Skip to main content
Erschienen in: Journal of Digital Imaging 2/2020

25.10.2019 | Magnetic Resonance Imaging

A Deep Convolutional Neural Network for Annotation of Magnetic Resonance Imaging Sequence Type

verfasst von: Sara Ranjbar, Kyle W. Singleton, Pamela R. Jackson, Cassandra R. Rickertsen, Scott A. Whitmire, Kamala R. Clark-Swanson, J. Ross Mitchell, Kristin R. Swanson, Leland S. Hu

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

The explosion of medical imaging data along with the advent of big data analytics has launched an exciting era for clinical research. One factor affecting the ability to aggregate large medical image collections for research is the lack of infrastructure for automated data annotation. Among all imaging modalities, annotation of magnetic resonance (MR) images is particularly challenging due to the non-standard labeling of MR image types. In this work, we aimed to train a deep neural network to annotate MR image sequence type for scans of brain tumor patients. We focused on the four most common MR sequence types within neuroimaging: T1-weighted (T1W), T1-weighted post-gadolinium contrast (T1Gd), T2-weighted (T2W), and T2-weighted fluid-attenuated inversion recovery (FLAIR). Our repository contains images acquired using a variety of pulse sequences, sequence parameters, field strengths, and scanner manufacturers. Image selection was agnostic to patient demographics, diagnosis, and the presence of tumor in the imaging field of view. We used a total of 14,400 two-dimensional images, each visualizing a different part of the brain. Data was split into train, validation, and test sets (9600, 2400, and 2400 images, respectively) and sets consisted of equal-sized groups of image types. Overall, the model reached an accuracy of 99% on the test set. Our results showed excellent performance of deep learning techniques in predicting sequence types for brain tumor MR images. We conclude deep learning models can serve as tools to support clinical research and facilitate efficient database management.
Literatur
1.
Zurück zum Zitat Commission, M. P. A, Book AD, others: Healthcare spending and the Medicare program. Washington, DC: MedPAC, 2012 Commission, M. P. A, Book AD, others: Healthcare spending and the Medicare program. Washington, DC: MedPAC, 2012
2.
Zurück zum Zitat Smith-Bindman R, Miglioretti DL, Larson EB: Rising use of diagnostic medical imaging in a large integrated health system. Health Aff 27:1491–1502, 2008CrossRef Smith-Bindman R, Miglioretti DL, Larson EB: Rising use of diagnostic medical imaging in a large integrated health system. Health Aff 27:1491–1502, 2008CrossRef
3.
Zurück zum Zitat Nitz WR: MR imaging: Acronyms and clinical applications. Eur. Radiol. 9:979–997, 1999CrossRef Nitz WR: MR imaging: Acronyms and clinical applications. Eur. Radiol. 9:979–997, 1999CrossRef
4.
Zurück zum Zitat MRI sequences acronyms. IMAIOS Available at: https://www.imaios.com/en/e-Courses/e-MRI/MRI-Sequences/Sequences-acronyms. (Accessed: 30th April 2019) MRI sequences acronyms. IMAIOS Available at: https://​www.​imaios.​com/​en/​e-Courses/​e-MRI/​MRI-Sequences/​Sequences-acronyms.​ (Accessed: 30th April 2019)
5.
Zurück zum Zitat Enlarge, C. T. T. O. & Ge, G. GRE Acronyms. Enlarge, C. T. T. O. & Ge, G. GRE Acronyms.
6.
Zurück zum Zitat Swanson KR, Rockne RC, Claridge J, Chaplain MA, Alvord EC, Anderson ARA: Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology. Cancer Res. 71:7366–7375, 2011CrossRef Swanson KR, Rockne RC, Claridge J, Chaplain MA, Alvord EC, Anderson ARA: Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology. Cancer Res. 71:7366–7375, 2011CrossRef
7.
Zurück zum Zitat Jackson PR, Juliano J, Hawkins-Daarud A, Rockne RC, Swanson KR: Patient-specific mathematical neuro-oncology: Using a simple proliferation and invasion tumor model to inform clinical practice. Bull. Math. Biol. 77:846–856, 2015CrossRef Jackson PR, Juliano J, Hawkins-Daarud A, Rockne RC, Swanson KR: Patient-specific mathematical neuro-oncology: Using a simple proliferation and invasion tumor model to inform clinical practice. Bull. Math. Biol. 77:846–856, 2015CrossRef
8.
Zurück zum Zitat Hawkins-Daarud A, Rockne R, Corwin D, Anderson ARA, Kinahan P, Swanson KR: In silico analysis suggests differential response to bevacizumab and radiation combination therapy in newly diagnosed glioblastoma. J. R. Soc. Interface 12:20150388, 2015CrossRef Hawkins-Daarud A, Rockne R, Corwin D, Anderson ARA, Kinahan P, Swanson KR: In silico analysis suggests differential response to bevacizumab and radiation combination therapy in newly diagnosed glioblastoma. J. R. Soc. Interface 12:20150388, 2015CrossRef
9.
Zurück zum Zitat Rockne RC. et al.: A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PET. J. R. Soc. Interface 12, 2015 Rockne RC. et al.: A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PET. J. R. Soc. Interface 12, 2015
10.
Zurück zum Zitat Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Hatzikirou H, Deutsch A: The biology and mathematical modelling of glioma invasion: a review. J. R. Soc. Interface 14:20170490, 2017CrossRef Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Hatzikirou H, Deutsch A: The biology and mathematical modelling of glioma invasion: a review. J. R. Soc. Interface 14:20170490, 2017CrossRef
11.
Zurück zum Zitat Rayfield CA, Grady F, de Leon G, Rockne R, Carrasco E, Jackson P, Vora M, Johnston SK, Hawkins-Daarud A, Clark-Swanson KR, Whitmire S, Gamez ME, Porter A, Hu L, Gonzalez-Cuyar L, Bendok B, Vora S, Swanson KR: Distinct phenotypic clusters of glioblastoma growth and response kinetics predict survival. JCO Clinical Cancer Informatics 2:1–14, 2018CrossRef Rayfield CA, Grady F, de Leon G, Rockne R, Carrasco E, Jackson P, Vora M, Johnston SK, Hawkins-Daarud A, Clark-Swanson KR, Whitmire S, Gamez ME, Porter A, Hu L, Gonzalez-Cuyar L, Bendok B, Vora S, Swanson KR: Distinct phenotypic clusters of glioblastoma growth and response kinetics predict survival. JCO Clinical Cancer Informatics 2:1–14, 2018CrossRef
12.
Zurück zum Zitat Randall EC, Emdal KB, Laramy JK, Kim M, Roos A, Calligaris D, Regan MS, Gupta SK, Mladek AC, Carlson BL, Johnson AJ, Lu FK, Xie XS, Joughin BA, Reddy RJ, Peng S, Abdelmoula WM, Jackson PR, Kolluri A, Kellersberger KA, Agar JN, Lauffenburger DA, Swanson KR, Tran NL, Elmquist WF, White FM, Sarkaria JN, Agar NYR: Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nat. Commun. 9:4904, 2018CrossRef Randall EC, Emdal KB, Laramy JK, Kim M, Roos A, Calligaris D, Regan MS, Gupta SK, Mladek AC, Carlson BL, Johnson AJ, Lu FK, Xie XS, Joughin BA, Reddy RJ, Peng S, Abdelmoula WM, Jackson PR, Kolluri A, Kellersberger KA, Agar JN, Lauffenburger DA, Swanson KR, Tran NL, Elmquist WF, White FM, Sarkaria JN, Agar NYR: Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nat. Commun. 9:4904, 2018CrossRef
13.
Zurück zum Zitat Swanson KR, Rostomily RC, Alvord, Jr EC: A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: A proof of principle. Br. J. Cancer 98:113–119, 2008CrossRef Swanson KR, Rostomily RC, Alvord, Jr EC: A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: A proof of principle. Br. J. Cancer 98:113–119, 2008CrossRef
14.
Zurück zum Zitat Massey SC, Rockne RC, Hawkins-Daarud A, Gallaher J, Anderson ARA, Canoll P, Swanson KR: Simulating PDGF-Driven Glioma Growth and Invasion in an Anatomically Accurate Brain Domain. Bull. Math. Biol. 80:1292–1309, 2018CrossRef Massey SC, Rockne RC, Hawkins-Daarud A, Gallaher J, Anderson ARA, Canoll P, Swanson KR: Simulating PDGF-Driven Glioma Growth and Invasion in an Anatomically Accurate Brain Domain. Bull. Math. Biol. 80:1292–1309, 2018CrossRef
15.
Zurück zum Zitat Johnston SK. et al.: ENvironmental Dynamics Underlying Responsive Extreme Survivors (ENDURES) of Glioblastoma: a Multi-disciplinary Team-based. Multifactorial Analytical Approach. bioRxiv 461236, 2018. doi:https://doi.org/10.1101/461236 Johnston SK. et al.: ENvironmental Dynamics Underlying Responsive Extreme Survivors (ENDURES) of Glioblastoma: a Multi-disciplinary Team-based. Multifactorial Analytical Approach. bioRxiv 461236, 2018. doi:https://​doi.​org/​10.​1101/​461236
16.
Zurück zum Zitat Barnholtz-Sloan JS, Swanson KR: Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci. Transl. Med, 2019 Barnholtz-Sloan JS, Swanson KR: Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci. Transl. Med, 2019
18.
Zurück zum Zitat Brown RW et al.: Magnetic Resonance Imaging: Physical Principles and Sequence Design. (John Wiley & Sons, 2014 Brown RW et al.: Magnetic Resonance Imaging: Physical Principles and Sequence Design. (John Wiley & Sons, 2014
19.
Zurück zum Zitat Cha S: Neuroimaging in neuro-oncology. Neurotherapeutics 6:465–477, 2009CrossRef Cha S: Neuroimaging in neuro-oncology. Neurotherapeutics 6:465–477, 2009CrossRef
20.
Zurück zum Zitat Armstrong TS, Cohen MZ, Weinberg J, Gilbert MR: Imaging techniques in neuro-oncology. Semin. Oncol. Nurs. 20:231–239, 2004CrossRef Armstrong TS, Cohen MZ, Weinberg J, Gilbert MR: Imaging techniques in neuro-oncology. Semin. Oncol. Nurs. 20:231–239, 2004CrossRef
21.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE: ImageNet classification with deep convolutional neural networks. in Advances in Neural Information Processing Systems 25 (eds. Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.) 1097–1105 (Curran Associates, Inc., 2012 Krizhevsky A, Sutskever I, Hinton GE: ImageNet classification with deep convolutional neural networks. in Advances in Neural Information Processing Systems 25 (eds. Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.) 1097–1105 (Curran Associates, Inc., 2012
22.
Zurück zum Zitat Mohsen H, El-Dahshan E-SA, El-Horbaty E-SM, Salem A-BM: Classification using deep learning neural networks for brain tumors. Future Computing and Informatics Journal 3:68–71, 2018CrossRef Mohsen H, El-Dahshan E-SA, El-Horbaty E-SM, Salem A-BM: Classification using deep learning neural networks for brain tumors. Future Computing and Informatics Journal 3:68–71, 2018CrossRef
23.
Zurück zum Zitat Huynh BQ, Li H, Giger ML: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. Journal of Medical Imaging 3:034501, 2016CrossRef Huynh BQ, Li H, Giger ML: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. Journal of Medical Imaging 3:034501, 2016CrossRef
25.
Zurück zum Zitat Simonyan K, Zisserman A: Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv [cs.CV], 2014 Simonyan K, Zisserman A: Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv [cs.CV], 2014
26.
27.
Zurück zum Zitat Abadi, M. et al.: Tensorflow: A system for large-scale machine learning. in 12th ${USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}$ 16) 265–283, 2016 Abadi, M. et al.: Tensorflow: A system for large-scale machine learning. in 12th ${USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}$ 16) 265–283, 2016
28.
Zurück zum Zitat Kingma DP, Adam BJ: A method for stochastic optimization. arXiv [cs.LG], 2014 Kingma DP, Adam BJ: A method for stochastic optimization. arXiv [cs.LG], 2014
29.
Zurück zum Zitat Pedregosa F et al.: Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12:2825–2830, 2011 Pedregosa F et al.: Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12:2825–2830, 2011
30.
Zurück zum Zitat Gong, Y., Jia, Y., Leung, T., Toshev, A. & Ioffe, S. Deep convolutional ranking for multilabel image annotation. arXiv [cs.CV], 2013 Gong, Y., Jia, Y., Leung, T., Toshev, A. & Ioffe, S. Deep convolutional ranking for multilabel image annotation. arXiv [cs.CV], 2013
31.
Zurück zum Zitat Wu, F., Wang Z., Zhang Z., Yang Y., Luo J., Zhu W., Zhuang Y. Weakly Semi-Supervised Deep Learning for Multi-Label Image Annotation. IEEE Transactions on Big Data 1, 109–122 (2015), 109, 122. Wu, F., Wang Z., Zhang Z., Yang Y., Luo J., Zhu W., Zhuang Y. Weakly Semi-Supervised Deep Learning for Multi-Label Image Annotation. IEEE Transactions on Big Data 1, 109–122 (2015), 109, 122.
32.
Zurück zum Zitat Wu J, Yu Y, Huang C, Yu K: Deep multiple instance learning for image classification and auto-annotation. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 3460–3469, 2015 Wu J, Yu Y, Huang C, Yu K: Deep multiple instance learning for image classification and auto-annotation. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 3460–3469, 2015
33.
Zurück zum Zitat Murthy VN, Maji S, Manmatha R: Automatic Image Annotation Using Deep Learning Representations. in Proceedings of the 5th ACM on International Conference on Multimedia Retrieval 603–606 (ACM), 2015. Murthy VN, Maji S, Manmatha R: Automatic Image Annotation Using Deep Learning Representations. in Proceedings of the 5th ACM on International Conference on Multimedia Retrieval 603–606 (ACM), 2015.
35.
36.
Zurück zum Zitat Hermessi, H., Mourali, O. & Zagrouba, E. Deep feature learning for soft tissue sarcoma classification in MR images via transfer learning. Expert Systems with Applications 120, (2019), 116, 127. Hermessi, H., Mourali, O. & Zagrouba, E. Deep feature learning for soft tissue sarcoma classification in MR images via transfer learning. Expert Systems with Applications 120, (2019), 116, 127.
37.
Zurück zum Zitat Margeta J, Criminisi A, Cabrera Lozoya R, Lee DC, Ayache N: Fine-tuned convolutional neural nets for cardiac MRI acquisition plane recognition. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 5:339–349, 2017 Margeta J, Criminisi A, Cabrera Lozoya R, Lee DC, Ayache N: Fine-tuned convolutional neural nets for cardiac MRI acquisition plane recognition. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 5:339–349, 2017
Metadaten
Titel
A Deep Convolutional Neural Network for Annotation of Magnetic Resonance Imaging Sequence Type
verfasst von
Sara Ranjbar
Kyle W. Singleton
Pamela R. Jackson
Cassandra R. Rickertsen
Scott A. Whitmire
Kamala R. Clark-Swanson
J. Ross Mitchell
Kristin R. Swanson
Leland S. Hu
Publikationsdatum
25.10.2019
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 2/2020
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-019-00282-4

Weitere Artikel der Ausgabe 2/2020

Journal of Digital Imaging 2/2020 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.