Skip to main content
Erschienen in: Respiratory Research 1/2023

Open Access 01.12.2023 | Research

Longitudinal association between adiposity changes and lung function deterioration

verfasst von: Youngmok Park, Jiyoung Kim, Young Sam Kim, Ah Young Leem, Jinyeon Jo, Kyungsoo Chung, Moo Suk Park, Sungho Won, Ji Ye Jung

Erschienen in: Respiratory Research | Ausgabe 1/2023

Abstract

Background

The longitudinal relationship between adiposity and lung function is controversial. We aimed to investigate the long-term association between adiposity changes and lung function in a middle-aged general Asian population.

Methods

In total, 5011 participants (average age, 54 years; 45% men) were enrolled from a community-based prospective cohort. During the follow-up period (median 8 years), both spirometry and bio-electrical impedance analysis were performed biannually. Individual slopes of the fat mass index (FMI; fat mass divided by the square of height in meters) and waist-to-hip ratio (WHR) were calculated using linear regression analysis. Multivariate linear mixed regression analysis was used to determine the long-term association between adiposity changes and lung function.

Results

The FMI was inversely associated with forced vital capacity (FVC) (estimated: − 31.8 mL in men, − 27.8 mL in women) and forced expiratory volume in 1 s (FEV1) (estimated: − 38.2 mL in men, − 17.8 mL in women) after adjusting for baseline age, height, residential area, smoking exposure (pack-years, men only), initial adiposity indices, and baseline lung function. The WHR was also inversely associated with FVC (estimated = − 1242.2 mL) and FEV1 (estimated = − 849.8 mL) in men. The WHR-increased group showed a more rapid decline in lung function than the WHR-decreased group in both the fat-gain and fat-loss groups.

Conclusion

Adiposity was associated with the long-term impairment of lung function. Central obesity was the main driver of lung function impairment in the middle-aged general Asian population, regardless of fat mass changes.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12931-023-02322-8.
Youngmok Park and Jiyoung Kim contributed equally to this work as first authors
Sungho Wonm and Ji Ye Jung contributed equally to this work as principal investigators

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BIA
Bio-electrical impedance analysis
BMI
Body mass index
FEV1
Forced expiratory volumes in 1 s
FMI
Fat mass index
FVC
Forced vital capacity
WHR
Waist-to-hip ratio

Background

The global prevalence of obesity has doubled during the past three decades [1]. In 2015, approximately 39% of the world’s population was estimated to be overweight or have obesity [2]. The condition has been shown to be a risk factor for various lung diseases, especially those associated with the deterioration of pulmonary function [3]. Consequently, obesity poses a substantial health burden.
Previous studies have explored the longitudinal association between adiposity and lung function using assessment of bodyweight or body mass index (BMI) [47]. Nevertheless, the single use of bodyweight or BMI as a measure of obesity can be misleading as weight or BMI are poor measures of adiposity, resulting in inconsistent conclusions [8]. A few cross-sectional studies have investigated the relationship between lung function and body composition parameters, including body fat mass and its distribution, by employing bio-electrical impedance analysis (BIA) or dual-energy X-ray absorptiometry. Body fat distribution has a stronger association with lung function than bodyweight or BMI [9, 10]. Further, the effects of body fat on different sites have shown comparable effects on respiratory function [10, 11].
However, it remains unclear how long-term body composition changes are related to lung function impairment. Few studies have tried to elucidate this long-term association; however, several limitations were observed due to specific age ranges (young/old), small sample size, and measurements at only two timepoints (the beginning and end) [1214].
In this study, we examined the long-term association between adiposity and lung function changes using BIA in a large community-based cohort. Anthropometric and spirometry data were collected repeatedly during the follow-up period, and we categorized the study population according to changes in the fat mass index (FMI) and waist-to-hip ratio (WHR). To the best of our knowledge, this comprehensive study is the first to use the individual slope of adiposity changes to elucidate the association between adiposity and respiratory function in a middle-aged Asian population.

Methods

Study population

The participants in this study were recruited from the Ansan-Ansung cohort, an ongoing population-based epidemiologic survey. The cohort is a part of the National Genome Research Institute-supported Korean Genome and Epidemiology Study, a large community-based epidemiologic survey to investigate chronic diseases among South Koreans [15, 16]. The cohort comprises a population-based sample of male and female South Koreans, aged 40–69 years, from two different sites: Ansan, an urban community with a population of 555,000 residents, and Ansung, a rural community with 133,000 residents [16]. The participants from the baseline (2001–2002) were followed up biannually to the 6th follow-up (2013–2014). Detailed numbers of participants in each follow-up cohort are provided in Additional file 1: Table S1. Quality-controlled spirometry results were available from the 2nd follow-up; therefore, 7515 participants in the 2nd follow-up were initially screened, and 5934 individuals with ≥ 2 valid spirometry results were identified between the 2nd and 6th follow-ups (Fig. 1). The following participants were excluded: (1) those with chronic lung diseases, such as chronic obstructive pulmonary disease, asthma, and bronchiectasis; (2) those without spirometry data in the 2nd follow-up; (3) those who did not undergo BIA in the 2nd follow-up; (4) those who did not undergo follow-up BIA, and (5) those with an invalid smoking history. Finally, 5011 participants were enrolled in this study.

Spirometry

Lung function was evaluated using spirometry (Vmax-2130, Sensor-Medics, Yorba Linda, CA) at all baseline and follow-up visits. Each test was performed according to standardized protocols of the American Thoracic Society [17]. We used Morris and Polgar’s equation as a reference for normal lung function [18].

Body composition measurement and adiposity index

Anthropometric data were collected using multi-frequency BIA (InBody 3.0, Biospace, Seoul, South Korea) [19]. The multi-frequency BIA device measures the impedance of body tissues by subjecting the body to imperceptible electrical signals using an eight-point tactile electrode system. Previous studies have demonstrated that multi-frequency BIA can produce reliable body composition estimates, which are compatible with those measured by dual-energy X-ray absorptiometry [20, 21].
We used the FMI and WHR as adiposity indices. The fat mass measured using multi-frequency BIA was divided by the square of height in meters and designated as the FMI (kg/m2) [13]. We calculated individual slopes of FMI changes during the follow-up using linear regression, and participants were categorized into two groups: “fat-gain,” with increased FMI, and “fat-loss,” with decreased FMI. Waist and hip circumferences were measured three times at every visit. The average waist circumference divided by the average hip circumference was defined as the WHR. Abdominal obesity was defined as WHR ≥ 0.90 for men and ≥ 0.80 for women [22]. Individual slopes of WHR changes during the follow-up were calculated using linear regression, and we divided the participants into three groups: WHR-increased (slope of WHR change is upper 30% of participants), WHR-decreased (slope of WHR change is lower 30% of participants), and WHR-stable groups (slope of WHR change is median 40% of participants, which includes zero-degree slope). We further categorized the fat-loss and fat-gain groups in the study population into the WHR-decreased, -stable, and -increased groups. None of the participants FMI or WHR remained constant.

Statistical analyses

Continuous variables were compared using Student’s t-test or the Mann–Whitney U test; categorical variables were analyzed using the Pearson χ2 test or Fisher’s exact test. In three group comparison, one-way analysis of variance was used. Pearson correlation analyses were used to test associations between these variables. Linear regression analyses for each participant were performed to calculate the individual slopes of FMI and WHR during the follow-up. The signs of slopes were utilized to identify fat-gain (slope of FMI change > 0) and WHR-increased group (slope of WHR change is upper 30% of participants). The longitudinal associations between lung function and adiposity changes were evaluated using multiple linear mixed regression analysis after adjusting for age, height, residential area, follow-up duration, initial adiposity indices, interaction between age and adiposity indices (if needed), and initial lung function. Baseline lung function was adjusted in the models because it might affect the degree of lung function decline, especially in long-term follow-up of 8 years, and because we tried to absorb effects from adiposity indices up to baseline [23]. Most men were smokers, and we additionally adjusted for smoking status amount in the regression model of men. However, as there were few female smokers, we excluded ever-smoker women from the regression analyses. The participant identification number was utilized as a random effect to adjust the similarity between the multiple observations from the same participant. We calculated beta parameters using restricted maximum likelihood methods, and P-value with the Wald test. All statistical analyses were performed with R software v4.0.2 (The R Foundation for Statistical Computing, Vienna, Austria), and multiple linear mixed regression analysis was conducted with the lme4 package. A two-tailed P-value of < 0.05 was considered statistically significant for all analyses.

Results

Baseline characteristics

Table 1 shows the baseline characteristics and follow-up information of the study population stratified by sex. The mean age was 54.0 ± 7.9 years, and 45.0% of the participants were men. The baseline characteristics varied based on their sex, including adiposity indices. Men had a lower BMI (24.5 kg/m2 vs. 24.8 kg/m2, P = 0.005) and a higher proportion of ever-smokers (73.6% vs. 2.5%, P < 0.001) than women. The baseline FMI was lower in men than in women (5.3 kg/m2 vs. 7.8 kg/m2, P < 0.001), although the proportions of participants with fat gain were similar (66.1% vs. 64.8%, P = 0.284). Initial abdominal obesity was less frequent in men than in women (62.2% vs. 88.5%, P < 0.001).
Table 1
Baseline characteristics and follow-up data of study participants
 
Total (N = 5011)
Men (n = 2255)
Women (n = 2756)
P-value
Age, years
54.0 ± 7.9
53.1 ± 7.5
54.8 ± 8.3
< 0.001
Height, cm
160.2 ± 8.6
167.4 ± 5.7
154.3 ± 5.5
< 0.001
BMI, kg/m2
24.7 ± 2.9
24.5 ± 2.7
24.8 ± 3.1
0.005
Ever-smoker
1727 (34.5)
1659 (73.6)
68 (2.5)
< 0.001
Smoking exposure, pack-year
8.6 ± 15.6
18.7 ± 18.6
0.3 ± 2.7
< 0.001
Residential area—rural
2136 (42.6)
838 (37.2)
1298 (47.1)
< 0.001
Residential area—urban
2875 (57.4)
1417 (62.8)
1458 (52.9)
 
Adiposity index
 FMI, kg/m2
6.7 ± 2.3
5.3 ± 1.7
7.8 ± 2.2
< 0.001
 Fat gaina
3277 (65.4)
1490 (66.1)
1787 (64.8)
0.284
 WHR
0.91 ± 0.07
0.92 ± 0.06
0.90 ± 0.08
< 0.001
 Abdominal obesityb
3303 (66.0)
1399 (62.2)
2434 (88.5)
< 0.001
 WHR-increased participantsa
1503 (30.0)
676 (30.0)
827 (30.0)
> 0.999
Lung function
 FVC, L
3.57 ± 0.84
4.26 ± 0.63
3.00 ± 0.50
< 0.001
 FVC, % predicted
104.4 ± 12.5
101.8 ± 11.8
106.5 ± 12.7
< 0.001
 FEV1, L
2.86 ± 0.65
3.36 ± 0.52
2.45 ± 0.42
< 0.001
 FEV1, % predicted
112.9 ± 14.8
108.5 ± 13.2
116.6 ± 15.1
< 0.001
 FEV1/FVC, %
80.3 ± 4.8
78.9 ± 4.8
81.5 ± 4.5
< 0.001
Measurement
 Follow-up duration, year
8 (6–8)
8 (6–8)
8 (8–8)
0.009
 Spirometry, times
4 (3–5)
4 (3–5)
4 (3–5)
0.166
 BIA, times
5 (4–5)
5 (4–5)
5 (4–5)
0.017
Data are presented as numbers (%), means ± standard deviations, or medians (interquartile ranges), unless otherwise indicated
BIA bio-electrical impedance analysis, BMI body mass index, FEV1 forced expiratory volume in 1 s, FMI fat mass index, FVC forced vital capacity, WHR waist-to-hip ratio
aIndividual changes in the FMI and WHR during follow-up were calculated with linear regression analysis. Participants with a slope of FMI change > 0 were classified under the fat-gain group, and those with a slope of WHR change is upper 30% of participants were classified into the WHR-increased group
bAbdominal obesity was defined by WHR values of ≥ 0.90 and ≥ 0.80 for men and women, respectively
The study participants were followed up for a median of 8 (interquartile range, 6–8) years, with spirometry and BIA being continuously performed for a median of 4 (interquartile range, 3–5) and 5 (interquartile range, 4–5) times, respectively.

Cross-sectional association between adiposity and lung function

Figures 2 and 3 show the cross-sectional association between lung function and adiposity indices at baseline in men and women, respectively. FMI and WHR were inversely associated with forced vital capacity (FVC) (men: r = − 0.21 with FMI, r = − 0.24 with WHR; women: r = − 0.24 with FMI, r = − 0.42 with WHR; all P < 0.001) and forced expiratory volume in 1 s (FEV1) (men: r = − 0.17 with FMI, r = − 0.27 with WHR; women: r = − 0.20 with FMI, r = − 0.41 with WHR; all P < 0.001). In men, WHR was also negatively associated with FEV1/FVC ratio (r = − 0.11, P < 0.001).

Longitudinal association between adiposity and lung function changes

We used multiple linear mixed models to determine possible long-term associations between adiposity indices and lung function. Table 2 demonstrates the association of FMI and WHR with lung function parameters. The FMI was associated with a decrease in FVC (estimated = − 31.8 mL in men; − 27.8 mL in women) and FEV1 (estimated = − 38.2 mL in men; − 17.8 mL in women) (all P < 0.01). In men, WHR showed an inverse association with FVC (estimated = − 1242.2 mL) and FEV1 (estimated = − 849.8 mL) (all P < 0.001). Full models of men are presented in Additional file 2: Table S2; smoking enhanced the deterioration of FEV1 and FEV1/FVC in men. Age and residential area also affected the lung function decline.
Table 2
Multiple linear mixed regression analysis for long-term associations between adiposity indices and lung function
 
FVC, mL
FEV1, mL
FEV1/FVC, %
Estimate (95% CI)
SE
P-value
Estimate (95% CI)
SE
P-value
Estimate (95% CI)
SE
P-value
Mena
 FMI, kg/m2
− 31.8 (− 52.3, − 11.3)
10.5
0.002
− 38.2 (− 55.4, − 21.0)
8.8
< 0.001
− 0.04 (− 0.35, 0.26)
0.15
0.775
 WHR
− 1242.2 (− 1811.3, − 672.4)
290.7
< 0.001
− 849.8 (− 1323.7, − 373.5)
241.8
< 0.001
8.30 (− 0.14, 16.77)
4.31
0.054
Womenb
 FMI, kg/m2
− 27.8 (− 38.6, − 17.0)
5.5
< 0.001
− 17.8 (− 26.9, − 8.8)
4.6
< 0.001
0.27 (0.09, 0.45)
0.09
0.004
 WHR
− 159.3 (− 452.1, 133.4)
2.7
0.902
− 69.4 (− 313.2, 174.7)
124.5
0.577
4.96 (− 0.02, 9.95)
2.54
0.051
FEV1 forced expiratory volume in 1 s, FMI fat mass index, FVC forced vital capacity, SE standard error, WHR waist-to-hip ratio
aMen: adjusted for age, height, residential area, follow-up duration, smoking exposure in pack-years, initial adiposity indices, interaction between age and adiposity indices, and initial lung function
bNon-smoking women: adjusted for age, height, residential area, follow-up duration, initial adiposity indices, interaction between age and adiposity indices, and initial lung function

Longitudinal association between WHR and lung function changes in the fat-loss and fat-gain groups

During the follow-up period, we further categorized the fat-loss and fat-gain groups in the study population into the WHR-decreased, -stable, and -increased groups (Additional file 3: Table S3, Additional file 4: Table S4). The proportions of abdominal obesity at baseline were different among changes of WHR in men (fat-loss: 70.8% vs. 60.4% vs. 50.8%, P < 0.001; fat-gain: 76.8% vs. 66.8% vs. 46.4%, P < 0.001) and women (fat-loss: 97.2% vs. 88.3% vs. 83.2%, P < 0.001; fat-gain: 97.7% vs. 89.8% vs. 77.0%, P < 0.001).
Compared with that in the WHR-decreased group, the lung function in the WHR-increased group prominently declined in both men and non-smoking women (Figs. 4, 5). In men, an increase in WHR was associated with a decline (WHR-decreased vs. WHR-increased groups) in FVC (fat-loss: − 25.9 mL/yr vs. − 35.8 mL/yr; fat-gain: − 35.8 mL/yr vs. − 46.3 mL/yr; all P < 0.001) and FEV1 (fat-loss: − 36.6 mL/yr vs. − 44.5 mL/yr; fat-gain: − 48.0 mL/yr vs. − 56.1 mL/yr; all P < 0.001)(Fig. 4). In non-smoking women, an increase in the WHR was also associated with a decline in FVC (fat-loss: − 24.3 mL/yr vs. − 32.5 mL/yr; fat-gain: − 26.7 mL/yr vs. − 38.4 mL/yr; all P < 0.001) and FEV1 (fat-loss: − 30.0 mL/yr vs. − 36.9 mL/yr; fat-gain: − 32.1 mL/yr vs. − 41.4 mL/yr; all P < 0.001) (Fig. 5). In Figs. 4 and 5, the 95% confidence intervals in FVC and FEV1 may overlap in early years due to small amount of lung volume change, but statistically significant differences in lung function change are evident at the end of follow-up.
Underweight participants (BMI < 18.5 kg/m2, n = 51) might have had illness-induced weight loss, or participants with severe obesity (BMI ≥ 30 kg/m2, n = 220) might have had other metabolic diseases [24, 25]. Therefore, we performed sensitivity analyses in participants with BMI between 18.5 and 30.0 kg/m2 (n = 4740; 2175 men, 2565 women). Additional file 5: Fig. S1 and Additional file 6: Fig. S2 represent the results, which are similar to those of the entire population.

Discussion

In this study, we sought to determine the association between adiposity and lung function in the Asian general population. The cross-sectional analyses showed that higher adiposity was associated with lower lung function. During follow-up, an increase in the FMI was associated with a decline in FVC and FEV1 in both sexes, and an increased WHR was associated with a decline in FVC and FEV1 in men. Notably, participants in the WHR-increased group had a steeper decline in FVC and FEV1 than those in the WHR-decreased group, in both the fat-gain and fat-loss groups. Our findings suggest that changes in adiposity, especially central adiposity, strongly affect lung function in the middle-aged Asian general population.
Lung function impairment is associated with an increase in the incidence of chronic obstructive pulmonary disease [26, 27], cerebrovascular disease [28, 29], insulin resistance, diabetes [30], and all-cause mortality [31]. Obesity and being overweight are not only huge health burdens, but also affect lung function. Numerous cross-sectional studies [10, 11, 32] and a few longitudinal studies [1214] have investigated the association between adiposity and lung function using BIA or dual-energy X-ray absorptiometry. However, previous studies have had some limitations, such as a small study population (47 women and 30 men) [12], narrow age range (32–38 years) [14], being limited to Western countries [1214], and most importantly, having only two measurements, at the beginning and end of the study period [1214]. In contrast to these studies, we grounded our analyses on a large-scale community-based cohort. More than 70% of the study population was followed up for 8 years, with ≥ 4 spirometry and anthropometric analyses. We used linear regression analysis to calculate the individual slopes of FMI and WHR changes. Through these comprehensive data analyses and linear mixed regression analyses, we demonstrated that increased adiposity was associated with decline in lung function. Moreover, this study excluded those with chronic lung diseases, such as chronic obstructive pulmonary disease or asthma. Therefore, our findings provide evident insights into the impact of central adiposity on lung function.
Central obesity is characterized by fat accumulation in the thorax, abdomen, and visceral organs. Fat deposition in the mediastinum and abdominal cavity reduces compliance of the respiratory system and changes the breathing pattern, resulting in a reduction in lung volumes, which is proportional to the severity of obesity [3]. In fact, expiratory flow velocity is determined by the degree of previous lung inflation through the elasticity of the lungs [33]. Therefore, decrease in lung volumes subsequently result in decrease in expiratory flow, which leads to a reduction in FEV1. Fat deposition also causes narrowing, closure, and hyperresponsiveness of the airway, thereby leading to gas trapping and ventilation inhomogeneity [3]. Accordingly, FMI and WHR were negatively associated with FVC and FEV1 in men in this study. Lung function decline was more prominent in the WHR-increased group, especially in the fat-gain group. Although the mechanism underlying the relationship between obesity and airway hyperresponsiveness remains to be established, the adipose tissue in individuals with obesity is infiltrated with activated macrophages interacting with adipocytes to induce systemic inflammation. Changes in adipose-derived inflammatory cytokines such as tumor necrosis factor-α, leptin, and adiponectin have the capacity to promote airway hyperresponsiveness [34].
In a study by Sutherland et al., no longitudinal association was observed between body fat distribution and lung function in a 6-year follow-up in non-smoking, non-asthmatic young adults aged 32 and 38 years in New Zealand [14]. However, in our study, participants in the WHR-increased group tended to have more severe lung function impairment than those in the WHR-decreased group, in both the fat-loss and fat-gain groups. The older age of the participants in our study (40–69 years) might contribute to the difference. Age-related decline in FEV1 is estimated to be 25–30 mL/yr beginning at the age of 35–40 years, which increases to 60 mL/yr after the age of 70 years [35]. The age-adjusted decrease in lung function was greater in the WHR-increased group than in the WHR-decreased group, in both the fat-gain and fat-loss groups, suggesting that central obesity might have a more significant effect on lung function in the middle-aged population.
Additionally, although previous studies have reported improvements in lung function after weight loss in patients with obesity [36, 37], the fat-loss group with an increased WHR showed a more rapid lung function decline than those with a decreased WHR in this study. Therefore, our study clearly indicates that central obesity, not merely total adiposity, is the main driver for lung function impairment. Furthermore, in the South Korean general population, healthy never-smokers showed an FEV1 decline of 31.8 mL/yr and 27.0 mL/yr in men and women, respectively [38]. In comparison, the fat-gain group with an increased WHR showed the highest decline in FEV1 in both men (56.1 mL/yr) and women (41.4 mL/yr) in this study.
We noted sex-associated differences in this study as well; the annual rate of lung function decline was more prominent in men than in women. Consistent with our findings, Fenger et al. [13] and Sutherland et al. [14] also observed that the rate of lung function decline was more pronounced in men. A greater decline in lung function in men may suggest that lung function decline is directly proportional to lung size, due to the differences in airway caliber between males and females [13, 38].
According to our multiple linear mixed regression analysis (Table 2), FMI and WHR were both associated with lung function change in men, although FMI alone was associated with lung function change in women. Previous studies also have reported the different effects of fat and abdominal obesity on lung function decline between both sexes. The increase in waist circumference was related more prominently to FEV1 decline in men than in women [39]. In men, loss of fat mass over time was more closely associated with attenuated FEV1 reduction than the change in muscle mass [40]. Two possible mechanisms need to be considered. First, the mechanical effect of abdominal obesity affects differently to lung between the sexes. Abdominal and thoracic fat mass reduce the room for lung expansion, reducing vital capacity and limiting expiratory flow. As men have more abdominal fat than women when they have the same degree of adiposity, the mechanical aspect of central obesity in the respiratory system might be responsible for the sex-associated difference [13, 41]. Second, gain of adipose tissue may accentuate inflammatory processes, which can damage the alveolus and airway.
Additionally, the heavy smoking history in men compared with that in women might have been another reason. Different thresholds for detrimental effects of pulmonary irritants are expected between sexes [13]. Moreover, hormonal differences, mainly affected by menopause or hormonal replacement therapy, might have also contributed to the sex-associated difference [42]. Further comprehensive studies are needed to elucidate the sex-associated difference in lung function decline.
A few limitations of this study should be considered. First, BIA might not be as accurate as dual-energy X-ray absorptiometry since the former is influenced by hydration status and body morphology [43]. However, multiple studies have substantiated that the former is still a useful approach for assessing body composition with minimal errors in large epidemiological studies [11, 14, 44]. Second, pre-bronchodilator spirometry measurements alone were performed. However, these spirometry data were obtained under strict quality control. Third, we did not consider physical activities, aerobic fitness, dietary patterns, or chronic medical conditions such as diabetes, hypothyroidism, sleep apnea, neurological diseases, and long-term corticosteroid use, which could be possible confounders. Fourth, we divided participants into only two (fat loss and fat gain) or three (WHR-decreased, -stable, and -increased) groups, which could oversimplify the intensity of adiposity change. Finally, the cross-sectional analyses between adiposity and lung function at baseline showed a small correlation coefficient (Figs. 2 and 3). However, these are unadjusted results, and the longitudinal analyses after adjustment supported the importance of central adiposity change.
In conclusion, our study demonstrated that increased adiposity, especially central obesity, was associated with long-term impairment of lung function. An increase in FMI was associated with a significant decline in FVC and FEV1 in both sexes, whereas it was positively related to FEV1/FVC in women. However, an increase in the WHR was inversely associated with a decrease in FVC and FEV1 in men only. Moreover, the WHR-increased group showed a faster decline in FVC and FEV1 in both the fat-loss and fat-gain groups, suggesting that central obesity markedly reduces respiratory function in the middle-aged Asian general population.

Acknowledgements

Data in this study were obtained from the Korean Genome and Epidemiology Study (4851-302), National Research Institute of Health, Centers for Disease Control and Prevention, Ministry for Health and Welfare, South Korea.

Declarations

The Korea Centers for Disease Control and Prevention obtained written informed consent from all participants regarding the collection of their data, and the Institutional Review Board of Severance Hospital approved the study protocol (4-2019-0340). All methods were performed in accordance with the approved protocol and with the relevant guidelines and regulations.
Not applicable.

Competing interests

The authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27.CrossRef Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27.CrossRef
2.
Zurück zum Zitat Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10.CrossRef Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10.CrossRef
3.
Zurück zum Zitat Dixon AE, Peters U. The effect of obesity on lung function. Expert Rev Respir Med. 2018;12(9):755–67.CrossRef Dixon AE, Peters U. The effect of obesity on lung function. Expert Rev Respir Med. 2018;12(9):755–67.CrossRef
4.
Zurück zum Zitat Chen Y, Horne SL, Dosman JA. Body weight and weight gain related to pulmonary function decline in adults: a six year follow up study. Thorax. 1993;48(4):375–80.CrossRef Chen Y, Horne SL, Dosman JA. Body weight and weight gain related to pulmonary function decline in adults: a six year follow up study. Thorax. 1993;48(4):375–80.CrossRef
5.
Zurück zum Zitat Bottai M, Pistelli F, Di Pede F, Carrozzi L, Baldacci S, Matteelli G, et al. Longitudinal changes of body mass index, spirometry and diffusion in a general population. Eur Respir J. 2002;20(3):665–73.CrossRef Bottai M, Pistelli F, Di Pede F, Carrozzi L, Baldacci S, Matteelli G, et al. Longitudinal changes of body mass index, spirometry and diffusion in a general population. Eur Respir J. 2002;20(3):665–73.CrossRef
6.
Zurück zum Zitat Thyagarajan B, Jacobs DR Jr, Apostol GG, Smith LJ, Jensen RL, Crapo RO, et al. Longitudinal association of body mass index with lung function: the CARDIA study. Respir Res. 2008;9(1):31.CrossRef Thyagarajan B, Jacobs DR Jr, Apostol GG, Smith LJ, Jensen RL, Crapo RO, et al. Longitudinal association of body mass index with lung function: the CARDIA study. Respir Res. 2008;9(1):31.CrossRef
7.
Zurück zum Zitat Sun Y, Milne S, Jaw JE, Yang CX, Xu F, Li X, et al. BMI is associated with FEV(1) decline in chronic obstructive pulmonary disease: a meta-analysis of clinical trials. Respir Res. 2019;20(1):236.CrossRef Sun Y, Milne S, Jaw JE, Yang CX, Xu F, Li X, et al. BMI is associated with FEV(1) decline in chronic obstructive pulmonary disease: a meta-analysis of clinical trials. Respir Res. 2019;20(1):236.CrossRef
8.
Zurück zum Zitat Chrysant SG, Chrysant GS. The single use of body mass index for the obesity paradox is misleading and should be used in conjunction with other obesity indices. Postgrad Med. 2019;131(2):96–102.CrossRef Chrysant SG, Chrysant GS. The single use of body mass index for the obesity paradox is misleading and should be used in conjunction with other obesity indices. Postgrad Med. 2019;131(2):96–102.CrossRef
9.
Zurück zum Zitat Leone N, Courbon D, Thomas F, Bean K, Jégo B, Leynaert B, et al. Lung function impairment and metabolic syndrome: the critical role of abdominal obesity. Am J Respir Crit Care Med. 2009;179(6):509–16.CrossRef Leone N, Courbon D, Thomas F, Bean K, Jégo B, Leynaert B, et al. Lung function impairment and metabolic syndrome: the critical role of abdominal obesity. Am J Respir Crit Care Med. 2009;179(6):509–16.CrossRef
10.
Zurück zum Zitat Chen YY, Kao TW, Fang WH, Wang CC, Chang YW, Yang HF, et al. Body fat percentage in relation to lung function in individuals with normal weight obesity. Sci Rep. 2019;9(1):3066.CrossRef Chen YY, Kao TW, Fang WH, Wang CC, Chang YW, Yang HF, et al. Body fat percentage in relation to lung function in individuals with normal weight obesity. Sci Rep. 2019;9(1):3066.CrossRef
11.
Zurück zum Zitat Sutherland TJ, Goulding A, Grant AM, Cowan JO, Williamson A, Williams SM, et al. The effect of adiposity measured by dual-energy X-ray absorptiometry on lung function. Eur Respir J. 2008;32(1):85–91.CrossRef Sutherland TJ, Goulding A, Grant AM, Cowan JO, Williamson A, Williams SM, et al. The effect of adiposity measured by dual-energy X-ray absorptiometry on lung function. Eur Respir J. 2008;32(1):85–91.CrossRef
12.
Zurück zum Zitat Rossi A, Fantin F, Di Francesco V, Guariento S, Giuliano K, Fontana G, et al. Body composition and pulmonary function in the elderly: a 7-year longitudinal study. Int J Obes (Lond). 2008;32(9):1423–30.CrossRef Rossi A, Fantin F, Di Francesco V, Guariento S, Giuliano K, Fontana G, et al. Body composition and pulmonary function in the elderly: a 7-year longitudinal study. Int J Obes (Lond). 2008;32(9):1423–30.CrossRef
13.
Zurück zum Zitat Fenger RV, Gonzalez-Quintela A, Vidal C, Husemoen LL, Skaaby T, Thuesen BH, et al. The longitudinal relationship of changes of adiposity to changes in pulmonary function and risk of asthma in a general adult population. BMC Pulm Med. 2014;14:208.CrossRef Fenger RV, Gonzalez-Quintela A, Vidal C, Husemoen LL, Skaaby T, Thuesen BH, et al. The longitudinal relationship of changes of adiposity to changes in pulmonary function and risk of asthma in a general adult population. BMC Pulm Med. 2014;14:208.CrossRef
14.
Zurück zum Zitat Sutherland TJ, McLachlan CR, Sears MR, Poulton R, Hancox RJ. The relationship between body fat and respiratory function in young adults. Eur Respir J. 2016;48(3):734–47.CrossRef Sutherland TJ, McLachlan CR, Sears MR, Poulton R, Hancox RJ. The relationship between body fat and respiratory function in young adults. Eur Respir J. 2016;48(3):734–47.CrossRef
15.
Zurück zum Zitat Kim Y, Han BG. Cohort profile: the Korean genome and epidemiology study (KoGES) consortium. Int J Epidemiol. 2017;46(2): e20.CrossRef Kim Y, Han BG. Cohort profile: the Korean genome and epidemiology study (KoGES) consortium. Int J Epidemiol. 2017;46(2): e20.CrossRef
16.
Zurück zum Zitat Leem AY, Kim HY, Kim YS, Park MS, Chang J, Jung JY. Association of serum bilirubin level with lung function decline: a Korean community-based cohort study. Respir Res. 2018;19(1):99.CrossRef Leem AY, Kim HY, Kim YS, Park MS, Chang J, Jung JY. Association of serum bilirubin level with lung function decline: a Korean community-based cohort study. Respir Res. 2018;19(1):99.CrossRef
17.
Zurück zum Zitat Standardization of spirometry, 1994 update. American Thoracic Society. Am J Respir Crit Care Med. 1995;152(3):1107–36. Standardization of spirometry, 1994 update. American Thoracic Society. Am J Respir Crit Care Med. 1995;152(3):1107–36.
18.
Zurück zum Zitat Morris JF, Koski A, Johnson LC. Spirometric standards for healthy nonsmoking adults. Am Rev Respir Dis. 1971;103(1):57–67. Morris JF, Koski A, Johnson LC. Spirometric standards for healthy nonsmoking adults. Am Rev Respir Dis. 1971;103(1):57–67.
19.
Zurück zum Zitat Son JW, Lee SS, Kim SR, Yoo SJ, Cha BY, Son HY, et al. Low muscle mass and risk of type 2 diabetes in middle-aged and older adults: findings from the KoGES. Diabetologia. 2017;60(5):865–72.CrossRef Son JW, Lee SS, Kim SR, Yoo SJ, Cha BY, Son HY, et al. Low muscle mass and risk of type 2 diabetes in middle-aged and older adults: findings from the KoGES. Diabetologia. 2017;60(5):865–72.CrossRef
20.
Zurück zum Zitat Ling CH, de Craen AJ, Slagboom PE, Gunn DA, Stokkel MP, Westendorp RG, et al. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr. 2011;30(5):610–5.CrossRef Ling CH, de Craen AJ, Slagboom PE, Gunn DA, Stokkel MP, Westendorp RG, et al. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr. 2011;30(5):610–5.CrossRef
21.
Zurück zum Zitat Kim HK, Lee MJ, Kim EH, Bae SJ, Choe J, Kim CH, et al. Longitudinal changes of body composition phenotypes and their association with incident type 2 diabetes mellitus during a 5-year follow-up in Koreans. Diabetes Metab J. 2019;43(5):627–39.CrossRef Kim HK, Lee MJ, Kim EH, Bae SJ, Choe J, Kim CH, et al. Longitudinal changes of body composition phenotypes and their association with incident type 2 diabetes mellitus during a 5-year follow-up in Koreans. Diabetes Metab J. 2019;43(5):627–39.CrossRef
22.
Zurück zum Zitat World Health Organization. Waist circumference and waist–hip ratio: report of a WHO expert consultation. Geneva: World Health Organization; 2008. World Health Organization. Waist circumference and waist–hip ratio: report of a WHO expert consultation. Geneva: World Health Organization; 2008.
23.
Zurück zum Zitat Downs SH, Brändli O, Zellweger JP, Schindler C, Künzli N, Gerbase MW, et al. Accelerated decline in lung function in smoking women with airway obstruction: SAPALDIA 2 cohort study. Respir Res. 2005;6(1):45.CrossRef Downs SH, Brändli O, Zellweger JP, Schindler C, Künzli N, Gerbase MW, et al. Accelerated decline in lung function in smoking women with airway obstruction: SAPALDIA 2 cohort study. Respir Res. 2005;6(1):45.CrossRef
24.
Zurück zum Zitat WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157–63.CrossRef WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157–63.CrossRef
25.
Zurück zum Zitat Flegal KM, Graubard BI, Williamson DF, Gail MH. Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA. 2007;298(17):2028–37.CrossRef Flegal KM, Graubard BI, Williamson DF, Gail MH. Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA. 2007;298(17):2028–37.CrossRef
26.
Zurück zum Zitat Janssens JP, Pache JC, Nicod LP. Physiological changes in respiratory function associated with ageing. Eur Respir J. 1999;13(1):197–205.CrossRef Janssens JP, Pache JC, Nicod LP. Physiological changes in respiratory function associated with ageing. Eur Respir J. 1999;13(1):197–205.CrossRef
27.
Zurück zum Zitat Lange P, Celli B, Agustí A, Boje Jensen G, Divo M, Faner R, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med. 2015;373(2):111–22.CrossRef Lange P, Celli B, Agustí A, Boje Jensen G, Divo M, Faner R, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med. 2015;373(2):111–22.CrossRef
28.
Zurück zum Zitat Silvestre OM, Nadruz W Jr, Querejeta Roca G, Claggett B, Solomon SD, Mirabelli MC, et al. Declining lung function and cardiovascular risk: the ARIC study. J Am Coll Cardiol. 2018;72(10):1109–22.CrossRef Silvestre OM, Nadruz W Jr, Querejeta Roca G, Claggett B, Solomon SD, Mirabelli MC, et al. Declining lung function and cardiovascular risk: the ARIC study. J Am Coll Cardiol. 2018;72(10):1109–22.CrossRef
29.
Zurück zum Zitat Hozawa A, Billings JL, Shahar E, Ohira T, Rosamond WD, Folsom AR. Lung function and ischemic stroke incidence: the atherosclerosis risk in communities study. Chest. 2006;130(6):1642–9.CrossRef Hozawa A, Billings JL, Shahar E, Ohira T, Rosamond WD, Folsom AR. Lung function and ischemic stroke incidence: the atherosclerosis risk in communities study. Chest. 2006;130(6):1642–9.CrossRef
30.
Zurück zum Zitat Lazarus R, Sparrow D, Weiss ST. Baseline ventilatory function predicts the development of higher levels of fasting insulin and fasting insulin resistance index: the normative aging study. Eur Respir J. 1998;12(3):641–5.CrossRef Lazarus R, Sparrow D, Weiss ST. Baseline ventilatory function predicts the development of higher levels of fasting insulin and fasting insulin resistance index: the normative aging study. Eur Respir J. 1998;12(3):641–5.CrossRef
31.
Zurück zum Zitat Beaty TH, Newill CA, Cohen BH, Tockman MS, Bryant SH, Spurgeon HA. Effects of pulmonary function on mortality. J Chronic Dis. 1985;38(8):703–10.CrossRef Beaty TH, Newill CA, Cohen BH, Tockman MS, Bryant SH, Spurgeon HA. Effects of pulmonary function on mortality. J Chronic Dis. 1985;38(8):703–10.CrossRef
32.
Zurück zum Zitat Park JE, Chung JH, Lee KH, Shin KC. The effect of body composition on pulmonary function. Tuberc Respir Dis. 2012;72(5):433–40.CrossRef Park JE, Chung JH, Lee KH, Shin KC. The effect of body composition on pulmonary function. Tuberc Respir Dis. 2012;72(5):433–40.CrossRef
33.
Zurück zum Zitat Hayes D Jr, Kraman SS. The physiologic basis of spirometry. Respir Care. 2009;54(12):1717–26. Hayes D Jr, Kraman SS. The physiologic basis of spirometry. Respir Care. 2009;54(12):1717–26.
34.
Zurück zum Zitat Shore SA. Obesity, airway hyperresponsiveness, and inflammation. J Appl Physiol. 2010;108(3):735–43.CrossRef Shore SA. Obesity, airway hyperresponsiveness, and inflammation. J Appl Physiol. 2010;108(3):735–43.CrossRef
35.
Zurück zum Zitat Sharma G, Goodwin J. Effect of aging on respiratory system physiology and immunology. Clin Interv Aging. 2006;1(3):253–60.CrossRef Sharma G, Goodwin J. Effect of aging on respiratory system physiology and immunology. Clin Interv Aging. 2006;1(3):253–60.CrossRef
36.
Zurück zum Zitat Hakala K, Stenius-Aarniala B, Sovijärvi A. Effects of weight loss on peak flow variability, airways obstruction, and lung volumes in obese patients with asthma. Chest. 2000;118(5):1315–21.CrossRef Hakala K, Stenius-Aarniala B, Sovijärvi A. Effects of weight loss on peak flow variability, airways obstruction, and lung volumes in obese patients with asthma. Chest. 2000;118(5):1315–21.CrossRef
37.
Zurück zum Zitat Aaron SD, Fergusson D, Dent R, Chen Y, Vandemheen KL, Dales RE. Effect of weight reduction on respiratory function and airway reactivity in obese women. Chest. 2004;125(6):2046–52.CrossRef Aaron SD, Fergusson D, Dent R, Chen Y, Vandemheen KL, Dales RE. Effect of weight reduction on respiratory function and airway reactivity in obese women. Chest. 2004;125(6):2046–52.CrossRef
38.
Zurück zum Zitat Leem AY, Park B, Kim YS, Chang J, Won S, Jung JY. Longitudinal decline in lung function: a community-based cohort study in Korea. Sci Rep. 2019;9(1):13614.CrossRef Leem AY, Park B, Kim YS, Chang J, Won S, Jung JY. Longitudinal decline in lung function: a community-based cohort study in Korea. Sci Rep. 2019;9(1):13614.CrossRef
40.
Zurück zum Zitat Park HK, Lee SH, Lee SY, Kim SS, Park HW. Relationships between lung function decline and skeletal muscle and fat mass changes: a longitudinal study in healthy individuals. J Cachexia Sarcopenia Muscle. 2021;12(6):2145–53.CrossRef Park HK, Lee SH, Lee SY, Kim SS, Park HW. Relationships between lung function decline and skeletal muscle and fat mass changes: a longitudinal study in healthy individuals. J Cachexia Sarcopenia Muscle. 2021;12(6):2145–53.CrossRef
41.
Zurück zum Zitat Björntorp P. Adipose tissue distribution and function. Int J Obes. 1991;15(Suppl 2):67–81. Björntorp P. Adipose tissue distribution and function. Int J Obes. 1991;15(Suppl 2):67–81.
42.
Zurück zum Zitat Real FG, Svanes C, Omenaas ER, Antò JM, Plana E, Jarvis D, et al. Lung function, respiratory symptoms, and the menopausal transition. J Allergy Clin Immunol. 2008;121(1):72-80.e3.CrossRef Real FG, Svanes C, Omenaas ER, Antò JM, Plana E, Jarvis D, et al. Lung function, respiratory symptoms, and the menopausal transition. J Allergy Clin Immunol. 2008;121(1):72-80.e3.CrossRef
43.
Zurück zum Zitat Johnson Stoklossa CA, Forhan M, Padwal RS, Gonzalez MC, Prado CM. Practical considerations for body composition assessment of adults with class II/III obesity using bioelectrical impedance analysis or dual-energy X-ray absorptiometry. Curr Obes Rep. 2016;5(4):389–96.CrossRef Johnson Stoklossa CA, Forhan M, Padwal RS, Gonzalez MC, Prado CM. Practical considerations for body composition assessment of adults with class II/III obesity using bioelectrical impedance analysis or dual-energy X-ray absorptiometry. Curr Obes Rep. 2016;5(4):389–96.CrossRef
44.
Zurück zum Zitat de Blasio F, de Blasio F, Miracco Berlingieri G, Bianco A, La Greca M, Franssen FM, et al. Evaluation of body composition in COPD patients using multifrequency bioelectrical impedance analysis. Int J Chronic Obstruct Pulmon Dis. 2016;11:2419–26.CrossRef de Blasio F, de Blasio F, Miracco Berlingieri G, Bianco A, La Greca M, Franssen FM, et al. Evaluation of body composition in COPD patients using multifrequency bioelectrical impedance analysis. Int J Chronic Obstruct Pulmon Dis. 2016;11:2419–26.CrossRef
Metadaten
Titel
Longitudinal association between adiposity changes and lung function deterioration
verfasst von
Youngmok Park
Jiyoung Kim
Young Sam Kim
Ah Young Leem
Jinyeon Jo
Kyungsoo Chung
Moo Suk Park
Sungho Won
Ji Ye Jung
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Respiratory Research / Ausgabe 1/2023
Elektronische ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-023-02322-8

Weitere Artikel der Ausgabe 1/2023

Respiratory Research 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Eingreifen von Umstehenden rettet vor Erstickungstod!

15.05.2024 Fremdkörperaspiration Nachrichten

Wer sich an einem Essensrest verschluckt und um Luft ringt, benötigt vor allem rasche Hilfe. Dass Umstehende nur in jedem zweiten Erstickungsnotfall bereit waren, diese zu leisten, ist das ernüchternde Ergebnis einer Beobachtungsstudie aus Japan. Doch es gibt auch eine gute Nachricht.

Neue S3-Leitlinie zur unkomplizierten Zystitis: Auf Antibiotika verzichten?

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Schadet Ärger den Gefäßen?

14.05.2024 Arteriosklerose Nachrichten

In einer Studie aus New York wirkte sich Ärger kurzfristig deutlich negativ auf die Endothelfunktion gesunder Probanden aus. Möglicherweise hat dies Einfluss auf die kardiovaskuläre Gesundheit.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.