 238–55PubMed
144.
Zurück zum Zitat Vohora D. Atypical antipsychotic drugs: current issues of safety and efficacy in the management of schizophrenia. Curr Opin Investig Drugs 2007; 8: 531–8PubMed Vohora D. Atypical antipsychotic drugs: current issues of safety and efficacy in the management of schizophrenia. Curr Opin Investig Drugs 2007; 8: 531–8PubMed
146.
Zurück zum Zitat Bishara D, Taylor D. Upcoming agents for the treatment of schizophrenia: mechanism of action, efficacy and tolerability. Drugs 2008; 68: 2269–92PubMedCrossRef Bishara D, Taylor D. Upcoming agents for the treatment of schizophrenia: mechanism of action, efficacy and tolerability. Drugs 2008; 68: 2269–92PubMedCrossRef
147.
Zurück zum Zitat Gardiner SJ, Begg EJ. Pharmacogenetics drug-metabolizing enzymes, and clinical practice. Pharmacol Rev 2006; 58: 521–90PubMedCrossRef Gardiner SJ, Begg EJ. Pharmacogenetics drug-metabolizing enzymes, and clinical practice. Pharmacol Rev 2006; 58: 521–90PubMedCrossRef
148.
Zurück zum Zitat Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenom J 2005; 5: 6–13CrossRef Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenom J 2005; 5: 6–13CrossRef
149.
Zurück zum Zitat Zhou SF, Di YM, Chan E, et al. Clinical pharmacogenetics and potential application in personalized medicine. Curr Drug Metab 2008; 9: 738–84PubMedCrossRef Zhou SF, Di YM, Chan E, et al. Clinical pharmacogenetics and potential application in personalized medicine. Curr Drug Metab 2008; 9: 738–84PubMedCrossRef
150.
Zurück zum Zitat Swainston Harrison T, Perry CM. Aripiprazole: a review of its use in schizophrenia and schizoaffective disorder. Drugs 2004; 64: 1715–36PubMedCrossRef Swainston Harrison T, Perry CM. Aripiprazole: a review of its use in schizophrenia and schizoaffective disorder. Drugs 2004; 64: 1715–36PubMedCrossRef
151.
Zurück zum Zitat Shapiro DA, Renock S, Arrington E, et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003; 28: 1400–11PubMedCrossRef Shapiro DA, Renock S, Arrington E, et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003; 28: 1400–11PubMedCrossRef
152.
Zurück zum Zitat Molden E, Lunde H, Lunder N, et al. Pharmacokinetic variability of aripiprazole and the active metabolite dehydroaripiprazole in psychiatric patients. Ther Drug Monit 2006; 28: 744–9PubMedCrossRef Molden E, Lunde H, Lunder N, et al. Pharmacokinetic variability of aripiprazole and the active metabolite dehydroaripiprazole in psychiatric patients. Ther Drug Monit 2006; 28: 744–9PubMedCrossRef
153.
Zurück zum Zitat Kubo M, Koue T, Inaba A, et al. Influence of itraconazole co-administration and CYP2D6 genotype on the pharmacokinetics of the new antipsychotic aripiprazole. Drug Metab Pharmacokinet 2005; 20: 55–64PubMedCrossRef Kubo M, Koue T, Inaba A, et al. Influence of itraconazole co-administration and CYP2D6 genotype on the pharmacokinetics of the new antipsychotic aripiprazole. Drug Metab Pharmacokinet 2005; 20: 55–64PubMedCrossRef
154.
Zurück zum Zitat Kim JR, Seo HB, Cho JY, et al. Population pharmacokinetic modelling of aripiprazole and its active metabolite, dehydroaripiprazole, in psychiatric patients. Br J Clin Pharmacol 2008; 66: 802–10PubMedCrossRef Kim JR, Seo HB, Cho JY, et al. Population pharmacokinetic modelling of aripiprazole and its active metabolite, dehydroaripiprazole, in psychiatric patients. Br J Clin Pharmacol 2008; 66: 802–10PubMedCrossRef
155.
Zurück zum Zitat Koue T, Kubo M, Funaki T, et al. Nonlinear mixed effects model analysis of the pharmacokinetics of aripiprazole in healthy Japanese males. Biol Pharm Bull 2007; 30: 2154–8PubMedCrossRef Koue T, Kubo M, Funaki T, et al. Nonlinear mixed effects model analysis of the pharmacokinetics of aripiprazole in healthy Japanese males. Biol Pharm Bull 2007; 30: 2154–8PubMedCrossRef
156.
Zurück zum Zitat Kubo M, Koue T, Maune H, et al. Pharmacokinetics of aripiprazole, a new antipsychotic, following oral dosing in healthy adult Japanese volunteers: influence of CYP2D6 polymorphism. Drug Metab Pharmacokinet 2007; 22: 358–66PubMedCrossRef Kubo M, Koue T, Maune H, et al. Pharmacokinetics of aripiprazole, a new antipsychotic, following oral dosing in healthy adult Japanese volunteers: influence of CYP2D6 polymorphism. Drug Metab Pharmacokinet 2007; 22: 358–66PubMedCrossRef
157.
Zurück zum Zitat Hendset M, Hermann M, Lunde H, et al. Impact of the CYP2D6 genotype on steady-state serum concentrations of aripiprazole and dehydroaripiprazole. Eur J Clin Pharmacol 2007; 63: 1147–51PubMedCrossRef Hendset M, Hermann M, Lunde H, et al. Impact of the CYP2D6 genotype on steady-state serum concentrations of aripiprazole and dehydroaripiprazole. Eur J Clin Pharmacol 2007; 63: 1147–51PubMedCrossRef
158.
Zurück zum Zitat Oosterhuis M, Van De Kraats G, Tenback D. Safety of aripiprazole: high serum levels in a CYP2D6 mutated patient. Am J Psychiatry 2007; 164: 175PubMedCrossRef Oosterhuis M, Van De Kraats G, Tenback D. Safety of aripiprazole: high serum levels in a CYP2D6 mutated patient. Am J Psychiatry 2007; 164: 175PubMedCrossRef
159.
Zurück zum Zitat Waade RB, Christensen H, Rudberg I, et al. Influence of comedication on serum concentrations of aripiprazole and dehydroaripiprazole. Ther Drug Monit 2009; 31: 233–8PubMedCrossRef Waade RB, Christensen H, Rudberg I, et al. Influence of comedication on serum concentrations of aripiprazole and dehydroaripiprazole. Ther Drug Monit 2009; 31: 233–8PubMedCrossRef
160.
Zurück zum Zitat Hartmann F, Gruenke LD, Craig JC, et al. Chlorpromazine metabolism in extracts of liver and small intestine from guinea pig and from man. Drug Metab Dispos 1983; 11: 244–8PubMed Hartmann F, Gruenke LD, Craig JC, et al. Chlorpromazine metabolism in extracts of liver and small intestine from guinea pig and from man. Drug Metab Dispos 1983; 11: 244–8PubMed
161.
Zurück zum Zitat Yoshii K, Kobayashi K, Tsumuji M, et al. Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes. Life Sci 2000; 67: 175–84PubMedCrossRef Yoshii K, Kobayashi K, Tsumuji M, et al. Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes. Life Sci 2000; 67: 175–84PubMedCrossRef
162.
Zurück zum Zitat Muralidharan G, Cooper JK, Hawes EM, et al. Quinidine inhibits the 7-hydroxylation of chlorpromazine in extensive metabolisers of debrisoquine. Eur J Clin Pharmacol 1996; 50: 121–8PubMedCrossRef Muralidharan G, Cooper JK, Hawes EM, et al. Quinidine inhibits the 7-hydroxylation of chlorpromazine in extensive metabolisers of debrisoquine. Eur J Clin Pharmacol 1996; 50: 121–8PubMedCrossRef
163.
Zurück zum Zitat Sunwoo YE, Ryu J, Jung H, et al. Disposition of chlorpromazine in Korean healthy subjects with CYP2D6 wild-type and *10B mutation [abstract]. Clin Pharmacol Ther 2004; 73: PII–146 Sunwoo YE, Ryu J, Jung H, et al. Disposition of chlorpromazine in Korean healthy subjects with CYP2D6 wild-type and *10B mutation [abstract]. Clin Pharmacol Ther 2004; 73: PII–146
164.
Zurück zum Zitat Kudo S, Ishizaki T. Pharmacokinetics of haloperidol: an update. Clin Pharmacokinet 1999; 37: 435–56PubMedCrossRef Kudo S, Ishizaki T. Pharmacokinetics of haloperidol: an update. Clin Pharmacokinet 1999; 37: 435–56PubMedCrossRef
165.
Zurück zum Zitat Yatham LN. The role of novel antipsychotics in bipolar disorders. J Clin Psychiatry 2002; 63: 10–4PubMedCrossRef Yatham LN. The role of novel antipsychotics in bipolar disorders. J Clin Psychiatry 2002; 63: 10–4PubMedCrossRef
166.
Zurück zum Zitat Tateishi T, Watanabe M, Kumai T, et al. CYP3A is responsible for N-dealkylation of haloperidol and bromperidol and oxidation of their reduced forms by human liver microsomes. Life Sci 2000; 67: 2913–20PubMedCrossRef Tateishi T, Watanabe M, Kumai T, et al. CYP3A is responsible for N-dealkylation of haloperidol and bromperidol and oxidation of their reduced forms by human liver microsomes. Life Sci 2000; 67: 2913–20PubMedCrossRef
167.
Zurück zum Zitat Kudo S, Odomi M. Involvement of human cytochrome P450 3A4 in reduced haloperidol oxidation. Eur J Clin Pharmacol 1998; 54: 253–9PubMedCrossRef Kudo S, Odomi M. Involvement of human cytochrome P450 3A4 in reduced haloperidol oxidation. Eur J Clin Pharmacol 1998; 54: 253–9PubMedCrossRef
168.
Zurück zum Zitat Pan LP, De Vriendt C, Belpaire FM. In-vitro characterization of the cytochrome P450 isoenzymes involved in the back oxidation and N-dealkylation of reduced haloperidol. Pharmacogenetics 1998; 8: 383–9PubMedCrossRef Pan LP, De Vriendt C, Belpaire FM. In-vitro characterization of the cytochrome P450 isoenzymes involved in the back oxidation and N-dealkylation of reduced haloperidol. Pharmacogenetics 1998; 8: 383–9PubMedCrossRef
169.
Zurück zum Zitat Kim YH, Cha IJ, Shim JC, et al. Effect of rifampin on the plasma concentration and the clinical effect of haloperidol concomitantly administered to schizophrenic patients. J Clin Psychopharmacol 1996; 16: 247–52PubMedCrossRef Kim YH, Cha IJ, Shim JC, et al. Effect of rifampin on the plasma concentration and the clinical effect of haloperidol concomitantly administered to schizophrenic patients. J Clin Psychopharmacol 1996; 16: 247–52PubMedCrossRef
170.
Zurück zum Zitat Avenoso A, Spina E, Campo G, et al. Interaction between fluoxetine and haloperidol: pharmacokinetic and clinical implications. Pharmacol Res 1997; 35: 335–9PubMed Avenoso A, Spina E, Campo G, et al. Interaction between fluoxetine and haloperidol: pharmacokinetic and clinical implications. Pharmacol Res 1997; 35: 335–9PubMed
171.
Zurück zum Zitat Vandel S, Bertschy G, Baumann P, et al. Fluvoxamine and fluoxetine: interaction studies with amitriptyline, clomipramine and neuroleptics in phenotyped patients. Pharmacol Res 1995; 31: 347–53PubMedCrossRef Vandel S, Bertschy G, Baumann P, et al. Fluvoxamine and fluoxetine: interaction studies with amitriptyline, clomipramine and neuroleptics in phenotyped patients. Pharmacol Res 1995; 31: 347–53PubMedCrossRef
172.
Zurück zum Zitat Ulrich S, Wurthmann C, Brosz M, et al. The relationship between serum concentration and therapeutic effect of haloperidol in patients with acute schizophrenia. Clin Pharmacokinet 1998; 34: 227–63PubMedCrossRef Ulrich S, Wurthmann C, Brosz M, et al. The relationship between serum concentration and therapeutic effect of haloperidol in patients with acute schizophrenia. Clin Pharmacokinet 1998; 34: 227–63PubMedCrossRef
173.
Zurück zum Zitat Lane HY, Hu OY, Jann MW, et al. Dextromethorphan phenotyping and haloperidol disposition in schizophrenic patients. Psychiatry Res 1997; 69: 105–11PubMedCrossRef Lane HY, Hu OY, Jann MW, et al. Dextromethorphan phenotyping and haloperidol disposition in schizophrenic patients. Psychiatry Res 1997; 69: 105–11PubMedCrossRef
174.
Zurück zum Zitat Llerena A, Alm C, Dahl ML, et al. Haloperidol disposition is dependent on debrisoquine hydroxylation phenotype. Ther Drug Monit 1992; 14: 92–7PubMedCrossRef Llerena A, Alm C, Dahl ML, et al. Haloperidol disposition is dependent on debrisoquine hydroxylation phenotype. Ther Drug Monit 1992; 14: 92–7PubMedCrossRef
175.
Zurück zum Zitat Llerena A, Dahl ML, Ekqvist B, et al. Haloperidol disposition is dependent on the debrisoquine hydroxylation phenotype: increased plasma levels of the reduced metabolite in poor metabolizers. Ther Drug Monit 1992; 14: 261–4PubMedCrossRef Llerena A, Dahl ML, Ekqvist B, et al. Haloperidol disposition is dependent on the debrisoquine hydroxylation phenotype: increased plasma levels of the reduced metabolite in poor metabolizers. Ther Drug Monit 1992; 14: 261–4PubMedCrossRef
176.
Zurück zum Zitat Nyberg S, Farde L, Halldin C, et al. D2 dopamine receptor occupancy during low-dose treatment with haloperidol decanoate. Am J Psychiatry 1995; 152: 173–8PubMed Nyberg S, Farde L, Halldin C, et al. D2 dopamine receptor occupancy during low-dose treatment with haloperidol decanoate. Am J Psychiatry 1995; 152: 173–8PubMed
177.
Zurück zum Zitat Brockmoller J, Kirchheiner J, Schmider J, et al. The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin Pharmacol Ther 2002; 72: 438–52PubMedCrossRef Brockmoller J, Kirchheiner J, Schmider J, et al. The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin Pharmacol Ther 2002; 72: 438–52PubMedCrossRef
178.
Zurück zum Zitat Panagiotidis G, Arthur HW, Lindh JD, et al. Depot haloperidol treatment in outpatients with schizophrenia on monotherapy: impact of CYP2D6 polymorphism on pharmacokinetics and treatment outcome. Ther Drug Monit 2007; 29: 417–22PubMedCrossRef Panagiotidis G, Arthur HW, Lindh JD, et al. Depot haloperidol treatment in outpatients with schizophrenia on monotherapy: impact of CYP2D6 polymorphism on pharmacokinetics and treatment outcome. Ther Drug Monit 2007; 29: 417–22PubMedCrossRef
179.
Zurück zum Zitat Suzuki A, Otani K, Mihara K, et al. Effects of the CYP2D6 genotype on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese schizophrenic patients. Pharmacogenetics 1997; 7: 415–8PubMedCrossRef Suzuki A, Otani K, Mihara K, et al. Effects of the CYP2D6 genotype on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese schizophrenic patients. Pharmacogenetics 1997; 7: 415–8PubMedCrossRef
180.
Zurück zum Zitat Mihara K, Suzuki A, Kondo T, et al. Effects of the CYP2D6*10 allele on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese patients with schizophrenia. Clin Pharmacol Ther 1999; 65: 291–4PubMedCrossRef Mihara K, Suzuki A, Kondo T, et al. Effects of the CYP2D6*10 allele on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese patients with schizophrenia. Clin Pharmacol Ther 1999; 65: 291–4PubMedCrossRef
181.
Zurück zum Zitat Roh HK, Chung JY, Oh DY, et al. Plasma concentrations of haloperidol are related to CYP2D6 genotype at low, but not high doses of haloperidol in Korean schizophrenic patients. Br J Clin Pharmacol 2001; 52: 265–71PubMedCrossRef Roh HK, Chung JY, Oh DY, et al. Plasma concentrations of haloperidol are related to CYP2D6 genotype at low, but not high doses of haloperidol in Korean schizophrenic patients. Br J Clin Pharmacol 2001; 52: 265–71PubMedCrossRef
182.
Zurück zum Zitat Park JY, Shon JH, Kim KA, et al. Combined effects of itraconazole and CYP2D6*10 genetic polymorphism on the pharmacokinetics and pharmacodynamics of haloperidol in healthy subjects. J Clin Psychopharmacol 2006; 26: 135–42PubMedCrossRef Park JY, Shon JH, Kim KA, et al. Combined effects of itraconazole and CYP2D6*10 genetic polymorphism on the pharmacokinetics and pharmacodynamics of haloperidol in healthy subjects. J Clin Psychopharmacol 2006; 26: 135–42PubMedCrossRef
183.
Zurück zum Zitat Shimoda K, Morita S, Yokono A, et al. CYP2D6*10 alleles are not the determinant of the plasma haloperidol concentrations in Asian patients. Ther Drug Monit 2000; 22: 392–6PubMedCrossRef Shimoda K, Morita S, Yokono A, et al. CYP2D6*10 alleles are not the determinant of the plasma haloperidol concentrations in Asian patients. Ther Drug Monit 2000; 22: 392–6PubMedCrossRef
184.
Zurück zum Zitat Ohnuma T, Shibata N, Matsubara Y, et al. Haloperidol plasma concentration in Japanese psychiatric subjects with gene duplication of CYP2D6. Br J Clin Pharmacol 2003; 56: 315–20PubMedCrossRef Ohnuma T, Shibata N, Matsubara Y, et al. Haloperidol plasma concentration in Japanese psychiatric subjects with gene duplication of CYP2D6. Br J Clin Pharmacol 2003; 56: 315–20PubMedCrossRef
185.
Zurück zum Zitat Pan L, Vander Stichele R, Rosseel MT, et al. Effects of smoking, CYP2D6 genotype, and concomitant drug intake on the steady state plasma concentrations of haloperidol and reduced haloperidol in schizophrenic inpatients. Ther Drug Monit 1999; 21: 489–97PubMedCrossRef Pan L, Vander Stichele R, Rosseel MT, et al. Effects of smoking, CYP2D6 genotype, and concomitant drug intake on the steady state plasma concentrations of haloperidol and reduced haloperidol in schizophrenic inpatients. Ther Drug Monit 1999; 21: 489–97PubMedCrossRef
186.
Zurück zum Zitat Someya T, Suzuki Y, Shimoda K, et al. The effect of cytochrome P450 2D6 genotypes on haloperidol metabolism: a preliminary study in a psychiatric population. Psychiatry Clin Neurosci 1999; 53: 593–7PubMedCrossRef Someya T, Suzuki Y, Shimoda K, et al. The effect of cytochrome P450 2D6 genotypes on haloperidol metabolism: a preliminary study in a psychiatric population. Psychiatry Clin Neurosci 1999; 53: 593–7PubMedCrossRef
187.
Zurück zum Zitat Hartung B, Wada M, Laux G, et al. Perphenazine for schizophrenia. Cochrane Database Syst Rev 2005; (1): CD003443PubMed Hartung B, Wada M, Laux G, et al. Perphenazine for schizophrenia. Cochrane Database Syst Rev 2005; (1): CD003443PubMed
188.
Zurück zum Zitat Olesen OV, Linnet K. Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine. Br J Clin Pharmacol 2000; 50: 563–71PubMedCrossRef Olesen OV, Linnet K. Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine. Br J Clin Pharmacol 2000; 50: 563–71PubMedCrossRef
189.
Zurück zum Zitat Bertilsson L, Dahl ML, Ekqvist B, et al. Disposition of the neuroleptics perphenazine, zuclopenthixol, and haloperidol cosegregates with polymorphic debrisoquine hydroxylation. Psychopharmacol Ser 1993; 10: 230–7PubMed Bertilsson L, Dahl ML, Ekqvist B, et al. Disposition of the neuroleptics perphenazine, zuclopenthixol, and haloperidol cosegregates with polymorphic debrisoquine hydroxylation. Psychopharmacol Ser 1993; 10: 230–7PubMed
190.
Zurück zum Zitat Dahl-Puustinen ML, Liden A, Alm C, et al. Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings. Clin Pharmacol Ther 1989; 46: 78–81PubMedCrossRef Dahl-Puustinen ML, Liden A, Alm C, et al. Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings. Clin Pharmacol Ther 1989; 46: 78–81PubMedCrossRef
191.
Zurück zum Zitat Linnet K, Wiborg O. Steady-state serum concentrations of the neuroleptic perphenazine in relation to CYP2D6 genetic polymorphism. Clin Pharmacol Ther 1996; 60: 41–7PubMedCrossRef Linnet K, Wiborg O. Steady-state serum concentrations of the neuroleptic perphenazine in relation to CYP2D6 genetic polymorphism. Clin Pharmacol Ther 1996; 60: 41–7PubMedCrossRef
192.
Zurück zum Zitat Jerling M, Dahl ML, Aberg-Wistedt A, et al. The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol. Clin Pharmacol Ther 1996; 59: 423–8PubMedCrossRef Jerling M, Dahl ML, Aberg-Wistedt A, et al. The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol. Clin Pharmacol Ther 1996; 59: 423–8PubMedCrossRef
193.
Zurück zum Zitat Ozdemir V, Bertilsson L, Miura J, et al. CYP2D6 genotype in relation to perphenazine concentration and pituitary pharmacodynamic tissue sensitivity in Asians: CYP2D6-serotonin-dopamine crosstalk revisited. Pharmacogenet Genomics 2007; 17: 339–47PubMedCrossRef Ozdemir V, Bertilsson L, Miura J, et al. CYP2D6 genotype in relation to perphenazine concentration and pituitary pharmacodynamic tissue sensitivity in Asians: CYP2D6-serotonin-dopamine crosstalk revisited. Pharmacogenet Genomics 2007; 17: 339–47PubMedCrossRef
194.
Zurück zum Zitat Aklillu E, Kalow W, Endrenyi L, et al. CYP2D6 and DRD2 genes differentially impact pharmacodynamic sensitivity and time course of prolactin response to perphenazine. Pharmacogenet Genomics 2007; 17: 989–93PubMedCrossRef Aklillu E, Kalow W, Endrenyi L, et al. CYP2D6 and DRD2 genes differentially impact pharmacodynamic sensitivity and time course of prolactin response to perphenazine. Pharmacogenet Genomics 2007; 17: 989–93PubMedCrossRef
195.
Zurück zum Zitat Bushe C, Shaw M, Peveler RC. A review of the association between antipsychotic use and hyperprolactinaemia. J Psychopharmacol 2008; 22: 46–55PubMedCrossRef Bushe C, Shaw M, Peveler RC. A review of the association between antipsychotic use and hyperprolactinaemia. J Psychopharmacol 2008; 22: 46–55PubMedCrossRef
196.
Zurück zum Zitat O’Keane V. Antipsychotic-induced hyperprolactinaemia, hypogonadism and osteoporosis in the treatment of schizophrenia. J Psychopharmacol 2008; 22: 70–5PubMedCrossRef O’Keane V. Antipsychotic-induced hyperprolactinaemia, hypogonadism and osteoporosis in the treatment of schizophrenia. J Psychopharmacol 2008; 22: 70–5PubMedCrossRef
197.
Zurück zum Zitat Peveler RC, Branford D, Citrome L, et al. Antipsychotics and hyperprolactinaemia: clinical recommendations. J Psychopharmacol 2008; 22: 98–103PubMedCrossRef Peveler RC, Branford D, Citrome L, et al. Antipsychotics and hyperprolactinaemia: clinical recommendations. J Psychopharmacol 2008; 22: 98–103PubMedCrossRef
199.
Zurück zum Zitat Haddad PM, Wieck A. Antipsychotic-induced hyperprolactinaemia: mechanisms, clinical features and management. Drugs 2004; 64: 2291–314PubMedCrossRef Haddad PM, Wieck A. Antipsychotic-induced hyperprolactinaemia: mechanisms, clinical features and management. Drugs 2004; 64: 2291–314PubMedCrossRef
200.
Zurück zum Zitat Yu AM, Idle JR, Byrd LG, et al. Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics 2003; 13: 173–81PubMedCrossRef Yu AM, Idle JR, Byrd LG, et al. Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics 2003; 13: 173–81PubMedCrossRef
201.
Zurück zum Zitat Ozdemir V, Naranjo CA, Herrmann N, et al. Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition in vivo. Clin Pharmacol Ther 1997; 62: 334–47PubMedCrossRef Ozdemir V, Naranjo CA, Herrmann N, et al. Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition in vivo. Clin Pharmacol Ther 1997; 62: 334–47PubMedCrossRef
202.
Zurück zum Zitat Pollock BG, Mulsant BH, Sweet RA, et al. Prospective cytochrome P450 phenotyping for neuroleptic treatment in dementia. Psychopharmacol Bull 1995; 31: 327–31PubMed Pollock BG, Mulsant BH, Sweet RA, et al. Prospective cytochrome P450 phenotyping for neuroleptic treatment in dementia. Psychopharmacol Bull 1995; 31: 327–31PubMed
203.
Zurück zum Zitat Fenton C, Scott LJ. Risperidone: a review of its use in the treatment of bipolar mania. CNS Drugs 2005; 19: 429–44PubMedCrossRef Fenton C, Scott LJ. Risperidone: a review of its use in the treatment of bipolar mania. CNS Drugs 2005; 19: 429–44PubMedCrossRef
204.
Zurück zum Zitat Grant S, Fitton A. Risperidone: a review of its pharmacology and therapeutic potential in the treatment of schizophrenia. Drugs 1994; 48: 253–73PubMedCrossRef Grant S, Fitton A. Risperidone: a review of its pharmacology and therapeutic potential in the treatment of schizophrenia. Drugs 1994; 48: 253–73PubMedCrossRef
205.
Zurück zum Zitat Mannens G, Huang ML, Meuldermans W, et al. Absorption, metabolism, and excretion of risperidone in humans. Drug Metab Dispos 1993; 21: 1134–41PubMed Mannens G, Huang ML, Meuldermans W, et al. Absorption, metabolism, and excretion of risperidone in humans. Drug Metab Dispos 1993; 21: 1134–41PubMed
206.
Zurück zum Zitat Yasui-Furukori N, Hidestrand M, Spina E, et al. Different enantioselective 9-hydroxylation of risperidone by the two human CYP2D6 and CYP3A4 enzymes. Drug Metab Dispos 2001; 29: 1263–8PubMed Yasui-Furukori N, Hidestrand M, Spina E, et al. Different enantioselective 9-hydroxylation of risperidone by the two human CYP2D6 and CYP3A4 enzymes. Drug Metab Dispos 2001; 29: 1263–8PubMed
207.
Zurück zum Zitat Spina E, Avenoso A, Facciola G, et al. Plasma concentrations of risperidone and 9-hydroxyrisperidone: effect of comedication with carbamazepine or valproate. Ther Drug Monit 2000; 22: 481–5PubMedCrossRef Spina E, Avenoso A, Facciola G, et al. Plasma concentrations of risperidone and 9-hydroxyrisperidone: effect of comedication with carbamazepine or valproate. Ther Drug Monit 2000; 22: 481–5PubMedCrossRef
208.
Zurück zum Zitat Jung SM, Kim KA, Cho HK, et al. Cytochrome P450 3A inhibitor itraconazole affects plasma concentrations of risperidone and 9-hydroxyrisperidone in schizophrenic patients. Clin Pharmacol Ther 2005; 78: 520–8PubMedCrossRef Jung SM, Kim KA, Cho HK, et al. Cytochrome P450 3A inhibitor itraconazole affects plasma concentrations of risperidone and 9-hydroxyrisperidone in schizophrenic patients. Clin Pharmacol Ther 2005; 78: 520–8PubMedCrossRef
209.
Zurück zum Zitat Schotte A, Janssen PF, Gommeren W, et al. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology (Berl) 1996; 124: 57–73CrossRef Schotte A, Janssen PF, Gommeren W, et al. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology (Berl) 1996; 124: 57–73CrossRef
210.
Zurück zum Zitat Spina E, Avenoso A, Facciola G, et al. Plasma concentrations of risperidone and 9-hydroxyrisperidone during combined treatment with paroxetine. Ther Drug Monit 2001; 23: 223–7PubMedCrossRef Spina E, Avenoso A, Facciola G, et al. Plasma concentrations of risperidone and 9-hydroxyrisperidone during combined treatment with paroxetine. Ther Drug Monit 2001; 23: 223–7PubMedCrossRef
211.
Zurück zum Zitat Mannheimer B, Bahr CV, Pettersson H, et al. Impact of multiple inhibitors or substrates of cytochrome P450 2D6 on plasma risperidone levels in patients on polypharmacy. Ther Drug Monit. Epub 2008 Aug 23 Mannheimer B, Bahr CV, Pettersson H, et al. Impact of multiple inhibitors or substrates of cytochrome P450 2D6 on plasma risperidone levels in patients on polypharmacy. Ther Drug Monit. Epub 2008 Aug 23
212.
Zurück zum Zitat Scordo MG, Spina E, Facciola G, et al. Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone. Psychopharmacology (Berl) 1999; 147: 300–5CrossRef Scordo MG, Spina E, Facciola G, et al. Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone. Psychopharmacology (Berl) 1999; 147: 300–5CrossRef
213.
Zurück zum Zitat Bondolfi G, Eap CB, Bertschy G, et al. The effect of fluoxetine on the pharmacokinetics and safety of risperidone in psychotic patients. Pharmacopsychiatry 2002; 35: 50–6PubMedCrossRef Bondolfi G, Eap CB, Bertschy G, et al. The effect of fluoxetine on the pharmacokinetics and safety of risperidone in psychotic patients. Pharmacopsychiatry 2002; 35: 50–6PubMedCrossRef
214.
Zurück zum Zitat Olesen OV, Licht RW, Thomsen E, et al. Serum concentrations and side effects in psychiatric patients during risperidone therapy. Ther Drug Monit 1998; 20: 380–4PubMedCrossRef Olesen OV, Licht RW, Thomsen E, et al. Serum concentrations and side effects in psychiatric patients during risperidone therapy. Ther Drug Monit 1998; 20: 380–4PubMedCrossRef
215.
Zurück zum Zitat Nyberg S, Dahl ML, Halldin C. A PET study of D2 and 5-HT2 receptor occupancy induced by risperidone in poor metabolizers of debrisoquin and risperidone. Psychopharmacology (Berl) 1995; 119: 345–8CrossRef Nyberg S, Dahl ML, Halldin C. A PET study of D2 and 5-HT2 receptor occupancy induced by risperidone in poor metabolizers of debrisoquin and risperidone. Psychopharmacology (Berl) 1995; 119: 345–8CrossRef
216.
Zurück zum Zitat Roh HK, Kim CE, Chung WG, et al. Risperidone metabolism in relation to CYP2D6*10 allele in Korean schizophrenic patients. Eur J Clin Pharmacol 2001; 57: 671–5PubMedCrossRef Roh HK, Kim CE, Chung WG, et al. Risperidone metabolism in relation to CYP2D6*10 allele in Korean schizophrenic patients. Eur J Clin Pharmacol 2001; 57: 671–5PubMedCrossRef
217.
Zurück zum Zitat Guzey C, Aamo T, Spigset O. Risperidone metabolism and the impact of being a cytochrome P450 2D6 ultrarapid metabolizer. J Clin Psychiatry 2000; 61: 600–1PubMedCrossRef Guzey C, Aamo T, Spigset O. Risperidone metabolism and the impact of being a cytochrome P450 2D6 ultrarapid metabolizer. J Clin Psychiatry 2000; 61: 600–1PubMedCrossRef
218.
Zurück zum Zitat De Leon J, Susce MT, Pan RM, et al. The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry 2005; 66: 15–27PubMedCrossRef De Leon J, Susce MT, Pan RM, et al. The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry 2005; 66: 15–27PubMedCrossRef
219.
Zurück zum Zitat Wojcikowski J, Maurel P, Daniel WA. Characterization of human cytochrome P450 enzymes involved in the metabolism of the piperidine-type phenothiazine neuroleptic thioridazine. Drug Metab Dispos 2006; 34: 471–6PubMed Wojcikowski J, Maurel P, Daniel WA. Characterization of human cytochrome P450 enzymes involved in the metabolism of the piperidine-type phenothiazine neuroleptic thioridazine. Drug Metab Dispos 2006; 34: 471–6PubMed
220.
Zurück zum Zitat Llerena A, Berecz R, de la Rubia A, et al. Use of the mesoridazine/thioridazine ratio as a marker for CYP2D6 enzyme activity. Ther Drug Monit 2000; 22: 397–401PubMedCrossRef Llerena A, Berecz R, de la Rubia A, et al. Use of the mesoridazine/thioridazine ratio as a marker for CYP2D6 enzyme activity. Ther Drug Monit 2000; 22: 397–401PubMedCrossRef
221.
Zurück zum Zitat Berecz R, de la Rubia A, Dorado P, et al. Thioridazine steady-state plasma concentrations are influenced by tobacco smoking and CYP2D6, but not by the CYP2C9 genotype. Eur J Clin Pharmacol 2003; 59: 45–50PubMed Berecz R, de la Rubia A, Dorado P, et al. Thioridazine steady-state plasma concentrations are influenced by tobacco smoking and CYP2D6, but not by the CYP2C9 genotype. Eur J Clin Pharmacol 2003; 59: 45–50PubMed
222.
Zurück zum Zitat Eap CB, Guentert TW, Schaublin-Loidl M, et al. Plasma levels of the enantiomers of thioridazine, thioridazine 2-sulfoxide, thioridazine 2-sulfone, and thioridazine 5-sulfoxide in poor and extensive metabolizers of dextromethorphan and mephenytoin. Clin Pharmacol Ther 1996; 59: 322–31PubMedCrossRef Eap CB, Guentert TW, Schaublin-Loidl M, et al. Plasma levels of the enantiomers of thioridazine, thioridazine 2-sulfoxide, thioridazine 2-sulfone, and thioridazine 5-sulfoxide in poor and extensive metabolizers of dextromethorphan and mephenytoin. Clin Pharmacol Ther 1996; 59: 322–31PubMedCrossRef
223.
Zurück zum Zitat Llerena A, Berecz R, de la Rubia A, et al. QTc interval lengthening is related to CYP2D6 hydroxylation capacity and plasma concentration of thioridazine in patients. J Psychopharmacol 2002; 16: 361–4PubMedCrossRef Llerena A, Berecz R, de la Rubia A, et al. QTc interval lengthening is related to CYP2D6 hydroxylation capacity and plasma concentration of thioridazine in patients. J Psychopharmacol 2002; 16: 361–4PubMedCrossRef
224.
Zurück zum Zitat von Bahr C, Movin G, Nordin C, et al. Plasma levels of thioridazine and metabolites are influenced by the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 1991; 49: 234–40CrossRef von Bahr C, Movin G, Nordin C, et al. Plasma levels of thioridazine and metabolites are influenced by the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 1991; 49: 234–40CrossRef
225.
Zurück zum Zitat Kumar A, Strech D. Zuclopenthixol dihydrochloride for schizophrenia. Cochrane Database Syst Rev 2005; (4): CD005474PubMed Kumar A, Strech D. Zuclopenthixol dihydrochloride for schizophrenia. Cochrane Database Syst Rev 2005; (4): CD005474PubMed
226.
Zurück zum Zitat Dahl ML, Ekqvist B, Widen J, et al. Disposition of the neuroleptic zuclopenthixol cosegregates with the polymorphic hydroxylation of debrisoquine in humans. Acta Psychiatr Scand 1991; 84: 99–102PubMedCrossRef Dahl ML, Ekqvist B, Widen J, et al. Disposition of the neuroleptic zuclopenthixol cosegregates with the polymorphic hydroxylation of debrisoquine in humans. Acta Psychiatr Scand 1991; 84: 99–102PubMedCrossRef
227.
Zurück zum Zitat Linnet K, Wiborg O. Influence of CYP2D6 genetic polymorphism on ratios of steady-state serum concentration to dose of the neuroleptic zuclopenthixol. Ther Drug Monit 1996; 18: 629–34PubMedCrossRef Linnet K, Wiborg O. Influence of CYP2D6 genetic polymorphism on ratios of steady-state serum concentration to dose of the neuroleptic zuclopenthixol. Ther Drug Monit 1996; 18: 629–34PubMedCrossRef
228.
Zurück zum Zitat Jaanson P, Marandi T, Kiivet RA, et al. Maintenance therapy with zuclopenthixol decanoate: associations between plasma concentrations, neurological side effects and CYP2D6 genotype. Psychopharmacology (Berl) 2002; 162: 67–73CrossRef Jaanson P, Marandi T, Kiivet RA, et al. Maintenance therapy with zuclopenthixol decanoate: associations between plasma concentrations, neurological side effects and CYP2D6 genotype. Psychopharmacology (Berl) 2002; 162: 67–73CrossRef
229.
Zurück zum Zitat Ring BJ, Catlow J, Lindsay TJ, et al. Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J Pharmacol Exp Ther 1996; 276: 658–66PubMed Ring BJ, Catlow J, Lindsay TJ, et al. Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J Pharmacol Exp Ther 1996; 276: 658–66PubMed
230.
Zurück zum Zitat Olesen OV, Linnet K. Contributions of five human cytochrome P450 isoforms to the N-demethylation of clozapine in vitro at low and high concentrations. J Clin Pharmacol 2001; 41: 823–32PubMedCrossRef Olesen OV, Linnet K. Contributions of five human cytochrome P450 isoforms to the N-demethylation of clozapine in vitro at low and high concentrations. J Clin Pharmacol 2001; 41: 823–32PubMedCrossRef
231.
Zurück zum Zitat Schaber G, Wiatr G, Wachsmuth H, et al. Isolation and identification of clozapine metabolites in patient urine. Drug Metab Dispos 2001; 29: 923–31PubMed Schaber G, Wiatr G, Wachsmuth H, et al. Isolation and identification of clozapine metabolites in patient urine. Drug Metab Dispos 2001; 29: 923–31PubMed
232.
Zurück zum Zitat Breyer-Pfaff U, Wachsmuth H. Tertiary N-glucuronides of clozapine and its metabolite desmethylclozapine in patient urine. Drug Metab Dispos 2001; 29: 1343–8PubMed Breyer-Pfaff U, Wachsmuth H. Tertiary N-glucuronides of clozapine and its metabolite desmethylclozapine in patient urine. Drug Metab Dispos 2001; 29: 1343–8PubMed
233.
Zurück zum Zitat Hagg S, Spigset O, Lakso HA, et al. Olanzapine disposition in humans is unrelated to CYP1A2 and CYP2D6 phenotypes. Eur J Clin Pharmacol 2001; 57: 493–7PubMedCrossRef Hagg S, Spigset O, Lakso HA, et al. Olanzapine disposition in humans is unrelated to CYP1A2 and CYP2D6 phenotypes. Eur J Clin Pharmacol 2001; 57: 493–7PubMedCrossRef
234.
Zurück zum Zitat Carrillo JA, Herraiz AG, Ramos SI, et al. Role of the smoking-induced cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine. J Clin Psychopharmacol 2003; 23: 119–27PubMedCrossRef Carrillo JA, Herraiz AG, Ramos SI, et al. Role of the smoking-induced cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine. J Clin Psychopharmacol 2003; 23: 119–27PubMedCrossRef
235.
Zurück zum Zitat Melkersson KI, Scordo MG, Gunes A, et al. Impact of CYP1A2 and CYP2D6 polymorphisms on drug metabolism and on insulin and lipid elevations and insulin resistance in clozapine-treated patients. J Clin Psychiatry 2007; 68: 697–704PubMedCrossRef Melkersson KI, Scordo MG, Gunes A, et al. Impact of CYP1A2 and CYP2D6 polymorphisms on drug metabolism and on insulin and lipid elevations and insulin resistance in clozapine-treated patients. J Clin Psychiatry 2007; 68: 697–704PubMedCrossRef
236.
Zurück zum Zitat Dettling M, Sachse C, Muller-Oerlinghausen B, et al. Clozapine-induced agranulocytosis and hereditary polymorphisms of clozapine metabolizing enzymes: no association with myeloperoxidase and cytochrome P4502D6. Pharmacopsychiatry 2000; 33: 218–20PubMedCrossRef Dettling M, Sachse C, Muller-Oerlinghausen B, et al. Clozapine-induced agranulocytosis and hereditary polymorphisms of clozapine metabolizing enzymes: no association with myeloperoxidase and cytochrome P4502D6. Pharmacopsychiatry 2000; 33: 218–20PubMedCrossRef
237.
Zurück zum Zitat Uehlinger C, Crettol S, Chassot P, et al. Increased (R)-methadone plasma concentrations by quetiapine in cytochrome P450s and ABCB1 genotyped patients. J Clin Psychopharmacol 2007; 27: 273–8PubMedCrossRef Uehlinger C, Crettol S, Chassot P, et al. Increased (R)-methadone plasma concentrations by quetiapine in cytochrome P450s and ABCB1 genotyped patients. J Clin Psychopharmacol 2007; 27: 273–8PubMedCrossRef
238.
Zurück zum Zitat Plesnicar BK, Zalar B, Breskvar K, et al. The influence of the CYP2D6 polymorphism on psychopathological and extrapyramidal symptoms in the patients on long-term antipsychotic treatment. J Psychopharmacol 2006; 20: 829–33PubMedCrossRef Plesnicar BK, Zalar B, Breskvar K, et al. The influence of the CYP2D6 polymorphism on psychopathological and extrapyramidal symptoms in the patients on long-term antipsychotic treatment. J Psychopharmacol 2006; 20: 829–33PubMedCrossRef
239.
Zurück zum Zitat Chou WH, Yan FX, de Leon J, et al. Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol 2000; 20: 246–51PubMedCrossRef Chou WH, Yan FX, de Leon J, et al. Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol 2000; 20: 246–51PubMedCrossRef
240.
Zurück zum Zitat Dahl ML. Cytochrome P450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinet 2002; 41: 453–70PubMedCrossRef Dahl ML. Cytochrome P450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinet 2002; 41: 453–70PubMedCrossRef
241.
Zurück zum Zitat Otani K, Aoshima T. Pharmacogenetics of classical and new antipsychotic drugs. Ther Drug Monit 2000; 22: 118–21PubMedCrossRef Otani K, Aoshima T. Pharmacogenetics of classical and new antipsychotic drugs. Ther Drug Monit 2000; 22: 118–21PubMedCrossRef
242.
Zurück zum Zitat Patsopoulos NA, Ntzani EE, Zintzaras E, et al. CYP2D6 polymorphisms and the risk of tardive dyskinesia in schizophrenia: a meta-analysis. Pharmacogenet Genomics 2005; 15: 151–8PubMedCrossRef Patsopoulos NA, Ntzani EE, Zintzaras E, et al. CYP2D6 polymorphisms and the risk of tardive dyskinesia in schizophrenia: a meta-analysis. Pharmacogenet Genomics 2005; 15: 151–8PubMedCrossRef
243.
Zurück zum Zitat Sjoqvist F, Eliasson E. The convergence of conventional therapeutic drug monitoring and pharmacogenetic testing in personalized medicine: focus on antidepressants. Clin Pharmacol Ther 2007; 81: 899–902PubMedCrossRef Sjoqvist F, Eliasson E. The convergence of conventional therapeutic drug monitoring and pharmacogenetic testing in personalized medicine: focus on antidepressants. Clin Pharmacol Ther 2007; 81: 899–902PubMedCrossRef
244.
Zurück zum Zitat Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 2002; 41: 719–39PubMedCrossRef Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 2002; 41: 719–39PubMedCrossRef
245.
Zurück zum Zitat Spaldin V, Madden S, Pool WF, et al. The effect of enzyme inhibition on the metabolism and activation of tacrine by human liver microsomes. Br J Clin Pharmacol 1994; 38: 15–22PubMedCrossRef Spaldin V, Madden S, Pool WF, et al. The effect of enzyme inhibition on the metabolism and activation of tacrine by human liver microsomes. Br J Clin Pharmacol 1994; 38: 15–22PubMedCrossRef
246.
247.
Zurück zum Zitat Bachus R, Bickel U, Thomsen T, et al. The O-demethylation of the antidementia drug galanthamine is catalysed by cytochrome P450 2D6. Pharmacogenetics 1999; 9: 661–8PubMedCrossRef Bachus R, Bickel U, Thomsen T, et al. The O-demethylation of the antidementia drug galanthamine is catalysed by cytochrome P450 2D6. Pharmacogenetics 1999; 9: 661–8PubMedCrossRef
249.
Zurück zum Zitat Varsaldi F, Miglio G, Scordo MG, et al. Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer’s disease patients. Eur J Clin Pharmacol 2006; 62: 721–6PubMedCrossRef Varsaldi F, Miglio G, Scordo MG, et al. Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer’s disease patients. Eur J Clin Pharmacol 2006; 62: 721–6PubMedCrossRef
250.
Zurück zum Zitat Whitehead A, Perdomo C, Pratt RD, et al. Donepezil for the symptomatic treatment of patients with mild to moderate Alzheimer’s disease: a metaanalysis of individual patient data from randomised controlled trials. Int J Geriatr Psychiatry 2004; 19: 624–33PubMedCrossRef Whitehead A, Perdomo C, Pratt RD, et al. Donepezil for the symptomatic treatment of patients with mild to moderate Alzheimer’s disease: a metaanalysis of individual patient data from randomised controlled trials. Int J Geriatr Psychiatry 2004; 19: 624–33PubMedCrossRef
251.
Zurück zum Zitat Tiseo PJ, Perdomo CA, Friedhoff LT. Metabolism and elimination of 14C-donepezil in healthy volunteers: a single-dose study. Br J Clin Pharmacol 1998; 46 Suppl. 1: 19–24PubMedCrossRef Tiseo PJ, Perdomo CA, Friedhoff LT. Metabolism and elimination of 14C-donepezil in healthy volunteers: a single-dose study. Br J Clin Pharmacol 1998; 46 Suppl. 1: 19–24PubMedCrossRef
252.
Zurück zum Zitat Cacabelos R, Llovo R, Fraile C, et al. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Curr Alzheimer Res 2007; 4: 479–500PubMedCrossRef Cacabelos R, Llovo R, Fraile C, et al. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Curr Alzheimer Res 2007; 4: 479–500PubMedCrossRef
253.
Zurück zum Zitat Pilotto A, Franceschi M, D’Onofrio G, et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology 2009; 73: 761–7PubMedCrossRef Pilotto A, Franceschi M, D’Onofrio G, et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology 2009; 73: 761–7PubMedCrossRef
254.
Zurück zum Zitat Gaedigk A, Ryder DL, Bradford LD, et al. CYP2D6 poor metabolizer status can be ruled out by a single genotyping assay for the -1584G promoter polymorphism. Clin Chem 2003; 49: 1008–11PubMedCrossRef Gaedigk A, Ryder DL, Bradford LD, et al. CYP2D6 poor metabolizer status can be ruled out by a single genotyping assay for the -1584G promoter polymorphism. Clin Chem 2003; 49: 1008–11PubMedCrossRef
255.
Zurück zum Zitat Kavirajan H, Schneider LS. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol 2007; 6: 782–92PubMedCrossRef Kavirajan H, Schneider LS. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol 2007; 6: 782–92PubMedCrossRef
256.
Zurück zum Zitat Westra P, van Thiel MJ, Vermeer GA, et al. Pharmacokinetics of galanthamine (a long-acting anticholinesterase drug) in anaesthetized patients. Br J Anaesth 1986; 58: 1303–7PubMedCrossRef Westra P, van Thiel MJ, Vermeer GA, et al. Pharmacokinetics of galanthamine (a long-acting anticholinesterase drug) in anaesthetized patients. Br J Anaesth 1986; 58: 1303–7PubMedCrossRef
257.
Zurück zum Zitat Mannens GS, Snel CA, Hendrickx J, et al. The metabolism and excretion of galantamine in rats, dogs, and humans. Drug Metab Dispos 2002; 30: 553–63PubMedCrossRef Mannens GS, Snel CA, Hendrickx J, et al. The metabolism and excretion of galantamine in rats, dogs, and humans. Drug Metab Dispos 2002; 30: 553–63PubMedCrossRef
258.
Zurück zum Zitat Corman SL, Fedutes BA, Culley CM. Atomoxetine: the first nonstimulant for the management of attention-deficit/hyperactivity disorder. Am J Health Syst Pharm 2004; 61: 2391–9PubMed Corman SL, Fedutes BA, Culley CM. Atomoxetine: the first nonstimulant for the management of attention-deficit/hyperactivity disorder. Am J Health Syst Pharm 2004; 61: 2391–9PubMed
259.
Zurück zum Zitat Simpson D, Plosker GL. Atomoxetine: a review of its use in adults with attention deficit hyperactivity disorder. Drugs 2004; 64: 205–22PubMedCrossRef Simpson D, Plosker GL. Atomoxetine: a review of its use in adults with attention deficit hyperactivity disorder. Drugs 2004; 64: 205–22PubMedCrossRef
260.
Zurück zum Zitat Ring BJ, Gillespie JS, Eckstein JA, et al. Identification of the human cytochromes P450 responsible for atomoxetine metabolism. Drug Metab Dispos 2002; 30: 319–23PubMedCrossRef Ring BJ, Gillespie JS, Eckstein JA, et al. Identification of the human cytochromes P450 responsible for atomoxetine metabolism. Drug Metab Dispos 2002; 30: 319–23PubMedCrossRef
261.
Zurück zum Zitat Farid NA, Bergstrom RF, Ziege EA, et al. Single-dose and steady-state pharmacokinetics of tomoxetine in normal subjects. J Clin Pharmacol 1985; 25: 296–301PubMed Farid NA, Bergstrom RF, Ziege EA, et al. Single-dose and steady-state pharmacokinetics of tomoxetine in normal subjects. J Clin Pharmacol 1985; 25: 296–301PubMed
262.
Zurück zum Zitat Paulzen M, Clement HW, Grunder G. Enhancement of atomoxetine serum levels by co-administration of paroxetine. Int J Neuropsychopharmacol 2008; 11:289–91PubMedCrossRef Paulzen M, Clement HW, Grunder G. Enhancement of atomoxetine serum levels by co-administration of paroxetine. Int J Neuropsychopharmacol 2008; 11:289–91PubMedCrossRef
263.
Zurück zum Zitat Sauer JM, Ponsler GD, Mattiuz EL, et al. Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metab Dispos 2003; 31: 98–107PubMedCrossRef Sauer JM, Ponsler GD, Mattiuz EL, et al. Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metab Dispos 2003; 31: 98–107PubMedCrossRef
264.
Zurück zum Zitat Cui YM, Teng CH, Pan AX, et al. Atomoxetine pharmacokinetics in healthy Chinese subjects and effect of the CYP2D6*10 allele. Br J Clin Pharmacol 2007; 64: 445–9PubMedCrossRef Cui YM, Teng CH, Pan AX, et al. Atomoxetine pharmacokinetics in healthy Chinese subjects and effect of the CYP2D6*10 allele. Br J Clin Pharmacol 2007; 64: 445–9PubMedCrossRef
265.
Zurück zum Zitat Shen H, He MM, Liu H, et al. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos 2007; 35: 1292–300PubMedCrossRef Shen H, He MM, Liu H, et al. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos 2007; 35: 1292–300PubMedCrossRef
266.
Zurück zum Zitat Michelson D, Read HA, Ruff DD, et al. CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD. J Am Acad Child Adolesc Psychiatry 2007; 46: 242–51PubMedCrossRef Michelson D, Read HA, Ruff DD, et al. CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD. J Am Acad Child Adolesc Psychiatry 2007; 46: 242–51PubMedCrossRef
267.
Zurück zum Zitat Trzepacz PT, Williams DW, Feldman PD, et al. CYP2D6 metabolizer status and atomoxetine dosing in children and adolescents with ADHD. Eur Neuropsychopharmacol 2008; 18: 79–86PubMedCrossRef Trzepacz PT, Williams DW, Feldman PD, et al. CYP2D6 metabolizer status and atomoxetine dosing in children and adolescents with ADHD. Eur Neuropsychopharmacol 2008; 18: 79–86PubMedCrossRef
268.
Zurück zum Zitat Michelson D, Faries D, Wernicke J, et al. Atomoxetine in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled, dose-response study. Pediatrics 2001; 108: E83PubMedCrossRef Michelson D, Faries D, Wernicke J, et al. Atomoxetine in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled, dose-response study. Pediatrics 2001; 108: E83PubMedCrossRef
269.
Zurück zum Zitat Wernicke JF, Kratochvil CJ. Safety profile of atomoxetine in the treatment of children and adolescents with ADHD. J Clin Psychiatry 2002; 63 Suppl. 12: 50–5PubMed Wernicke JF, Kratochvil CJ. Safety profile of atomoxetine in the treatment of children and adolescents with ADHD. J Clin Psychiatry 2002; 63 Suppl. 12: 50–5PubMed
270.
Zurück zum Zitat Tamayo JM, Pumariega A, Rothe EM, et al. Latino versus Caucasian response to atomoxetine in attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 2008; 18: 44–53PubMedCrossRef Tamayo JM, Pumariega A, Rothe EM, et al. Latino versus Caucasian response to atomoxetine in attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 2008; 18: 44–53PubMedCrossRef
271.
Zurück zum Zitat Baskys A, Hou AC. Vascular dementia: pharmacological treatment approaches and perspectives. Clin Interv Aging 2007; 2: 327–35PubMed Baskys A, Hou AC. Vascular dementia: pharmacological treatment approaches and perspectives. Clin Interv Aging 2007; 2: 327–35PubMed
272.
Zurück zum Zitat Winblad B, Fioravanti M, Dolezal T, et al. Therapeutic use of nicergoline. Clin Drug Investig 2008; 28: 533–52PubMedCrossRef Winblad B, Fioravanti M, Dolezal T, et al. Therapeutic use of nicergoline. Clin Drug Investig 2008; 28: 533–52PubMedCrossRef
273.
Zurück zum Zitat Arcamone F, Glasser AG, Grafnetterova J, et al. Studies on the metabolism of ergoline derivatives: metabolism of nicergoline in man and in animals. Biochem Pharmacol 1972; 21: 2205–13PubMedCrossRef Arcamone F, Glasser AG, Grafnetterova J, et al. Studies on the metabolism of ergoline derivatives: metabolism of nicergoline in man and in animals. Biochem Pharmacol 1972; 21: 2205–13PubMedCrossRef
274.
Zurück zum Zitat Bottiger Y, Dostert P, Benedetti MS, et al. Involvement of CYP2D6 but not CYP2C19 in nicergoline metabolism in humans. Br J Clin Pharmacol 1996; 42:707–11PubMedCrossRef Bottiger Y, Dostert P, Benedetti MS, et al. Involvement of CYP2D6 but not CYP2C19 in nicergoline metabolism in humans. Br J Clin Pharmacol 1996; 42:707–11PubMedCrossRef
275.
276.
Zurück zum Zitat Postlind H, Danielson A, Lindgren A, et al. Tolterodine, a new muscarinic receptor antagonist, is metabolized by cytochromes P450 2D6 and 3A in human liver microsomes. Drug Metab Dispos 1998; 26: 289–93PubMed Postlind H, Danielson A, Lindgren A, et al. Tolterodine, a new muscarinic receptor antagonist, is metabolized by cytochromes P450 2D6 and 3A in human liver microsomes. Drug Metab Dispos 1998; 26: 289–93PubMed
277.
Zurück zum Zitat Nilvebrant L, Gillberg PG, Sparf B. Antimuscarinic potency and bladder selectivity of PNU-200577, a major metabolite of tolterodine. Pharmacol Toxicol 1997; 81: 169–72PubMedCrossRef Nilvebrant L, Gillberg PG, Sparf B. Antimuscarinic potency and bladder selectivity of PNU-200577, a major metabolite of tolterodine. Pharmacol Toxicol 1997; 81: 169–72PubMedCrossRef
278.
Zurück zum Zitat Brynne N, Forslund C, Hallen B, et al. Ketoconazole inhibits the metabolism of tolterodine in subjects with deficient CYP2D6 activity. Br J Clin Pharmacol 1999; 48: 564–72PubMedCrossRef Brynne N, Forslund C, Hallen B, et al. Ketoconazole inhibits the metabolism of tolterodine in subjects with deficient CYP2D6 activity. Br J Clin Pharmacol 1999; 48: 564–72PubMedCrossRef
279.
Zurück zum Zitat Brynne N, Dalen P, Alvan G, et al. Influence of CYP2D6 polymorphism on the pharmacokinetics and pharmacodynamic of tolterodine. Clin Pharmacol Ther 1998; 63: 529–39PubMedCrossRef Brynne N, Dalen P, Alvan G, et al. Influence of CYP2D6 polymorphism on the pharmacokinetics and pharmacodynamic of tolterodine. Clin Pharmacol Ther 1998; 63: 529–39PubMedCrossRef
280.
Zurück zum Zitat Brynne N, Bottiger Y, Hallen B, et al. Tolterodine does not affect the human in vivo metabolism of the probe drugs caffeine, debrisoquine and omeprazole. Br J Clin Pharmacol 1999; 47: 145–50PubMedCrossRef Brynne N, Bottiger Y, Hallen B, et al. Tolterodine does not affect the human in vivo metabolism of the probe drugs caffeine, debrisoquine and omeprazole. Br J Clin Pharmacol 1999; 47: 145–50PubMedCrossRef
281.
Zurück zum Zitat Brynne N, Svanstrom C, Aberg-Wistedt A, et al. Fluoxetine inhibits the metabolism of tolterodine-pharmacokinetic implications and proposed clinical relevance. Br J Clin Pharmacol 1999; 48: 553–63PubMedCrossRef Brynne N, Svanstrom C, Aberg-Wistedt A, et al. Fluoxetine inhibits the metabolism of tolterodine-pharmacokinetic implications and proposed clinical relevance. Br J Clin Pharmacol 1999; 48: 553–63PubMedCrossRef
282.
Zurück zum Zitat Olsson B, Szamosi J. Food does not influence the pharmacokinetics of a new extended release formulation of tolterodine for once daily treatment of patients with overactive bladder. Clin Pharmacokinet 2001; 40: 135–43PubMedCrossRef Olsson B, Szamosi J. Food does not influence the pharmacokinetics of a new extended release formulation of tolterodine for once daily treatment of patients with overactive bladder. Clin Pharmacokinet 2001; 40: 135–43PubMedCrossRef
283.
Zurück zum Zitat Olsson B, Szamosi J. Multiple dose pharmacokinetics of a new once daily extended release tolterodine formulation versus immediate release tolterodine. Clin Pharmacokinet 2001; 40: 227–35PubMedCrossRef Olsson B, Szamosi J. Multiple dose pharmacokinetics of a new once daily extended release tolterodine formulation versus immediate release tolterodine. Clin Pharmacokinet 2001; 40: 227–35PubMedCrossRef
284.
285.
Zurück zum Zitat Schwartzberg LS. Chemotherapy-induced nausea and vomiting: which antiemetic for which therapy? Oncology (Williston Park) 2007; 21: 946–53; discussion 954, 959, 962 passim Schwartzberg LS. Chemotherapy-induced nausea and vomiting: which antiemetic for which therapy? Oncology (Williston Park) 2007; 21: 946–53; discussion 954, 959, 962 passim
286.
Zurück zum Zitat Aapro M. 5-HT3-receptor antagonists in the management of nausea and vomiting in cancer and cancer treatment. Oncology 2005; 69: 97–109PubMedCrossRef Aapro M. 5-HT3-receptor antagonists in the management of nausea and vomiting in cancer and cancer treatment. Oncology 2005; 69: 97–109PubMedCrossRef
287.
Zurück zum Zitat Aapro M, Blower P. 5-Hydroxytryptamine type-3 receptor antagonists for chemotherapy-induced and radiotherapy-induced nausea and emesis: can we safely reduce the dose of administered agents? Cancer 2005; 104: 1–18PubMedCrossRef Aapro M, Blower P. 5-Hydroxytryptamine type-3 receptor antagonists for chemotherapy-induced and radiotherapy-induced nausea and emesis: can we safely reduce the dose of administered agents? Cancer 2005; 104: 1–18PubMedCrossRef
288.
Zurück zum Zitat Evangelista S. Eziopitant: Pfizer. Curr Opin Investig Drugs 2001; 2: 1441–3PubMed Evangelista S. Eziopitant: Pfizer. Curr Opin Investig Drugs 2001; 2: 1441–3PubMed
289.
Zurück zum Zitat Fischer V, Baldeck JP, Tse FL. Pharmacokinetics and metabolism of the 5-hydroxytryptamine antagonist tropisetron after single oral doses in humans. Drug Metab Dispos 1992; 20: 603–7PubMed Fischer V, Baldeck JP, Tse FL. Pharmacokinetics and metabolism of the 5-hydroxytryptamine antagonist tropisetron after single oral doses in humans. Drug Metab Dispos 1992; 20: 603–7PubMed
290.
Zurück zum Zitat Kutz K. Pharmacology, toxicology and human pharmacokinetics of tropisetron. Ann Oncol 1993; 4 Suppl. 3: 15–18PubMedCrossRef Kutz K. Pharmacology, toxicology and human pharmacokinetics of tropisetron. Ann Oncol 1993; 4 Suppl. 3: 15–18PubMedCrossRef
291.
Zurück zum Zitat Fischer V, Vickers AE, Heitz F, et al. The polymorphic cytochrome P-4502D6 is involved in the metabolism of both 5-hydroxytryptamine antagonists, tropisetron and ondansetron. Drug Metab Dispos 1994; 22: 269–74PubMed Fischer V, Vickers AE, Heitz F, et al. The polymorphic cytochrome P-4502D6 is involved in the metabolism of both 5-hydroxytryptamine antagonists, tropisetron and ondansetron. Drug Metab Dispos 1994; 22: 269–74PubMed
292.
Zurück zum Zitat Sanwald P, David M, Dow J. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of dolasetron: comparison with other indole-containing 5-HT3 antagonists. Drug Metab Dispos 1996; 24: 602–9PubMed Sanwald P, David M, Dow J. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of dolasetron: comparison with other indole-containing 5-HT3 antagonists. Drug Metab Dispos 1996; 24: 602–9PubMed
293.
Zurück zum Zitat Obach RS. Cytochrome P450-catalyzed metabolism of ezlopitant alkene (CJ-12,458), a pharmacologically active metabolite of ezlopitant: enzyme kinetics and mechanism of an alkene hydration reaction. Drug Metab Dispos 2001; 29: 1057–67PubMed Obach RS. Cytochrome P450-catalyzed metabolism of ezlopitant alkene (CJ-12,458), a pharmacologically active metabolite of ezlopitant: enzyme kinetics and mechanism of an alkene hydration reaction. Drug Metab Dispos 2001; 29: 1057–67PubMed
294.
Zurück zum Zitat Desta Z, Wu GM, Morocho AM, et al. The gastroprokinetic and antiemetic drug metoclopramide is a substrate and inhibitor of cytochrome P450 2D6. Drug Metab Dispos 2002; 30: 336–43PubMedCrossRef Desta Z, Wu GM, Morocho AM, et al. The gastroprokinetic and antiemetic drug metoclopramide is a substrate and inhibitor of cytochrome P450 2D6. Drug Metab Dispos 2002; 30: 336–43PubMedCrossRef
295.
Zurück zum Zitat Gregory RE, Ettinger DS. 5-HT3 receptor antagonists for the prevention of chemotherapy-induced nausea and vomiting: a comparison of their pharmacology and clinical efficacy. Drugs 1998; 55: 173–89PubMedCrossRef Gregory RE, Ettinger DS. 5-HT3 receptor antagonists for the prevention of chemotherapy-induced nausea and vomiting: a comparison of their pharmacology and clinical efficacy. Drugs 1998; 55: 173–89PubMedCrossRef
296.
Zurück zum Zitat Obach RS. Metabolism of ezlopitant, a nonpeptidic substance P receptor antagonist, in liver microsomes: enzyme kinetics, cytochrome P450 isoform identity, and in vitro-in vivo correlation. Drug Metab Dispos 2000; 28: 1069–76PubMed Obach RS. Metabolism of ezlopitant, a nonpeptidic substance P receptor antagonist, in liver microsomes: enzyme kinetics, cytochrome P450 isoform identity, and in vitro-in vivo correlation. Drug Metab Dispos 2000; 28: 1069–76PubMed
297.
Zurück zum Zitat Sanchez RI, Wang RW, Newton DJ, et al. Cytochrome P450 3A4 is the major enzyme involved in the metabolism of the substance P receptor antagonist aprepitant. Drug Metab Dispos 2004; 32: 1287–92PubMedCrossRef Sanchez RI, Wang RW, Newton DJ, et al. Cytochrome P450 3A4 is the major enzyme involved in the metabolism of the substance P receptor antagonist aprepitant. Drug Metab Dispos 2004; 32: 1287–92PubMedCrossRef
298.
Zurück zum Zitat Balfour JA, Goa KL. Dolasetron: a review of its pharmacology and therapeutic potential in the management of nausea and vomiting induced by chemotherapy, radiotherapy or surgery. Drugs 1997; 54: 273–98PubMedCrossRef Balfour JA, Goa KL. Dolasetron: a review of its pharmacology and therapeutic potential in the management of nausea and vomiting induced by chemotherapy, radiotherapy or surgery. Drugs 1997; 54: 273–98PubMedCrossRef
299.
Zurück zum Zitat Reith MK, Sproles GD, Cheng LK. Human metabolism of dolasetron mesylate, a 5-HT3 receptor antagonist. Drug Metab Dispos 1995; 23: 806–12PubMed Reith MK, Sproles GD, Cheng LK. Human metabolism of dolasetron mesylate, a 5-HT3 receptor antagonist. Drug Metab Dispos 1995; 23: 806–12PubMed
300.
Zurück zum Zitat Janicki PK, Schuler HG, Jarzembowski TM, et al. Prevention of postoperative nausea and vomiting with granisetron and dolasetron in relation to CYP2D6 genotype. Anesth Analg 2006; 102: 1127–33PubMedCrossRef Janicki PK, Schuler HG, Jarzembowski TM, et al. Prevention of postoperative nausea and vomiting with granisetron and dolasetron in relation to CYP2D6 genotype. Anesth Analg 2006; 102: 1127–33PubMedCrossRef
301.
302.
Zurück zum Zitat Ashforth EI, Palmer JL, Bye A, et al. The pharmacokinetics of ondansetron after intravenous injection in healthy volunteers phenotyped as poor or extensive metabolisers of debrisoquine. Br J Clin Pharmacol 1994; 37: 389–91PubMedCrossRef Ashforth EI, Palmer JL, Bye A, et al. The pharmacokinetics of ondansetron after intravenous injection in healthy volunteers phenotyped as poor or extensive metabolisers of debrisoquine. Br J Clin Pharmacol 1994; 37: 389–91PubMedCrossRef
303.
Zurück zum Zitat Candiotti KA, Birnbach DJ, Lubarsky DA, et al. The impact of pharmacogenomics on postoperative nausea and vomiting: do CYP2D6 allele copy number and polymorphisms affect the success or failure of ondansetron prophylaxis? Anesthesiology 2005; 102: 543–9PubMedCrossRef Candiotti KA, Birnbach DJ, Lubarsky DA, et al. The impact of pharmacogenomics on postoperative nausea and vomiting: do CYP2D6 allele copy number and polymorphisms affect the success or failure of ondansetron prophylaxis? Anesthesiology 2005; 102: 543–9PubMedCrossRef
304.
Zurück zum Zitat Simpson K, Spencer CM, McClellan KJ. Tropisetron: an update of its use in the prevention of chemotherapy-induced nausea and vomiting. Drugs 2000; 59: 1297–315PubMedCrossRef Simpson K, Spencer CM, McClellan KJ. Tropisetron: an update of its use in the prevention of chemotherapy-induced nausea and vomiting. Drugs 2000; 59: 1297–315PubMedCrossRef
305.
Zurück zum Zitat Lee CR, Plosker GL, McTavish D. Tropisetron: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential as an antiemetic. Drugs 1993; 46: 925–43PubMedCrossRef Lee CR, Plosker GL, McTavish D. Tropisetron: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential as an antiemetic. Drugs 1993; 46: 925–43PubMedCrossRef
306.
Zurück zum Zitat Firkusny L, Kroemer HK, Eichelbaum M. In vitro characterization of cytochrome P450 catalysed metabolism of the antiemetic tropisetron. Biochem Pharmacol 1995; 49: 1777–84PubMedCrossRef Firkusny L, Kroemer HK, Eichelbaum M. In vitro characterization of cytochrome P450 catalysed metabolism of the antiemetic tropisetron. Biochem Pharmacol 1995; 49: 1777–84PubMedCrossRef
307.
Zurück zum Zitat Kim MK, Cho JY, Lim HS, et al. Effect of the CYP2D6 genotype on the pharmacokinetics of tropisetron in healthy Korean subjects. Eur J Clin Pharmacol 2003; 59: 111–6PubMed Kim MK, Cho JY, Lim HS, et al. Effect of the CYP2D6 genotype on the pharmacokinetics of tropisetron in healthy Korean subjects. Eur J Clin Pharmacol 2003; 59: 111–6PubMed
308.
Zurück zum Zitat Kaiser R, Sezer O, Papies A, et al. Patient-tailored antiemetic treatment with 5-hydroxytryptamine type 3 receptor antagonists according to cytochrome P-450 2D6 genotypes. J Clin Oncol 2002; 20: 2805–11PubMedCrossRef Kaiser R, Sezer O, Papies A, et al. Patient-tailored antiemetic treatment with 5-hydroxytryptamine type 3 receptor antagonists according to cytochrome P-450 2D6 genotypes. J Clin Oncol 2002; 20: 2805–11PubMedCrossRef
309.
Zurück zum Zitat Oppenheimer JJ, Casale TB. Next generation antihistamines: therapeutic rationale, accomplishments and advances. Expert Opin Investig Drugs 2002; 11: 807–17PubMedCrossRef Oppenheimer JJ, Casale TB. Next generation antihistamines: therapeutic rationale, accomplishments and advances. Expert Opin Investig Drugs 2002; 11: 807–17PubMedCrossRef
310.
Zurück zum Zitat Devillier P, Roche N, Faisy C. Clinical pharmacokinetics and pharmacodynamics of desloratadine, fexofenadine and levocetirizine: a comparative review. Clin Pharmacokinet 2008; 47: 217–30PubMedCrossRef Devillier P, Roche N, Faisy C. Clinical pharmacokinetics and pharmacodynamics of desloratadine, fexofenadine and levocetirizine: a comparative review. Clin Pharmacokinet 2008; 47: 217–30PubMedCrossRef
311.
Zurück zum Zitat Yumibe N, Huie K, Chen KJ, et al. Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine: formation of descarboethoxyloratadine by CYP3A4 and CYP2D6. Biochem Pharmacol 1996; 51: 165–72PubMedCrossRef Yumibe N, Huie K, Chen KJ, et al. Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine: formation of descarboethoxyloratadine by CYP3A4 and CYP2D6. Biochem Pharmacol 1996; 51: 165–72PubMedCrossRef
312.
Zurück zum Zitat Yumibe N, Huie K, Chen KJ, et al. Identification of human liver cytochrome P450s involved in the microsomal metabolism of the antihistaminic drug loratadine. Int Arch Allergy Immunol 1995; 107: 420PubMedCrossRef Yumibe N, Huie K, Chen KJ, et al. Identification of human liver cytochrome P450s involved in the microsomal metabolism of the antihistaminic drug loratadine. Int Arch Allergy Immunol 1995; 107: 420PubMedCrossRef
313.
Zurück zum Zitat Nakamura K, Yokoi T, Inoue K, et al. CYP2D6 is the principal cytochrome P450 responsible for metabolism of the histamine H1 antagonist promethazine in human liver microsomes. Pharmacogenetics 1996; 6: 449–57PubMedCrossRef Nakamura K, Yokoi T, Inoue K, et al. CYP2D6 is the principal cytochrome P450 responsible for metabolism of the histamine H1 antagonist promethazine in human liver microsomes. Pharmacogenetics 1996; 6: 449–57PubMedCrossRef
314.
Zurück zum Zitat Matsumoto S, Yamazoe Y. Involvement of multiple human cytochromes P450 in the liver microsomal metabolism of astemizole and a comparison with terfenadine. Br J Clin Pharmacol 2001; 51: 133–42PubMed Matsumoto S, Yamazoe Y. Involvement of multiple human cytochromes P450 in the liver microsomal metabolism of astemizole and a comparison with terfenadine. Br J Clin Pharmacol 2001; 51: 133–42PubMed
315.
Zurück zum Zitat Nakamura K, Yokoi T, Kodama T, et al. Oxidation of histamine H1 antagonist mequitazine is catalyzed by cytochrome P450 2D6 in human liver microsomes. J Pharmacol Exp Ther 1998; 284: 437–42PubMed Nakamura K, Yokoi T, Kodama T, et al. Oxidation of histamine H1 antagonist mequitazine is catalyzed by cytochrome P450 2D6 in human liver microsomes. J Pharmacol Exp Ther 1998; 284: 437–42PubMed
316.
Zurück zum Zitat Jones BC, Hyland R, Ackland M, et al. Interaction of terfenadine and its primary metabolites with cytochrome P450 2D6. Drug Metab Dispos 1998; 26: 875–82PubMed Jones BC, Hyland R, Ackland M, et al. Interaction of terfenadine and its primary metabolites with cytochrome P450 2D6. Drug Metab Dispos 1998; 26: 875–82PubMed
317.
Zurück zum Zitat Imai T, Taketani M, Suzu T, et al. In vitro identification of the human cytochrome P-450 enzymes involved in the N-demethylation of azelastine. Drug Metab Dispos 1999; 27: 942–6PubMed Imai T, Taketani M, Suzu T, et al. In vitro identification of the human cytochrome P-450 enzymes involved in the N-demethylation of azelastine. Drug Metab Dispos 1999; 27: 942–6PubMed
318.
Zurück zum Zitat Nakajima M, Nakamura S, Tokudome S, et al. Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos 1999; 27: 1381–91PubMed Nakajima M, Nakamura S, Tokudome S, et al. Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos 1999; 27: 1381–91PubMed
319.
Zurück zum Zitat Goto A, Ueda K, Inaba A, et al. Identification of human P450 isoforms involved in the metabolism of the antiallergic drug, oxatomide, and its kinetic parameters and inhibition constants. Biol Pharm Bull 2005; 28: 328–34PubMedCrossRef Goto A, Ueda K, Inaba A, et al. Identification of human P450 isoforms involved in the metabolism of the antiallergic drug, oxatomide, and its kinetic parameters and inhibition constants. Biol Pharm Bull 2005; 28: 328–34PubMedCrossRef
320.
Zurück zum Zitat Goto A, Adachi Y, Inaba A, et al. Identification of human P450 isoforms involved in the metabolism of the antiallergic drug, oxatomide, and its inhibitory effect on enzyme activity. Biol Pharm Bull 2004; 27: 684–90PubMedCrossRef Goto A, Adachi Y, Inaba A, et al. Identification of human P450 isoforms involved in the metabolism of the antiallergic drug, oxatomide, and its inhibitory effect on enzyme activity. Biol Pharm Bull 2004; 27: 684–90PubMedCrossRef
321.
Zurück zum Zitat Kishimoto W, Hiroi T, Sakai K, et al. Metabolism of epinastine, a histamine H1 receptor antagonist, in human liver microsomes in comparison with that of terfenadine. Res Commun Mol Pathol Pharmacol 1997; 98: 273–92PubMed Kishimoto W, Hiroi T, Sakai K, et al. Metabolism of epinastine, a histamine H1 receptor antagonist, in human liver microsomes in comparison with that of terfenadine. Res Commun Mol Pathol Pharmacol 1997; 98: 273–92PubMed
322.
Zurück zum Zitat Narimatsu S, Kariya S, Isozaki S, et al. Involvement of CYP2D6 in oxidative metabolism of cinnarizine and flunarizine in human liver microsomes. Biochem Biophys Res Commun 1993; 193: 1262–8PubMedCrossRef Narimatsu S, Kariya S, Isozaki S, et al. Involvement of CYP2D6 in oxidative metabolism of cinnarizine and flunarizine in human liver microsomes. Biochem Biophys Res Commun 1993; 193: 1262–8PubMedCrossRef
323.
Zurück zum Zitat Kariya S, Isozaki S, Uchino K, et al. Oxidative metabolism of flunarizine and cinnarizine by microsomes from B-lymphoblastoid cell lines expressing human cytochrome P450 enzymes. Biol Pharm Bull 1996; 19: 1511–4PubMedCrossRef Kariya S, Isozaki S, Uchino K, et al. Oxidative metabolism of flunarizine and cinnarizine by microsomes from B-lymphoblastoid cell lines expressing human cytochrome P450 enzymes. Biol Pharm Bull 1996; 19: 1511–4PubMedCrossRef
324.
Zurück zum Zitat Akutsu T, Kobayashi K, Sakurada K, et al. Identification of human cytochrome P450 isozymes involved in diphenhydramine N-demethylation. Drug Metab Dispos 2007; 35: 72–8PubMedCrossRef Akutsu T, Kobayashi K, Sakurada K, et al. Identification of human cytochrome P450 isozymes involved in diphenhydramine N-demethylation. Drug Metab Dispos 2007; 35: 72–8PubMedCrossRef
325.
Zurück zum Zitat He N, Zhang WQ, Shockley D, et al. Inhibitory effects of H1-antihistamines on CYP2D6- and CYP2C9-mediated drug metabolic reactions in human liver microsomes. Eur J Clin Pharmacol 2002; 57: 847–51PubMedCrossRef He N, Zhang WQ, Shockley D, et al. Inhibitory effects of H1-antihistamines on CYP2D6- and CYP2C9-mediated drug metabolic reactions in human liver microsomes. Eur J Clin Pharmacol 2002; 57: 847–51PubMedCrossRef
326.
Zurück zum Zitat Yasuda SU, Zannikos P, Young AE, et al. The roles of CYP2D6 and stereoselectivity in the clinical pharmacokinetics of chlorpheniramine. Br J Clin Pharmacol 2002; 53: 519–25PubMedCrossRef Yasuda SU, Zannikos P, Young AE, et al. The roles of CYP2D6 and stereoselectivity in the clinical pharmacokinetics of chlorpheniramine. Br J Clin Pharmacol 2002; 53: 519–25PubMedCrossRef
327.
Zurück zum Zitat Tran VT, Chang RS, Snyder SH. Histamine H1. receptors identified in mammalian brain membranes with [3H]mepyramine. Proc Natl Acad Sci USA 1978; 75: 6290–4PubMedCrossRef Tran VT, Chang RS, Snyder SH. Histamine H1. receptors identified in mammalian brain membranes with [3H]mepyramine. Proc Natl Acad Sci USA 1978; 75: 6290–4PubMedCrossRef
328.
Zurück zum Zitat Peets EA, Jackson M, Symchowicz S. Metabolism of chlorpheniramine maleate in man. J Pharmacol Exp Ther 1972; 180: 364–74PubMed Peets EA, Jackson M, Symchowicz S. Metabolism of chlorpheniramine maleate in man. J Pharmacol Exp Ther 1972; 180: 364–74PubMed
329.
Zurück zum Zitat Yasuda SU, Wellstein A, Likhari P, et al. Chlorpheniramine plasma concentration and histamine H1-receptor occupancy. Clin Pharmacol Ther 1995; 58: 210–20PubMedCrossRef Yasuda SU, Wellstein A, Likhari P, et al. Chlorpheniramine plasma concentration and histamine H1-receptor occupancy. Clin Pharmacol Ther 1995; 58: 210–20PubMedCrossRef
330.
Zurück zum Zitat Banerji A, Long AA, Camargo CA, et al. Diphenhydramine versus nonsedating antihistamines for acute allergic reactions: a literature review. Allergy Asthma Proc 2007; 28: 418–26PubMedCrossRef Banerji A, Long AA, Camargo CA, et al. Diphenhydramine versus nonsedating antihistamines for acute allergic reactions: a literature review. Allergy Asthma Proc 2007; 28: 418–26PubMedCrossRef
331.
Zurück zum Zitat McGeer PL, Boulding JE, Gibson WC, et al. Drug-induced extrapyramidal reactions: treatment with diphenhydramine hydrochloride and dihydroxyphenylalanine. JAMA 1961; 177: 665–70PubMedCrossRef McGeer PL, Boulding JE, Gibson WC, et al. Drug-induced extrapyramidal reactions: treatment with diphenhydramine hydrochloride and dihydroxyphenylalanine. JAMA 1961; 177: 665–70PubMedCrossRef
332.
Zurück zum Zitat Chang T, Okerholm RA, Glazko AJ. Identification of diphenydramine (Benadryl) metabolities in human subjects. Res Commun Chem Pathol Pharmacol 1974; 9: 391–404PubMed Chang T, Okerholm RA, Glazko AJ. Identification of diphenydramine (Benadryl) metabolities in human subjects. Res Commun Chem Pathol Pharmacol 1974; 9: 391–404PubMed
333.
Zurück zum Zitat Blyden GT, Greenblatt DJ, Scavone JM, et al. Pharmacokinetics of diphenhydramine and a demethylated metabolite following intravenous and oral administration. J Clin Pharmacol 1986; 26: 529–33PubMed Blyden GT, Greenblatt DJ, Scavone JM, et al. Pharmacokinetics of diphenhydramine and a demethylated metabolite following intravenous and oral administration. J Clin Pharmacol 1986; 26: 529–33PubMed
334.
Zurück zum Zitat Sharma A, Hamelin BA. Classic histamine H1 receptor antagonists: a critical review of their metabolic and pharmacokinetic fate from a bird’s eye view. Curr Drug Metab 2003; 4: 105–29PubMedCrossRef Sharma A, Hamelin BA. Classic histamine H1 receptor antagonists: a critical review of their metabolic and pharmacokinetic fate from a bird’s eye view. Curr Drug Metab 2003; 4: 105–29PubMedCrossRef
335.
Zurück zum Zitat Breyer-Pfaff U, Fischer D, Winne D. Biphasic kinetics of quaternary ammonium glucuronide formation from amitriptyline and diphenhydramine in human liver microsomes. Drug Metab Dispos 1997; 25: 340–5PubMed Breyer-Pfaff U, Fischer D, Winne D. Biphasic kinetics of quaternary ammonium glucuronide formation from amitriptyline and diphenhydramine in human liver microsomes. Drug Metab Dispos 1997; 25: 340–5PubMed
336.
Zurück zum Zitat Fischer D, Breyer-Pfaff U. Variability of diphenhydramine N-glucuronidation in healthy subjects. Eur J Drug Metab Pharmacokinet 1997; 22: 151–4PubMedCrossRef Fischer D, Breyer-Pfaff U. Variability of diphenhydramine N-glucuronidation in healthy subjects. Eur J Drug Metab Pharmacokinet 1997; 22: 151–4PubMedCrossRef
337.
Zurück zum Zitat Luo H, Hawes EM, McKay G, et al. N+-glucuronidation of aliphatic tertiary amines, a general phenomenon in the metabolism of H1-antihistamines in humans. Xenobiotica 1991; 21: 1281–8PubMedCrossRef Luo H, Hawes EM, McKay G, et al. N+-glucuronidation of aliphatic tertiary amines, a general phenomenon in the metabolism of H1-antihistamines in humans. Xenobiotica 1991; 21: 1281–8PubMedCrossRef
338.
Zurück zum Zitat Lessard E, Yessine MA, Hamelin BA, et al. Diphenhydramine alters the disposition of venlafaxine through inhibition of CYP2D6 activity in humans. J Clin Psychopharmacol 2001; 21: 175–84PubMedCrossRef Lessard E, Yessine MA, Hamelin BA, et al. Diphenhydramine alters the disposition of venlafaxine through inhibition of CYP2D6 activity in humans. J Clin Psychopharmacol 2001; 21: 175–84PubMedCrossRef
339.
Zurück zum Zitat Haria M, Fitton A, Peters DH. Loratadine: a reappraisal of its pharmacological properties and therapeutic use in allergic disorders. Drugs 1994; 48: 617–37PubMedCrossRef Haria M, Fitton A, Peters DH. Loratadine: a reappraisal of its pharmacological properties and therapeutic use in allergic disorders. Drugs 1994; 48: 617–37PubMedCrossRef
340.
Zurück zum Zitat Ramanathan R, Reyderman L, Su AD, et al. Disposition of desloratadine in healthy volunteers. Xenobiotica 2007; 37: 770–87PubMedCrossRef Ramanathan R, Reyderman L, Su AD, et al. Disposition of desloratadine in healthy volunteers. Xenobiotica 2007; 37: 770–87PubMedCrossRef
341.
Zurück zum Zitat Ramanathan R, Reyderman L, Kulmatycki K, et al. Disposition of loratadine in healthy volunteers. Xenobiotica 2007; 37: 753–69PubMedCrossRef Ramanathan R, Reyderman L, Kulmatycki K, et al. Disposition of loratadine in healthy volunteers. Xenobiotica 2007; 37: 753–69PubMedCrossRef
342.
Zurück zum Zitat Yin OQ, Shi XJ, Tomlinson B, et al. Effect of CYP2D6*10 allele on the pharmacokinetics of loratadine in Chinese subjects. Drug Metab Dispos 2005; 33: 1283–7PubMedCrossRef Yin OQ, Shi XJ, Tomlinson B, et al. Effect of CYP2D6*10 allele on the pharmacokinetics of loratadine in Chinese subjects. Drug Metab Dispos 2005; 33: 1283–7PubMedCrossRef
343.
Zurück zum Zitat Saruwatari J, Matsunaga M, Ikeda K, et al. Impact of CYP2D6*10 on H1-antihistamine-induced hypersomnia. Eur J Clin Pharmacol 2006; 62: 995–1001PubMedCrossRef Saruwatari J, Matsunaga M, Ikeda K, et al. Impact of CYP2D6*10 on H1-antihistamine-induced hypersomnia. Eur J Clin Pharmacol 2006; 62: 995–1001PubMedCrossRef
345.
Zurück zum Zitat Dayer P, Desmeules J, Leemann T, et al. Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation (cytochrome P-450 dbl/bufI). Biochem Biophys Res Commun 1988; 152: 411–6PubMedCrossRef Dayer P, Desmeules J, Leemann T, et al. Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation (cytochrome P-450 dbl/bufI). Biochem Biophys Res Commun 1988; 152: 411–6PubMedCrossRef
346.
Zurück zum Zitat Yue QY, Sawe J. Different effects of inhibitors on the O- and N-demethylation of codeine in human liver microsomes. Eur J Clin Pharmacol 1997; 52: 41–7PubMedCrossRef Yue QY, Sawe J. Different effects of inhibitors on the O- and N-demethylation of codeine in human liver microsomes. Eur J Clin Pharmacol 1997; 52: 41–7PubMedCrossRef
347.
Zurück zum Zitat Ohno S, Kawana K, Nakajin S. Contribution of UDP-glucuronosyltransferase 1A1 and 1A8 to morphine-6-glucuronidation and its kinetic properties. Drug Metab Dispos 2008; 36: 688–94PubMedCrossRef Ohno S, Kawana K, Nakajin S. Contribution of UDP-glucuronosyltransferase 1A1 and 1A8 to morphine-6-glucuronidation and its kinetic properties. Drug Metab Dispos 2008; 36: 688–94PubMedCrossRef
348.
Zurück zum Zitat Lotsch J, Skarke C, Liefhold J, et al. Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin Pharmacokinet 2004; 43: 983–1013PubMedCrossRef Lotsch J, Skarke C, Liefhold J, et al. Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin Pharmacokinet 2004; 43: 983–1013PubMedCrossRef
349.
Zurück zum Zitat Eckhardt K, Li S, Ammon S, et al. Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 1998; 76: 27–33PubMedCrossRef Eckhardt K, Li S, Ammon S, et al. Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 1998; 76: 27–33PubMedCrossRef
350.
Zurück zum Zitat Poulsen L, Brosen K, Arendt-Nielsen L, et al. Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur J Clin Pharmacol 1996; 51: 289–95PubMedCrossRef Poulsen L, Brosen K, Arendt-Nielsen L, et al. Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur J Clin Pharmacol 1996; 51: 289–95PubMedCrossRef
351.
Zurück zum Zitat Caraco Y, Sheller J, Wood AJ. Pharmacogenetic determination of the effects of codeine and prediction of drug interactions. J Pharmacol Exp Ther 1996; 278: 1165–74PubMed Caraco Y, Sheller J, Wood AJ. Pharmacogenetic determination of the effects of codeine and prediction of drug interactions. J Pharmacol Exp Ther 1996; 278: 1165–74PubMed
352.
Zurück zum Zitat Tyndale RF, Droll KP, Sellers EM. Genetically deficient CYP2D6 metabolism provides protection against oral opiate dependence. Pharmacogenetics 1997; 7: 375–9PubMedCrossRef Tyndale RF, Droll KP, Sellers EM. Genetically deficient CYP2D6 metabolism provides protection against oral opiate dependence. Pharmacogenetics 1997; 7: 375–9PubMedCrossRef
353.
Zurück zum Zitat Mikus G, Bochner F, Eichelbaum M, et al. Endogenous codeine and morphine in poor and extensive metabolisers of the CYP2D6 (debrisoquine/sparteine) polymorphism. J Pharmacol Exp Ther 1994; 268: 546–51PubMed Mikus G, Bochner F, Eichelbaum M, et al. Endogenous codeine and morphine in poor and extensive metabolisers of the CYP2D6 (debrisoquine/sparteine) polymorphism. J Pharmacol Exp Ther 1994; 268: 546–51PubMed
354.
Zurück zum Zitat Mikus G, Morike K, Griese EU, et al. Relevance of deficient CYP2D6 in opiate dependence. Pharmacogenetics 1998; 8: 565–8PubMedCrossRef Mikus G, Morike K, Griese EU, et al. Relevance of deficient CYP2D6 in opiate dependence. Pharmacogenetics 1998; 8: 565–8PubMedCrossRef
355.
Zurück zum Zitat Somogyi AA, Barratt DT, Coller JK. Pharmacogenetics of opioids. Clin Pharmacol Ther 2007; 81: 429–44PubMedCrossRef Somogyi AA, Barratt DT, Coller JK. Pharmacogenetics of opioids. Clin Pharmacol Ther 2007; 81: 429–44PubMedCrossRef
356.
Zurück zum Zitat Koren G, Cairns J, Chitayat D, et al. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 2006; 368: 704PubMedCrossRef Koren G, Cairns J, Chitayat D, et al. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 2006; 368: 704PubMedCrossRef
357.
Zurück zum Zitat Madadi P, Ross CJ, Hayden MR, et al. Pharmacogenetics of neonatal opioid toxicity following maternal use of codeine during breastfeeding: a casecontrol study. Clin Pharmacol Ther 2009; 85: 31–5PubMedCrossRef Madadi P, Ross CJ, Hayden MR, et al. Pharmacogenetics of neonatal opioid toxicity following maternal use of codeine during breastfeeding: a casecontrol study. Clin Pharmacol Ther 2009; 85: 31–5PubMedCrossRef
358.
Zurück zum Zitat Edwards JE, McQuay HJ, Moore RA. Single dose dihydrocodeine for acute postoperative pain. Cochrane Database Syst Rev 2000; (4): CD002760PubMed Edwards JE, McQuay HJ, Moore RA. Single dose dihydrocodeine for acute postoperative pain. Cochrane Database Syst Rev 2000; (4): CD002760PubMed
359.
Zurück zum Zitat Kirkwood LC, Nation RL, Somogyi AA. Characterization of the human cytochrome P450 enzymes involved in the metabolism of dihydrocodeine. Br J Clin Pharmacol 1997; 44: 549–55PubMedCrossRef Kirkwood LC, Nation RL, Somogyi AA. Characterization of the human cytochrome P450 enzymes involved in the metabolism of dihydrocodeine. Br J Clin Pharmacol 1997; 44: 549–55PubMedCrossRef
360.
Zurück zum Zitat Fromm MF, Hofmann U, Griese EU, et al. Dihydrocodeine: a new opioid substrate for the polymorphic CYP2D6 in humans. Clin Pharmacol Ther 1995; 58: 374–82PubMedCrossRef Fromm MF, Hofmann U, Griese EU, et al. Dihydrocodeine: a new opioid substrate for the polymorphic CYP2D6 in humans. Clin Pharmacol Ther 1995; 58: 374–82PubMedCrossRef
361.
Zurück zum Zitat Wilder-Smith CH, Hufschmid E, Thormann W. The visceral and somatic antinociceptive effects of dihydrocodeine and its metabolite, dihydromorphine: a cross-over study with extensive and quinidine-induced poor metabolizers. Br J Clin Pharmacol 1998; 45: 575–81PubMedCrossRef Wilder-Smith CH, Hufschmid E, Thormann W. The visceral and somatic antinociceptive effects of dihydrocodeine and its metabolite, dihydromorphine: a cross-over study with extensive and quinidine-induced poor metabolizers. Br J Clin Pharmacol 1998; 45: 575–81PubMedCrossRef
362.
Zurück zum Zitat Schmidt H, Vormfelde SV, Walchner-Bonjean M, et al. The role of active metabolites in dihydrocodeine effects. Int J Clin Pharmacol Ther 2003; 41: 95–106PubMed Schmidt H, Vormfelde SV, Walchner-Bonjean M, et al. The role of active metabolites in dihydrocodeine effects. Int J Clin Pharmacol Ther 2003; 41: 95–106PubMed
363.
Zurück zum Zitat Chen ZR, Irvine RJ, Somogyi AA, et al. Mu receptor binding of some commonly used opioids and their metabolites. Life Sci 1991; 48: 2165–71PubMedCrossRef Chen ZR, Irvine RJ, Somogyi AA, et al. Mu receptor binding of some commonly used opioids and their metabolites. Life Sci 1991; 48: 2165–71PubMedCrossRef
364.
Zurück zum Zitat Hutchinson MR, Menelaou A, Foster DJ, et al. CYP2D6 and CYP3A4 involvement in the primary oxidative metabolism of hydrocodone by human liver microsomes. Br J Clin Pharmacol 2004; 57: 287–97PubMedCrossRef Hutchinson MR, Menelaou A, Foster DJ, et al. CYP2D6 and CYP3A4 involvement in the primary oxidative metabolism of hydrocodone by human liver microsomes. Br J Clin Pharmacol 2004; 57: 287–97PubMedCrossRef
365.
Zurück zum Zitat Otton SV, Schadel M, Cheung SW, et al. CYP2D6 phenotype determines the metabolic conversion of hydrocodone to hydromorphone. Clin Pharmacol Ther 1993; 54: 463–72PubMedCrossRef Otton SV, Schadel M, Cheung SW, et al. CYP2D6 phenotype determines the metabolic conversion of hydrocodone to hydromorphone. Clin Pharmacol Ther 1993; 54: 463–72PubMedCrossRef
366.
Zurück zum Zitat Lelas S, Wegert S, Otton SV, et al. Inhibitors of cytochrome P450 differentially modify discriminative-stimulus and antinociceptive effects of hydrocodone and hydromorphone in rhesus monkeys. Drug Alcohol Depend 1999; 54: 239–49PubMedCrossRef Lelas S, Wegert S, Otton SV, et al. Inhibitors of cytochrome P450 differentially modify discriminative-stimulus and antinociceptive effects of hydrocodone and hydromorphone in rhesus monkeys. Drug Alcohol Depend 1999; 54: 239–49PubMedCrossRef
367.
Zurück zum Zitat Kaplan HL, Busto UE, Baylon GJ, et al. Inhibition of cytochrome P450 2D6 metabolism of hydrocodone to hydromorphone does not importantly affect abuse liability. J Pharmacol Exp Ther 1997; 281: 103–8PubMed Kaplan HL, Busto UE, Baylon GJ, et al. Inhibition of cytochrome P450 2D6 metabolism of hydrocodone to hydromorphone does not importantly affect abuse liability. J Pharmacol Exp Ther 1997; 281: 103–8PubMed
368.
Zurück zum Zitat Poyhia R, Vainio A, Kalso E. A review of oxycodone’s clinical pharmacokinetics and pharmacodynamics. J Pain Symptom Manage 1993; 8: 63–7PubMedCrossRef Poyhia R, Vainio A, Kalso E. A review of oxycodone’s clinical pharmacokinetics and pharmacodynamics. J Pain Symptom Manage 1993; 8: 63–7PubMedCrossRef
369.
Zurück zum Zitat Leow KP, Smith MT, Williams B, et al. Single-dose and steady-state pharmacokinetics and pharmacodynamics of oxycodone in patients with cancer. Clin Pharmacol Ther 1992; 52: 487–95PubMedCrossRef Leow KP, Smith MT, Williams B, et al. Single-dose and steady-state pharmacokinetics and pharmacodynamics of oxycodone in patients with cancer. Clin Pharmacol Ther 1992; 52: 487–95PubMedCrossRef
370.
Zurück zum Zitat Lalovic B, Phillips B, Risler LL, et al. Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos 2004; 32: 447–54PubMedCrossRef Lalovic B, Phillips B, Risler LL, et al. Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos 2004; 32: 447–54PubMedCrossRef
371.
Zurück zum Zitat Otton SV, Wu D, Joffe RT, et al. Inhibition by fluoxetine of cytochrome P450 2D6 activity. Clin Pharmacol Ther 1993; 53: 401–9PubMedCrossRef Otton SV, Wu D, Joffe RT, et al. Inhibition by fluoxetine of cytochrome P450 2D6 activity. Clin Pharmacol Ther 1993; 53: 401–9PubMedCrossRef
372.
Zurück zum Zitat Heiskanen T, Olkkola KT, Kalso E. Effects of blocking CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Clin Pharmacol Ther 1998;64:603–11PubMedCrossRef Heiskanen T, Olkkola KT, Kalso E. Effects of blocking CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Clin Pharmacol Ther 1998;64:603–11PubMedCrossRef
373.
Zurück zum Zitat Garrido MJ, Troconiz IF. Methadone: a review of its pharmacokinetic/ pharmacodynamic properties. J Pharmacol Toxicol Methods 1999; 42: 61–6PubMedCrossRef Garrido MJ, Troconiz IF. Methadone: a review of its pharmacokinetic/ pharmacodynamic properties. J Pharmacol Toxicol Methods 1999; 42: 61–6PubMedCrossRef
374.
Zurück zum Zitat Kristensen K, Christensen CB, Christrup LL. The μ1, μ2, δ, Κ opioid receptor binding profiles of methadone stereoisomers and morphine. Life Sci 1995; 56: PL45–50PubMedCrossRef Kristensen K, Christensen CB, Christrup LL. The μ1, μ2, δ, Κ opioid receptor binding profiles of methadone stereoisomers and morphine. Life Sci 1995; 56: PL45–50PubMedCrossRef
375.
Zurück zum Zitat de Vos JW, Geerlings PJ, van den Brink W, et al. Pharmacokinetics of methadone and its primary metabolite in 20 opiate addicts. Eur J Clin Pharmacol 1995; 48: 361–6PubMedCrossRef de Vos JW, Geerlings PJ, van den Brink W, et al. Pharmacokinetics of methadone and its primary metabolite in 20 opiate addicts. Eur J Clin Pharmacol 1995; 48: 361–6PubMedCrossRef
376.
Zurück zum Zitat Wang JS, DeVane CL. Involvement of CYP3A4, CYP2C8, and CYP2D6 in the metabolism of (R)- and (S)-methadone in vitro. Drug Metab Dispos 2003; 31: 742–7PubMedCrossRef Wang JS, DeVane CL. Involvement of CYP3A4, CYP2C8, and CYP2D6 in the metabolism of (R)- and (S)-methadone in vitro. Drug Metab Dispos 2003; 31: 742–7PubMedCrossRef
377.
Zurück zum Zitat Coller JK, Joergensen C, Foster DJ, et al. Lack of influence of CYP2D6 genotype on the clearance of (R)-, (S)- and racemic-methadone. Int J Clin Pharmacol Ther 2007; 45: 410–7PubMed Coller JK, Joergensen C, Foster DJ, et al. Lack of influence of CYP2D6 genotype on the clearance of (R)-, (S)- and racemic-methadone. Int J Clin Pharmacol Ther 2007; 45: 410–7PubMed
378.
Zurück zum Zitat Crettol S, Deglon JJ, Besson J, et al. ABCB1 and cytochrome P450 genotypes and phenotypes: influence on methadone plasma levels and response to treatment. Clin Pharmacol Ther 2006; 80: 668–81PubMedCrossRef Crettol S, Deglon JJ, Besson J, et al. ABCB1 and cytochrome P450 genotypes and phenotypes: influence on methadone plasma levels and response to treatment. Clin Pharmacol Ther 2006; 80: 668–81PubMedCrossRef
379.
Zurück zum Zitat Shiran MR, Chowdry J, Rostami-Hodjegan A, et al. A discordance between cytochrome P450 2D6 genotype and phenotype in patients undergoing methadone maintenance treatment. Br J Clin Pharmacol 2003; 56: 220–4PubMedCrossRef Shiran MR, Chowdry J, Rostami-Hodjegan A, et al. A discordance between cytochrome P450 2D6 genotype and phenotype in patients undergoing methadone maintenance treatment. Br J Clin Pharmacol 2003; 56: 220–4PubMedCrossRef
380.
Zurück zum Zitat Wu D, Otton SV, Sproule BA, et al. Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone. Br J Clin Pharmacol 1993; 35: 30–4PubMedCrossRef Wu D, Otton SV, Sproule BA, et al. Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone. Br J Clin Pharmacol 1993; 35: 30–4PubMedCrossRef
381.
Zurück zum Zitat Begre S, von Bardeleben U, Ladewig D, et al. Paroxetine increases steadystate concentrations of (R)-methadone in CYP2D6 extensive but not poor metabolizers. J Clin Psychopharmacol 2002; 22: 211–5PubMedCrossRef Begre S, von Bardeleben U, Ladewig D, et al. Paroxetine increases steadystate concentrations of (R)-methadone in CYP2D6 extensive but not poor metabolizers. J Clin Psychopharmacol 2002; 22: 211–5PubMedCrossRef
382.
Zurück zum Zitat Eap CB, Bertschy G, Powell K, et al. Fluvoxamine and fluoxetine do not interact in the same way with the metabolism of the enantiomers of methadone. J Clin Psychopharmacol 1997; 17: 113–7PubMedCrossRef Eap CB, Bertschy G, Powell K, et al. Fluvoxamine and fluoxetine do not interact in the same way with the metabolism of the enantiomers of methadone. J Clin Psychopharmacol 1997; 17: 113–7PubMedCrossRef
383.
Zurück zum Zitat Cobb MN, Desai J, Brown Jr LS, et al. The effect of fluconazole on the clinical pharmacokinetics of methadone. Clin Pharmacol Ther 1998; 63: 655–62PubMedCrossRef Cobb MN, Desai J, Brown Jr LS, et al. The effect of fluconazole on the clinical pharmacokinetics of methadone. Clin Pharmacol Ther 1998; 63: 655–62PubMedCrossRef
384.
Zurück zum Zitat Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet 2004; 43: 879–923PubMedCrossRef Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet 2004; 43: 879–923PubMedCrossRef
385.
Zurück zum Zitat Paar WD, Poche S, Gerloff J, et al. Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. Eur J Clin Pharmacol 1997; 53: 235–9PubMedCrossRef Paar WD, Poche S, Gerloff J, et al. Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. Eur J Clin Pharmacol 1997; 53: 235–9PubMedCrossRef
386.
Zurück zum Zitat Subrahmanyam V, Renwick AB, Walters DG, et al. Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos 2001; 29: 1146–55PubMed Subrahmanyam V, Renwick AB, Walters DG, et al. Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos 2001; 29: 1146–55PubMed
387.
Zurück zum Zitat Abdel-Rahman SM, Leeder JS, Wilson JT, et al. Concordance between tramadol and dextromethorphan parent/metabolite ratios: the influence of CYP2D6 and non-CYP2D6 pathways on biotransformation. J Clin Pharmacol 2002; 42: 24–9PubMedCrossRef Abdel-Rahman SM, Leeder JS, Wilson JT, et al. Concordance between tramadol and dextromethorphan parent/metabolite ratios: the influence of CYP2D6 and non-CYP2D6 pathways on biotransformation. J Clin Pharmacol 2002; 42: 24–9PubMedCrossRef
388.
Zurück zum Zitat Poulsen L, Arendt-Nielsen L, Brosen K, et al. The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 1996; 60: 636–44PubMedCrossRef Poulsen L, Arendt-Nielsen L, Brosen K, et al. The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 1996; 60: 636–44PubMedCrossRef
389.
Zurück zum Zitat Enggaard TP, Poulsen L, Arendt-Nielsen L, et al. The analgesic effect of tramadol after intravenous injection in healthy volunteers in relation to CYP2D6. Anesth Analg 2006; 102: 146–50PubMedCrossRef Enggaard TP, Poulsen L, Arendt-Nielsen L, et al. The analgesic effect of tramadol after intravenous injection in healthy volunteers in relation to CYP2D6. Anesth Analg 2006; 102: 146–50PubMedCrossRef
390.
Zurück zum Zitat Slanar O, Nobilis M, Kvetina J, et al. Miotic action of tramadol is determined by CYP2D6 genotype. Physiol Res 2007; 56: 129–36PubMed Slanar O, Nobilis M, Kvetina J, et al. Miotic action of tramadol is determined by CYP2D6 genotype. Physiol Res 2007; 56: 129–36PubMed
391.
Zurück zum Zitat Fliegert F, Kurth B, Gohler K. The effects of tramadol on static and dynamic pupillometry in healthy subjects: the relationship between pharmacodynamics, pharmacokinetics and CYP2D6 metaboliser status. Eur J Clin Pharmacol 2005; 61: 257–66PubMedCrossRef Fliegert F, Kurth B, Gohler K. The effects of tramadol on static and dynamic pupillometry in healthy subjects: the relationship between pharmacodynamics, pharmacokinetics and CYP2D6 metaboliser status. Eur J Clin Pharmacol 2005; 61: 257–66PubMedCrossRef
392.
Zurück zum Zitat Wang G, Zhang H, He F, et al. Effect of the CYP2D6*10 C188T polymorphism on postoperative tramadol analgesia in a Chinese population. Eur J Clin Pharmacol 2006; 62: 927–31PubMedCrossRef Wang G, Zhang H, He F, et al. Effect of the CYP2D6*10 C188T polymorphism on postoperative tramadol analgesia in a Chinese population. Eur J Clin Pharmacol 2006; 62: 927–31PubMedCrossRef
393.
Zurück zum Zitat Gan SH, Ismail R, Wan Adnan WA, et al. Population pharmacokinetic modelling of tramadol with application of the NPEM algorithms. J Clin Pharm Ther 2004; 29: 455–63PubMedCrossRef Gan SH, Ismail R, Wan Adnan WA, et al. Population pharmacokinetic modelling of tramadol with application of the NPEM algorithms. J Clin Pharm Ther 2004; 29: 455–63PubMedCrossRef
394.
Zurück zum Zitat Halling J, Weihe P, Brosen K. CYP2D6 polymorphism in relation to tramadol metabolism: a study of Faroese patients. Ther Drug Monit 2008; 30: 271–5PubMedCrossRef Halling J, Weihe P, Brosen K. CYP2D6 polymorphism in relation to tramadol metabolism: a study of Faroese patients. Ther Drug Monit 2008; 30: 271–5PubMedCrossRef
395.
Zurück zum Zitat Gan SH, Ismail R, Wan Adnan WA, et al. Impact of CYP2D6 genetic polymorphism on tramadol pharmacokinetics and pharmacodynamics. Mol Diagn Ther 2007; 11: 171–81PubMedCrossRef Gan SH, Ismail R, Wan Adnan WA, et al. Impact of CYP2D6 genetic polymorphism on tramadol pharmacokinetics and pharmacodynamics. Mol Diagn Ther 2007; 11: 171–81PubMedCrossRef
396.
Zurück zum Zitat Pedersen RS, Damkier P, Brosen K. Tramadol as a new probe for cytochrome P450 2D6 phenotyping: a population study. Clin Pharmacol Ther 2005; 77: 458–67PubMedCrossRef Pedersen RS, Damkier P, Brosen K. Tramadol as a new probe for cytochrome P450 2D6 phenotyping: a population study. Clin Pharmacol Ther 2005; 77: 458–67PubMedCrossRef
397.
Zurück zum Zitat Pedersen RS, Damkier P, Brosen K. Enantioselective pharmacokinetics of tramadol in CYP2D6 extensive and poor metabolizers. Eur J Clin Pharmacol 2006; 62: 513–21PubMedCrossRef Pedersen RS, Damkier P, Brosen K. Enantioselective pharmacokinetics of tramadol in CYP2D6 extensive and poor metabolizers. Eur J Clin Pharmacol 2006; 62: 513–21PubMedCrossRef
398.
Zurück zum Zitat Garcia-Quetglas E, Azanza JR, Sadaba B, et al. Pharmacokinetics of tramadol enantiomers and their respective phase I metabolites in relation to CYP2D6 phenotype. Pharmacol Res 2007; 55: 122–30PubMedCrossRef Garcia-Quetglas E, Azanza JR, Sadaba B, et al. Pharmacokinetics of tramadol enantiomers and their respective phase I metabolites in relation to CYP2D6 phenotype. Pharmacol Res 2007; 55: 122–30PubMedCrossRef
399.
Zurück zum Zitat Stamer UM, Lehnen K, Hothker F, et al. Impact of CYP2D6 genotype on postoperative tramadol analgesia. Pain 2003; 105: 231–8PubMedCrossRef Stamer UM, Lehnen K, Hothker F, et al. Impact of CYP2D6 genotype on postoperative tramadol analgesia. Pain 2003; 105: 231–8PubMedCrossRef
400.
Zurück zum Zitat Dalen P, Frengell C, Dahl ML, et al. Quick onset of severe abdominal pain after codeine in an ultrarapid metabolizer of debrisoquine. Ther Drug Monit 1997; 19: 543–4PubMedCrossRef Dalen P, Frengell C, Dahl ML, et al. Quick onset of severe abdominal pain after codeine in an ultrarapid metabolizer of debrisoquine. Ther Drug Monit 1997; 19: 543–4PubMedCrossRef
401.
Zurück zum Zitat De Leon J, Dinsmore L, Wedlund P. Adverse drug reactions to oxycodone and hydrocodone in CYP2D6 ultrarapid metabolizers. J Clin Psychopharmacol 2003; 23: 420–1PubMedCrossRef De Leon J, Dinsmore L, Wedlund P. Adverse drug reactions to oxycodone and hydrocodone in CYP2D6 ultrarapid metabolizers. J Clin Psychopharmacol 2003; 23: 420–1PubMedCrossRef
402.
Zurück zum Zitat Kirchheiner J, Keulen JT, Bauer S, et al. Effects of the CYP2D6 gene duplication on the pharmacokinetics and pharmacodynamics of tramadol. J Clin Psychopharmacol 2008; 28: 78–83PubMedCrossRef Kirchheiner J, Keulen JT, Bauer S, et al. Effects of the CYP2D6 gene duplication on the pharmacokinetics and pharmacodynamics of tramadol. J Clin Psychopharmacol 2008; 28: 78–83PubMedCrossRef
403.
Zurück zum Zitat Marchetti P, Giannarelli R, di Carlo A, et al. Pharmacokinetic optimisation of oral hypoglycaemic therapy. Clin Pharmacokinet 1991; 21: 308–17PubMedCrossRef Marchetti P, Giannarelli R, di Carlo A, et al. Pharmacokinetic optimisation of oral hypoglycaemic therapy. Clin Pharmacokinet 1991; 21: 308–17PubMedCrossRef
404.
Zurück zum Zitat Marchetti P, Navalesi R. Pharmacokinetic-pharmacodynamic relationships of oral hypoglycaemic agents. An update. Clin Pharmacokinet 1989; 16: 100–28PubMedCrossRef Marchetti P, Navalesi R. Pharmacokinetic-pharmacodynamic relationships of oral hypoglycaemic agents. An update. Clin Pharmacokinet 1989; 16: 100–28PubMedCrossRef
405.
Zurück zum Zitat Oates NS, Shah RR, Idle JR, et al. Genetic polymorphism of phenformin 4-hydroxylation. Clin Pharmacol Ther 1982; 32: 81–9PubMedCrossRef Oates NS, Shah RR, Idle JR, et al. Genetic polymorphism of phenformin 4-hydroxylation. Clin Pharmacol Ther 1982; 32: 81–9PubMedCrossRef
406.
Zurück zum Zitat Shah RR, Evans DA, Oates NS, et al. The genetic control of phenformin 4-hydroxylation. J Med Genet 1985; 22: 361–6PubMedCrossRef Shah RR, Evans DA, Oates NS, et al. The genetic control of phenformin 4-hydroxylation. J Med Genet 1985; 22: 361–6PubMedCrossRef
407.
Zurück zum Zitat Shah RR, Oates NS, Idle JR, et al. Genetic impairment of phenformin metabolism. Lancet 1980; 1: 1147PubMedCrossRef Shah RR, Oates NS, Idle JR, et al. Genetic impairment of phenformin metabolism. Lancet 1980; 1: 1147PubMedCrossRef
408.
Zurück zum Zitat Krentz AJ, Ferner RE, Bailey CJ. Comparative tolerability profiles of oral antidiabetic agents. Drug Saf 1994; 11: 223–41PubMedCrossRef Krentz AJ, Ferner RE, Bailey CJ. Comparative tolerability profiles of oral antidiabetic agents. Drug Saf 1994; 11: 223–41PubMedCrossRef
409.
Zurück zum Zitat Oates NS, Shah RR, Idle JR, et al. Influence of oxidation polymorphism on phenformin kinetics and dynamics. Clin Pharmacol Ther 1983; 34: 827–34PubMedCrossRef Oates NS, Shah RR, Idle JR, et al. Influence of oxidation polymorphism on phenformin kinetics and dynamics. Clin Pharmacol Ther 1983; 34: 827–34PubMedCrossRef
410.
Zurück zum Zitat Oates NS, Shah RR, Idle JR, et al. Phenformin-induced lacticacidosis associated with impaired debrisoquine hydroxylation. Lancet 1981; 1: 837–8PubMedCrossRef Oates NS, Shah RR, Idle JR, et al. Phenformin-induced lacticacidosis associated with impaired debrisoquine hydroxylation. Lancet 1981; 1: 837–8PubMedCrossRef
411.
Zurück zum Zitat Wiholm BE, Alvan G, Bertilsson L, et al. Hydroxylation of debrisoquine in patients with lacticacidosis after phenformin. Lancet 1981; 1: 1098–9PubMedCrossRef Wiholm BE, Alvan G, Bertilsson L, et al. Hydroxylation of debrisoquine in patients with lacticacidosis after phenformin. Lancet 1981; 1: 1098–9PubMedCrossRef
412.
Zurück zum Zitat Sengupta S, Jordan VC. Selective estrogen modulators as an anticancer tool: mechanisms of efficiency and resistance. Adv Exp Med Biol 2008; 630: 206–19PubMedCrossRef Sengupta S, Jordan VC. Selective estrogen modulators as an anticancer tool: mechanisms of efficiency and resistance. Adv Exp Med Biol 2008; 630: 206–19PubMedCrossRef
413.
Zurück zum Zitat Riggs BL, Hartmann LC. Selective estrogen-receptor modulators-mechanisms of action and application to clinical practice. N Engl J Med 2003; 348: 618–29PubMedCrossRef Riggs BL, Hartmann LC. Selective estrogen-receptor modulators-mechanisms of action and application to clinical practice. N Engl J Med 2003; 348: 618–29PubMedCrossRef
414.
Zurück zum Zitat Jordan VC, O’Malley BW. Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol 2007; 25: 5815–24PubMedCrossRef Jordan VC, O’Malley BW. Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol 2007; 25: 5815–24PubMedCrossRef
415.
Zurück zum Zitat Jordan VC. Chemoprevention of breast cancer with selective oestrogenreceptor modulators. Nat Rev Cancer 2007; 7: 46–53PubMedCrossRef Jordan VC. Chemoprevention of breast cancer with selective oestrogenreceptor modulators. Nat Rev Cancer 2007; 7: 46–53PubMedCrossRef
416.
Zurück zum Zitat Desta Z, Ward BA, Soukhova NV, et al. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 2004; 310: 1062–75PubMedCrossRef Desta Z, Ward BA, Soukhova NV, et al. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 2004; 310: 1062–75PubMedCrossRef
417.
Zurück zum Zitat Beverage JN, Sissung TM, Sion AM, et al. CYP2D6 polymorphisms and the impact on tamoxifen therapy. J Pharm Sci 2007; 96: 2224–31PubMedCrossRef Beverage JN, Sissung TM, Sion AM, et al. CYP2D6 polymorphisms and the impact on tamoxifen therapy. J Pharm Sci 2007; 96: 2224–31PubMedCrossRef
418.
Zurück zum Zitat Stearns V, Johnson MD, Rae JM, et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 2003; 95: 1758–64PubMedCrossRef Stearns V, Johnson MD, Rae JM, et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 2003; 95: 1758–64PubMedCrossRef
419.
Zurück zum Zitat Crewe HK, Notley LM, Wunsch RM, et al. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4′-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos 2002; 30: 869–74PubMedCrossRef Crewe HK, Notley LM, Wunsch RM, et al. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4′-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos 2002; 30: 869–74PubMedCrossRef
420.
Zurück zum Zitat Dehal SS, Kupfer D. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res 1997; 57: 3402–6PubMed Dehal SS, Kupfer D. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res 1997; 57: 3402–6PubMed
421.
Zurück zum Zitat Dehal SS, Kupfer D. Cytochrome P-450 3A and 2D6 catalyze ortho hydroxylation of 4-hydroxytamoxifen and 3-hydroxytamoxifen (droloxifene) yielding tamoxifen catechol: involvement of catechols in covalent binding to hepatic proteins. Drug Metab Dispos 1999; 27: 681–8PubMed Dehal SS, Kupfer D. Cytochrome P-450 3A and 2D6 catalyze ortho hydroxylation of 4-hydroxytamoxifen and 3-hydroxytamoxifen (droloxifene) yielding tamoxifen catechol: involvement of catechols in covalent binding to hepatic proteins. Drug Metab Dispos 1999; 27: 681–8PubMed
422.
Zurück zum Zitat Ghobadi C, Gregory A, Crewe HK, et al. CYP2D6 is primarily responsible for the metabolism of clomiphene. Drug Metab Pharmacokinet 2008; 23: 101–5PubMedCrossRef Ghobadi C, Gregory A, Crewe HK, et al. CYP2D6 is primarily responsible for the metabolism of clomiphene. Drug Metab Pharmacokinet 2008; 23: 101–5PubMedCrossRef
423.
Zurück zum Zitat Poon GK, Chui YC, McCague R, et al. Analysis of phase I and phase II metabolites of tamoxifen in breast cancer patients. Drug Metab Dispos 1993; 21: 1119–24PubMed Poon GK, Chui YC, McCague R, et al. Analysis of phase I and phase II metabolites of tamoxifen in breast cancer patients. Drug Metab Dispos 1993; 21: 1119–24PubMed
424.
Zurück zum Zitat Jacolot F, Simon I, Dreano Y, et al. Identification of the cytochrome P450 IIIA family as the enzymes involved in the N-demethylation of tamoxifen in human liver microsomes. Biochem Pharmacol 1991; 41: 1911–9PubMedCrossRef Jacolot F, Simon I, Dreano Y, et al. Identification of the cytochrome P450 IIIA family as the enzymes involved in the N-demethylation of tamoxifen in human liver microsomes. Biochem Pharmacol 1991; 41: 1911–9PubMedCrossRef
425.
Zurück zum Zitat Katzenellenbogen BS, Norman MJ, Eckert RL, et al. Bioactivities, estrogen receptor interactions, and plasminogen activator-inducing activities of tamoxifen and hydroxy-tamoxifen isomers in MCF-7 human breast cancer cells. Cancer Res 1984; 44: 112–9PubMed Katzenellenbogen BS, Norman MJ, Eckert RL, et al. Bioactivities, estrogen receptor interactions, and plasminogen activator-inducing activities of tamoxifen and hydroxy-tamoxifen isomers in MCF-7 human breast cancer cells. Cancer Res 1984; 44: 112–9PubMed
426.
Zurück zum Zitat Jin Y, Desta Z, Stearns V, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 2005; 97: 30–9PubMedCrossRef Jin Y, Desta Z, Stearns V, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 2005; 97: 30–9PubMedCrossRef
427.
Zurück zum Zitat Gjerde J, Hauglid M, Breilid H, et al. Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann Oncol 2008; 19: 56–61PubMedCrossRef Gjerde J, Hauglid M, Breilid H, et al. Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann Oncol 2008; 19: 56–61PubMedCrossRef
428.
Zurück zum Zitat Schroth W, Antoniadou L, Fritz P, et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 2007; 25: 5187–93PubMedCrossRef Schroth W, Antoniadou L, Fritz P, et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 2007; 25: 5187–93PubMedCrossRef
429.
Zurück zum Zitat Goetz MP, Knox SK, Suman VJ, et al. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 2007; 101: 113–21PubMedCrossRef Goetz MP, Knox SK, Suman VJ, et al. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 2007; 101: 113–21PubMedCrossRef
430.
Zurück zum Zitat Bonanni B, Macis D, Maisonneuve P, et al. Polymorphism in the CYP2D6 tamoxifen-metabolizing gene influences clinical effect but not hot flashes: data from the Italian Tamoxifen Trial. J Clin Oncol 2006; 24: 3708–9; author reply 3709PubMedCrossRef Bonanni B, Macis D, Maisonneuve P, et al. Polymorphism in the CYP2D6 tamoxifen-metabolizing gene influences clinical effect but not hot flashes: data from the Italian Tamoxifen Trial. J Clin Oncol 2006; 24: 3708–9; author reply 3709PubMedCrossRef
431.
Zurück zum Zitat Borges S, Desta Z, Li L, et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 2006; 80: 61–74PubMedCrossRef Borges S, Desta Z, Li L, et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 2006; 80: 61–74PubMedCrossRef
432.
Zurück zum Zitat Goetz MP, Rae JM, Suman VJ, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 2005; 23: 9312–8PubMedCrossRef Goetz MP, Rae JM, Suman VJ, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 2005; 23: 9312–8PubMedCrossRef
433.
Zurück zum Zitat Xu Y, Sun Y, Yao L, et al. Association between CYP2D6 *10 genotype and survival of breast cancer patients receiving tamoxifen treatment. Ann Oncol 2008; 19: 1423–9PubMedCrossRef Xu Y, Sun Y, Yao L, et al. Association between CYP2D6 *10 genotype and survival of breast cancer patients receiving tamoxifen treatment. Ann Oncol 2008; 19: 1423–9PubMedCrossRef
434.
Zurück zum Zitat Kiyotani K, Mushiroda T, Sasa M, et al. Impact of CYP2D6*10 on recurrence-free survival in breast cancer patients receiving adjuvant tamoxifen therapy. Cancer Sci 2008; 99: 995–9PubMedCrossRef Kiyotani K, Mushiroda T, Sasa M, et al. Impact of CYP2D6*10 on recurrence-free survival in breast cancer patients receiving adjuvant tamoxifen therapy. Cancer Sci 2008; 99: 995–9PubMedCrossRef
435.
Zurück zum Zitat Lim HS, Ju Lee H, Seok Lee K, et al. Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer. J Clin Oncol 2007; 25: 3837–45PubMedCrossRef Lim HS, Ju Lee H, Seok Lee K, et al. Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer. J Clin Oncol 2007; 25: 3837–45PubMedCrossRef
436.
Zurück zum Zitat Nowell SA, Ahn J, Rae JM, et al. Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res Treat 2005; 91: 249–58PubMedCrossRef Nowell SA, Ahn J, Rae JM, et al. Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res Treat 2005; 91: 249–58PubMedCrossRef
437.
Zurück zum Zitat Wegman P, Vainikka L, Stal O, et al. Genotype of metabolic enzymes and the benefit of tamoxifen in postmenopausal breast cancer patients. Breast Cancer Res 2005; 7: R284–90PubMedCrossRef Wegman P, Vainikka L, Stal O, et al. Genotype of metabolic enzymes and the benefit of tamoxifen in postmenopausal breast cancer patients. Breast Cancer Res 2005; 7: R284–90PubMedCrossRef
438.
Zurück zum Zitat Wegman P, Elingarami S, Carstensen J, et al. Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res 2007; 9: R7PubMedCrossRef Wegman P, Elingarami S, Carstensen J, et al. Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res 2007; 9: R7PubMedCrossRef
439.
Zurück zum Zitat Kirchheiner J. CYP2D6 phenotype prediction from genotype: which system is the best? Clin Pharmacol Ther 2008; 83: 225–7PubMedCrossRef Kirchheiner J. CYP2D6 phenotype prediction from genotype: which system is the best? Clin Pharmacol Ther 2008; 83: 225–7PubMedCrossRef
440.
Zurück zum Zitat Goetz MP, Kamal A, Ames MM. Tamoxifen pharmacogenomics: the role of CYP2D6 as a predictor of drug response. Clin Pharmacol Ther 2008; 83: 160–6PubMedCrossRef Goetz MP, Kamal A, Ames MM. Tamoxifen pharmacogenomics: the role of CYP2D6 as a predictor of drug response. Clin Pharmacol Ther 2008; 83: 160–6PubMedCrossRef
441.
Zurück zum Zitat Takimoto CH. Can tamoxifen therapy be optimized for patients with breast cancer on the basis of CYP2D6 activity assessments? Nat Clin Pract Oncol 2007; 4: 152–3PubMedCrossRef Takimoto CH. Can tamoxifen therapy be optimized for patients with breast cancer on the basis of CYP2D6 activity assessments? Nat Clin Pract Oncol 2007; 4: 152–3PubMedCrossRef
442.
Zurück zum Zitat Wennerholm A, Dandara C, Sayi J, et al. The African-specific CYP2D617 allele encodes an enzyme with changed substrate specificity. Clin Pharmacol Ther 2002; 71: 77–88PubMedCrossRef Wennerholm A, Dandara C, Sayi J, et al. The African-specific CYP2D617 allele encodes an enzyme with changed substrate specificity. Clin Pharmacol Ther 2002; 71: 77–88PubMedCrossRef
443.
Zurück zum Zitat Griese EU, Zanger UM, Brudermanns U, et al. Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics 1998; 8: 15–26PubMedCrossRef Griese EU, Zanger UM, Brudermanns U, et al. Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics 1998; 8: 15–26PubMedCrossRef
444.
Zurück zum Zitat Steimer W, Zopf K, von Amelunxen S, et al. Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers. Clin Chem 2004; 50: 1623–33PubMedCrossRef Steimer W, Zopf K, von Amelunxen S, et al. Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers. Clin Chem 2004; 50: 1623–33PubMedCrossRef
445.
Zurück zum Zitat Hinrichs JW, Loovers HM, Scholten B, et al. Semi-quantitative CYP2D6 gene doses in relation to metabolic ratios of psychotropics. Eur J Clin Pharmacol 2008; 64: 979–86PubMedCrossRef Hinrichs JW, Loovers HM, Scholten B, et al. Semi-quantitative CYP2D6 gene doses in relation to metabolic ratios of psychotropics. Eur J Clin Pharmacol 2008; 64: 979–86PubMedCrossRef
446.
Zurück zum Zitat Gaedigk A, Simon SD, Pearce RE, et al. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 2008; 83: 234–42PubMedCrossRef Gaedigk A, Simon SD, Pearce RE, et al. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 2008; 83: 234–42PubMedCrossRef
447.
Zurück zum Zitat Gaedigk A, Bradford LD, Alander SW, et al. CYP2D6*36 gene arrangements within the CYP2D6 locus: association of CYP2D6*36 with poor metabolizer status. Drug Metab Dispos 2006; 34: 563–9PubMedCrossRef Gaedigk A, Bradford LD, Alander SW, et al. CYP2D6*36 gene arrangements within the CYP2D6 locus: association of CYP2D6*36 with poor metabolizer status. Drug Metab Dispos 2006; 34: 563–9PubMedCrossRef
448.
Zurück zum Zitat Gaedigk A, Bradford LD, Marcucci KA, et al. Unique CYP2D6 activity distribution and genotype-phenotype discordance in Black Americans. Clin Pharmacol Ther 2002; 72: 76–89PubMedCrossRef Gaedigk A, Bradford LD, Marcucci KA, et al. Unique CYP2D6 activity distribution and genotype-phenotype discordance in Black Americans. Clin Pharmacol Ther 2002; 72: 76–89PubMedCrossRef
449.
Zurück zum Zitat Gaedigk A, Ndjountche L, Gaedigk R, et al. Discovery of a novel nonfunctional cytochrome P450 2D6 allele, CYP2D6*42, in African American subjects. Clin Pharmacol Ther 2003; 73: 575–6PubMedCrossRef Gaedigk A, Ndjountche L, Gaedigk R, et al. Discovery of a novel nonfunctional cytochrome P450 2D6 allele, CYP2D6*42, in African American subjects. Clin Pharmacol Ther 2003; 73: 575–6PubMedCrossRef
450.
Zurück zum Zitat Yamazaki H, Kiyotani K, Tsubuko S, et al. Two novel haplotypes of CYP2D6 gene in a Japanese population. Drug Metab Pharmacokinet 2003; 18: 269–71PubMedCrossRef Yamazaki H, Kiyotani K, Tsubuko S, et al. Two novel haplotypes of CYP2D6 gene in a Japanese population. Drug Metab Pharmacokinet 2003; 18: 269–71PubMedCrossRef
451.
Zurück zum Zitat Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41: 89–295PubMedCrossRef Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41: 89–295PubMedCrossRef
452.
Zurück zum Zitat Rowland P, Blaney FE, Smyth MG, et al. Crystal structure of human cytochrome P450 2D6. J Biol Chem 2006; 281: 7614–22PubMedCrossRef Rowland P, Blaney FE, Smyth MG, et al. Crystal structure of human cytochrome P450 2D6. J Biol Chem 2006; 281: 7614–22PubMedCrossRef
453.
Zurück zum Zitat Zhou SF, Liu JP, Lai XS. Substrate specificity, inhibitors and regulation of human cytochrome P450 2D6 and implications in drug development. Curr Med Chem 2009; 16: 2661–805PubMedCrossRef Zhou SF, Liu JP, Lai XS. Substrate specificity, inhibitors and regulation of human cytochrome P450 2D6 and implications in drug development. Curr Med Chem 2009; 16: 2661–805PubMedCrossRef
454.
Zurück zum Zitat Paine MJ, McLaughlin LA, Flanagan JU, et al. Residues glutamate 216 and aspartate 301 are key determinants of substrate specificity and product regioselectivity in cytochrome P450 2D6. J Biol Chem 2003; 278: 4021–7PubMedCrossRef Paine MJ, McLaughlin LA, Flanagan JU, et al. Residues glutamate 216 and aspartate 301 are key determinants of substrate specificity and product regioselectivity in cytochrome P450 2D6. J Biol Chem 2003; 278: 4021–7PubMedCrossRef
455.
Zurück zum Zitat Mackman R, Tschirret-Guth RA, Smith G, et al. Active-site topologies of human CYP2D6 and its aspartate-301 → glutamate, asparagine, and glycine mutants. Arch Biochem Biophys 1996; 331: 134–40PubMedCrossRef Mackman R, Tschirret-Guth RA, Smith G, et al. Active-site topologies of human CYP2D6 and its aspartate-301 → glutamate, asparagine, and glycine mutants. Arch Biochem Biophys 1996; 331: 134–40PubMedCrossRef
Metadaten
Titel
Polymorphism of Human Cytochrome P450 2D6 and Its Clinical Significance
Part II
verfasst von
Shu-Feng Zhou
Publikationsdatum
01.12.2009
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 12/2009
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/11318070-000000000-00000