Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 2/2023

30.01.2023

Mechanistic insights of soluble uric acid-induced insulin resistance: Insulin signaling and beyond

verfasst von: Wei Yu, De Xie, Tetsuya Yamamoto, Hidenori Koyama, Jidong Cheng

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Abstract

Hyperuricemia is a metabolic disease caused by purine nucleotide metabolism disorder. The prevalence of hyperuricemia is increasing worldwide, with a growing trend in the younger populations. Although numerous studies have indicated that hyperuricemia may be an independent risk factor for insulin resistance, the causal relationship between the two is controversial. There are few reviews, however, focusing on the relationship between uric acid (UA) and insulin resistance from experimental studies. In this review, we summarized the experimental models related to soluble UA-induced insulin resistance in pancreas and peripheral tissues, including skeletal muscles, adipose tissue, liver, heart/cardiomyocytes, vascular endothelial cells and macrophages. In addition, we summarized the research advances about the key mechanism of UA-induced insulin resistance. Moreover, we attempt to identify novel targets for the treatment of hyperuricemia-related insulin resistance. Lastly, we hope that the present review will encourage further researches to solve the chicken-and-egg dilemma between UA and insulin resistance, and provide strategies for the pathogenesis and treatment of hyperuricemia related metabolic diseases.
Literatur
1.
Zurück zum Zitat Chen Y, Luo L, Hu S et al. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit Rev Food Sci Nutr. 2022:1–26. Chen Y, Luo L, Hu S et al. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit Rev Food Sci Nutr. 2022:1–26.
2.
Zurück zum Zitat Liu L, Lou S, Xu K, et al. Relationship between lifestyle choices and hyperuricemia in chinese men and women. Clin Rheumatol. 2013;32:233–9.PubMedCrossRef Liu L, Lou S, Xu K, et al. Relationship between lifestyle choices and hyperuricemia in chinese men and women. Clin Rheumatol. 2013;32:233–9.PubMedCrossRef
3.
Zurück zum Zitat Koo BS, Jeong HJ, Son CN, et al. Distribution of serum uric acid levels and prevalence of hyper- and hypouricemia in a korean general population of 172,970. Korean J Intern Med. 2021;36:S264–72.CrossRef Koo BS, Jeong HJ, Son CN, et al. Distribution of serum uric acid levels and prevalence of hyper- and hypouricemia in a korean general population of 172,970. Korean J Intern Med. 2021;36:S264–72.CrossRef
4.
Zurück zum Zitat Huang J, Ma ZF, Zhang Y, et al. Geographical distribution of hyperuricemia in mainland China: a comprehensive systematic review and meta-analysis. Glob Health Res Policy. 2020;5:52.PubMedPubMedCentralCrossRef Huang J, Ma ZF, Zhang Y, et al. Geographical distribution of hyperuricemia in mainland China: a comprehensive systematic review and meta-analysis. Glob Health Res Policy. 2020;5:52.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Chen-Xu M, Yokose C, Rai SK, et al. Contemporary prevalence of gout and hyperuricemia in the United States and Decadal Trends: the National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol. 2019;71:991–9.PubMedPubMedCentralCrossRef Chen-Xu M, Yokose C, Rai SK, et al. Contemporary prevalence of gout and hyperuricemia in the United States and Decadal Trends: the National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol. 2019;71:991–9.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Sofue T, Nakagawa N, Kanda E, et al. Prevalences of hyperuricemia and electrolyte abnormalities in patients with chronic kidney disease in Japan: a nationwide, cross-sectional cohort study using data from the Japan chronic kidney Disease Database (J-CKD-DB). PLoS ONE. 2020;15:e0240402.PubMedPubMedCentralCrossRef Sofue T, Nakagawa N, Kanda E, et al. Prevalences of hyperuricemia and electrolyte abnormalities in patients with chronic kidney disease in Japan: a nationwide, cross-sectional cohort study using data from the Japan chronic kidney Disease Database (J-CKD-DB). PLoS ONE. 2020;15:e0240402.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Lohsoonthorn V, Dhanamun B, Williams MA. Prevalence of hyperuricemia and its relationship with metabolic syndrome in thai adults receiving annual health exams. Arch Med Res. 2006;37:883–9.PubMedCrossRef Lohsoonthorn V, Dhanamun B, Williams MA. Prevalence of hyperuricemia and its relationship with metabolic syndrome in thai adults receiving annual health exams. Arch Med Res. 2006;37:883–9.PubMedCrossRef
9.
Zurück zum Zitat Yu W, Cheng JD. Uric acid and cardiovascular disease: An update from molecular mechanism to clinical perspective. Front Pharmacol. 2020;11:582680. Yu W, Cheng JD. Uric acid and cardiovascular disease: An update from molecular mechanism to clinical perspective. Front Pharmacol. 2020;11:582680.
10.
Zurück zum Zitat Johnson RJ, Bakris GL, Borghi C, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the National Kidney Foundation. Am J Kidney Dis. 2018;71:851–65.PubMedPubMedCentralCrossRef Johnson RJ, Bakris GL, Borghi C, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the National Kidney Foundation. Am J Kidney Dis. 2018;71:851–65.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Ponticelli C, Podestà MA, Moroni G. Hyperuricemia as a trigger of immune response in hypertension and chronic kidney disease. Kidney Int. 2020;98:1149–59.PubMedCrossRef Ponticelli C, Podestà MA, Moroni G. Hyperuricemia as a trigger of immune response in hypertension and chronic kidney disease. Kidney Int. 2020;98:1149–59.PubMedCrossRef
12.
Zurück zum Zitat Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020;16:380–90.PubMedCrossRef Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020;16:380–90.PubMedCrossRef
13.
Zurück zum Zitat Nielsen SM, Bartels EM, Henriksen M, et al. Weight loss for overweight and obese individuals with gout: a systematic review of longitudinal studies. Ann Rheum Dis. 2017;76:1870–82.PubMedCrossRef Nielsen SM, Bartels EM, Henriksen M, et al. Weight loss for overweight and obese individuals with gout: a systematic review of longitudinal studies. Ann Rheum Dis. 2017;76:1870–82.PubMedCrossRef
14.
Zurück zum Zitat Kim K, Kang K, Sheol H et al. The association between serum uric acid levels and 10-year cardiovascular disease risk in non-alcoholic fatty liver disease patients. Int J Environ Res Public Health. 2022;19:1042. Kim K, Kang K, Sheol H et al. The association between serum uric acid levels and 10-year cardiovascular disease risk in non-alcoholic fatty liver disease patients. Int J Environ Res Public Health. 2022;19:1042.
15.
Zurück zum Zitat Xie D, Zhao H, Lu J, et al. High uric acid induces liver fat accumulation via ROS/JNK/AP-1 signaling. Am J Physiol Endocrinol Metab. 2021;320:E1032–43.PubMedCrossRef Xie D, Zhao H, Lu J, et al. High uric acid induces liver fat accumulation via ROS/JNK/AP-1 signaling. Am J Physiol Endocrinol Metab. 2021;320:E1032–43.PubMedCrossRef
16.
Zurück zum Zitat Zhang Q, Ma X, Xing J, et al. Serum uric acid is a mediator of the association between obesity and incident nonalcoholic fatty liver disease: a prospective cohort study. Front Endocrinol (Lausanne). 2021;12:657856.PubMedCrossRef Zhang Q, Ma X, Xing J, et al. Serum uric acid is a mediator of the association between obesity and incident nonalcoholic fatty liver disease: a prospective cohort study. Front Endocrinol (Lausanne). 2021;12:657856.PubMedCrossRef
17.
Zurück zum Zitat Euser SM, Hofman A, Westendorp RG, Breteler MM. Serum uric acid and cognitive function and dementia. Brain. 2009;132:377–82.PubMedCrossRef Euser SM, Hofman A, Westendorp RG, Breteler MM. Serum uric acid and cognitive function and dementia. Brain. 2009;132:377–82.PubMedCrossRef
18.
Zurück zum Zitat Pellecchia MT, Savastano R, Moccia M, et al. Lower serum uric acid is associated with mild cognitive impairment in early Parkinson’s disease: a 4-year follow-up study. J Neural Transm (Vienna). 2016;123:1399–402.PubMedCrossRef Pellecchia MT, Savastano R, Moccia M, et al. Lower serum uric acid is associated with mild cognitive impairment in early Parkinson’s disease: a 4-year follow-up study. J Neural Transm (Vienna). 2016;123:1399–402.PubMedCrossRef
19.
Zurück zum Zitat Chen C, Li X, Lv Y, et al. High blood uric acid is associated with reduced risks of mild cognitive impairment among older adults in China: a 9-Year prospective cohort study. Front Aging Neurosci. 2021;13:747686.PubMedPubMedCentralCrossRef Chen C, Li X, Lv Y, et al. High blood uric acid is associated with reduced risks of mild cognitive impairment among older adults in China: a 9-Year prospective cohort study. Front Aging Neurosci. 2021;13:747686.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Wang Q, Zhao H, Gao Y, et al. Uric acid inhibits HMGB1-TLR4-NF-kappaB signaling to alleviate oxygen-glucose deprivation/reoxygenation injury of microglia. Biochem Biophys Res Commun. 2021;540:22–8.PubMedCrossRef Wang Q, Zhao H, Gao Y, et al. Uric acid inhibits HMGB1-TLR4-NF-kappaB signaling to alleviate oxygen-glucose deprivation/reoxygenation injury of microglia. Biochem Biophys Res Commun. 2021;540:22–8.PubMedCrossRef
21.
Zurück zum Zitat Alam AB, Wu A, Power MC, et al. Associations of serum uric acid with incident dementia and cognitive decline in the ARIC-NCS cohort. J Neurol Sci. 2020;414:116866.PubMedPubMedCentralCrossRef Alam AB, Wu A, Power MC, et al. Associations of serum uric acid with incident dementia and cognitive decline in the ARIC-NCS cohort. J Neurol Sci. 2020;414:116866.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Latourte A, Soumaré A, Bardin T, et al. Uric acid and incident dementia over 12 years of follow-up: a population-based cohort study. Ann Rheum Dis. 2018;77:328–35.PubMedCrossRef Latourte A, Soumaré A, Bardin T, et al. Uric acid and incident dementia over 12 years of follow-up: a population-based cohort study. Ann Rheum Dis. 2018;77:328–35.PubMedCrossRef
23.
24.
Zurück zum Zitat Lann D, LeRoith D. Insulin resistance as the underlying cause for the metabolic syndrome. Med Clin North Am. 2007;91:1063–77. Lann D, LeRoith D. Insulin resistance as the underlying cause for the metabolic syndrome. Med Clin North Am. 2007;91:1063–77.
25.
Zurück zum Zitat Krishnan E, Pandya BJ, Chung L, et al. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol. 2012;176:108–16.PubMedCrossRef Krishnan E, Pandya BJ, Chung L, et al. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol. 2012;176:108–16.PubMedCrossRef
26.
Zurück zum Zitat Han T, Lan L, Qu R, et al. Temporal relationship between hyperuricemia and insulin resistance and its impact on future risk of hypertension. Hypertension. 2017;70:703–11.PubMedCrossRef Han T, Lan L, Qu R, et al. Temporal relationship between hyperuricemia and insulin resistance and its impact on future risk of hypertension. Hypertension. 2017;70:703–11.PubMedCrossRef
27.
Zurück zum Zitat Vuorinen-Markkola H, Yki-Järvinen H. Hyperuricemia and insulin resistance. J Clin Endocrinol Metab. 1994;78:25–9.PubMed Vuorinen-Markkola H, Yki-Järvinen H. Hyperuricemia and insulin resistance. J Clin Endocrinol Metab. 1994;78:25–9.PubMed
28.
Zurück zum Zitat Takir M, Kostek O, Ozkok A, et al. Lowering uric acid with allopurinol improves insulin resistance and systemic inflammation in asymptomatic hyperuricemia. J Investig Med. 2015;63:924–9.PubMedCrossRef Takir M, Kostek O, Ozkok A, et al. Lowering uric acid with allopurinol improves insulin resistance and systemic inflammation in asymptomatic hyperuricemia. J Investig Med. 2015;63:924–9.PubMedCrossRef
29.
Zurück zum Zitat McCormick N, O’Connor MJ, Yokose C, et al. Assessing the causal relationships between insulin resistance and hyperuricemia and gout using bidirectional mendelian randomization. Arthritis Rheumatol. 2021;73:2096–104.PubMedPubMedCentralCrossRef McCormick N, O’Connor MJ, Yokose C, et al. Assessing the causal relationships between insulin resistance and hyperuricemia and gout using bidirectional mendelian randomization. Arthritis Rheumatol. 2021;73:2096–104.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Lu J, Dalbeth N, Yin H, et al. Mouse models for human hyperuricaemia: a critical review. Nat Rev Rheumatol. 2019;15:413–26.PubMedCrossRef Lu J, Dalbeth N, Yin H, et al. Mouse models for human hyperuricaemia: a critical review. Nat Rev Rheumatol. 2019;15:413–26.PubMedCrossRef
31.
Zurück zum Zitat Lu J, Hou X, Yuan X, et al. Knockout of the urate oxidase gene provides a stable mouse model of hyperuricemia associated with metabolic disorders. Kidney Int. 2018;93:69–80.PubMedCrossRef Lu J, Hou X, Yuan X, et al. Knockout of the urate oxidase gene provides a stable mouse model of hyperuricemia associated with metabolic disorders. Kidney Int. 2018;93:69–80.PubMedCrossRef
32.
Zurück zum Zitat Chinese Society of Endocrinology, Chinese Medical Association. Guideline for the diagnosis and management of hyperuricemia and gout in China (2019). Chin J Endocrinol Metab. 2020;36:1–13. Chinese Society of Endocrinology, Chinese Medical Association. Guideline for the diagnosis and management of hyperuricemia and gout in China (2019). Chin J Endocrinol Metab. 2020;36:1–13.
33.
Zurück zum Zitat Hao Y, Li H, Cao Y, et al. Uricase and horseradish peroxidase hybrid CaHPO(4) nanoflower integrated with transcutaneous patches for treatment of hyperuricemia. J Biomed Nanotechnol. 2019;15:951–65.PubMedCrossRef Hao Y, Li H, Cao Y, et al. Uricase and horseradish peroxidase hybrid CaHPO(4) nanoflower integrated with transcutaneous patches for treatment of hyperuricemia. J Biomed Nanotechnol. 2019;15:951–65.PubMedCrossRef
34.
Zurück zum Zitat Kuwabara M, Niwa K, Hisatome I, et al. Asymptomatic hyperuricemia without comorbidities predicts cardiometabolic diseases: five-year Japanese cohort study. Hypertension. 2017;69:1036–44.PubMedCrossRef Kuwabara M, Niwa K, Hisatome I, et al. Asymptomatic hyperuricemia without comorbidities predicts cardiometabolic diseases: five-year Japanese cohort study. Hypertension. 2017;69:1036–44.PubMedCrossRef
35.
Zurück zum Zitat Kuwabara M, Borghi C, Cicero AFG, et al. Elevated serum uric acid increases risks for developing high LDL cholesterol and hypertriglyceridemia: a five-year cohort study in Japan. Int J Cardiol. 2018;261:183–8.PubMedCrossRef Kuwabara M, Borghi C, Cicero AFG, et al. Elevated serum uric acid increases risks for developing high LDL cholesterol and hypertriglyceridemia: a five-year cohort study in Japan. Int J Cardiol. 2018;261:183–8.PubMedCrossRef
36.
Zurück zum Zitat Kuwabara M, Hisatome I, Niwa K, et al. Uric acid is a strong risk marker for developing hypertension from prehypertension: a 5-year Japanese cohort study. Hypertension. 2018;71:78–86.PubMedCrossRef Kuwabara M, Hisatome I, Niwa K, et al. Uric acid is a strong risk marker for developing hypertension from prehypertension: a 5-year Japanese cohort study. Hypertension. 2018;71:78–86.PubMedCrossRef
37.
Zurück zum Zitat Maruhashi T, Hisatome I, Kihara Y, Higashi Y. Hyperuricemia and endothelial function: from molecular background to clinical perspectives. Atherosclerosis. 2018;278:226–31.PubMedCrossRef Maruhashi T, Hisatome I, Kihara Y, Higashi Y. Hyperuricemia and endothelial function: from molecular background to clinical perspectives. Atherosclerosis. 2018;278:226–31.PubMedCrossRef
38.
Zurück zum Zitat Ma J, Sheng Y, Lao Z, et al. Hyperuricemia is associated with androgenetic alopecia in men: a cross-sectional case-control study. J Cosmet Dermatol. 2020;19:3122–6.PubMedCrossRef Ma J, Sheng Y, Lao Z, et al. Hyperuricemia is associated with androgenetic alopecia in men: a cross-sectional case-control study. J Cosmet Dermatol. 2020;19:3122–6.PubMedCrossRef
39.
Zurück zum Zitat Salem S, Mehrsai A, Heydari R, Pourmand G. Serum uric acid as a risk predictor for erectile dysfunction. J Sex Med. 2014;11:1118–24.PubMedCrossRef Salem S, Mehrsai A, Heydari R, Pourmand G. Serum uric acid as a risk predictor for erectile dysfunction. J Sex Med. 2014;11:1118–24.PubMedCrossRef
40.
Zurück zum Zitat Chen YF, Lin HH, Lu CC, et al. Gout and a subsequent increased risk of erectile dysfunction in men aged 64 and under: a nationwide cohort study in Taiwan. J Rheumatol. 2015;42:1898–905.PubMedCrossRef Chen YF, Lin HH, Lu CC, et al. Gout and a subsequent increased risk of erectile dysfunction in men aged 64 and under: a nationwide cohort study in Taiwan. J Rheumatol. 2015;42:1898–905.PubMedCrossRef
41.
Zurück zum Zitat Long H, Jiang J, Xia J, et al. Hyperuricemia is an independent risk factor for erectile dysfunction. J Sex Med. 2016;13:1056–62.PubMedCrossRef Long H, Jiang J, Xia J, et al. Hyperuricemia is an independent risk factor for erectile dysfunction. J Sex Med. 2016;13:1056–62.PubMedCrossRef
42.
Zurück zum Zitat Abdul Sultan A, Mallen C, Hayward R, et al. Gout and subsequent erectile dysfunction: a population-based cohort study from England. Arthritis Res Ther. 2017;19:123.PubMedPubMedCentralCrossRef Abdul Sultan A, Mallen C, Hayward R, et al. Gout and subsequent erectile dysfunction: a population-based cohort study from England. Arthritis Res Ther. 2017;19:123.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Wang W, Jing Z, Liu W et al. Hyperuricaemia is an important risk factor of the erectile dysfunction: A systematic review and meta-analysis. Andrologia. 2022:e14384. Wang W, Jing Z, Liu W et al. Hyperuricaemia is an important risk factor of the erectile dysfunction: A systematic review and meta-analysis. Andrologia. 2022:e14384.
44.
Zurück zum Zitat Totaro M, Dimarakis S, Castellini C, et al. Erectile dysfunction in hyperuricemia: a prevalence meta-analysis and meta-regression study. Andrology. 2022;10:72–81.PubMedCrossRef Totaro M, Dimarakis S, Castellini C, et al. Erectile dysfunction in hyperuricemia: a prevalence meta-analysis and meta-regression study. Andrology. 2022;10:72–81.PubMedCrossRef
45.
Zurück zum Zitat Hill MA, Yang Y, Zhang L, et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021;119:154766.PubMedCrossRef Hill MA, Yang Y, Zhang L, et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021;119:154766.PubMedCrossRef
46.
Zurück zum Zitat Lipina C, Hundal HS. Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance. Diabetologia. 2011;54:1596–607.PubMedCrossRef Lipina C, Hundal HS. Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance. Diabetologia. 2011;54:1596–607.PubMedCrossRef
47.
Zurück zum Zitat Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol. 2019;234:8152–61.PubMedCrossRef Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol. 2019;234:8152–61.PubMedCrossRef
48.
Zurück zum Zitat Saltiel AR. Insulin signaling in health and disease. J Clin Invest. 2021;131:e142241. Saltiel AR. Insulin signaling in health and disease. J Clin Invest. 2021;131:e142241.
49.
51.
Zurück zum Zitat Zhu J, Sun L, Yang J, et al. Genetic predisposition to type 2 diabetes and insulin levels is positively associated with serum urate levels. J Clin Endocrinol Metab. 2021;106:e2547-56.PubMedCrossRef Zhu J, Sun L, Yang J, et al. Genetic predisposition to type 2 diabetes and insulin levels is positively associated with serum urate levels. J Clin Endocrinol Metab. 2021;106:e2547-56.PubMedCrossRef
52.
Zurück zum Zitat Hu X, Rong S, Wang Q, et al. Association between plasma uric acid and insulin resistance in type 2 diabetes: a mendelian randomization analysis. Diabetes Res Clin Pract. 2021;171:108542.PubMedCrossRef Hu X, Rong S, Wang Q, et al. Association between plasma uric acid and insulin resistance in type 2 diabetes: a mendelian randomization analysis. Diabetes Res Clin Pract. 2021;171:108542.PubMedCrossRef
53.
54.
Zurück zum Zitat Nishikawa T, Nagata N, Shimakami T, et al. Xanthine oxidase inhibition attenuates insulin resistance and diet-induced steatohepatitis in mice. Sci Rep. 2020;10:815.PubMedPubMedCentralCrossRef Nishikawa T, Nagata N, Shimakami T, et al. Xanthine oxidase inhibition attenuates insulin resistance and diet-induced steatohepatitis in mice. Sci Rep. 2020;10:815.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Ng HY, Leung FF, Kuo WH, et al. Dapagliflozin and xanthine oxidase inhibitors improve insulin resistance and modulate renal glucose and urate transport in metabolic syndrome. Clin Exp Pharmacol Physiol. 2021;48:1603–12.PubMedCrossRef Ng HY, Leung FF, Kuo WH, et al. Dapagliflozin and xanthine oxidase inhibitors improve insulin resistance and modulate renal glucose and urate transport in metabolic syndrome. Clin Exp Pharmacol Physiol. 2021;48:1603–12.PubMedCrossRef
56.
Zurück zum Zitat Rocic B, Vucic-Lovrencic M, Poje N, et al. Uric acid may inhibit glucose-induced insulin secretion via binding to an essential arginine residue in rat pancreatic beta-cells. Bioorg Med Chem Lett. 2005;15:1181–4.PubMedCrossRef Rocic B, Vucic-Lovrencic M, Poje N, et al. Uric acid may inhibit glucose-induced insulin secretion via binding to an essential arginine residue in rat pancreatic beta-cells. Bioorg Med Chem Lett. 2005;15:1181–4.PubMedCrossRef
57.
Zurück zum Zitat Zhang Y, Yamamoto T, Hisatome I, et al. Uric acid induces oxidative stress and growth inhibition by activating adenosine monophosphate-activated protein kinase and extracellular signal-regulated kinase signal pathways in pancreatic beta cells. Mol Cell Endocrinol. 2013;375:89–96.PubMedCrossRef Zhang Y, Yamamoto T, Hisatome I, et al. Uric acid induces oxidative stress and growth inhibition by activating adenosine monophosphate-activated protein kinase and extracellular signal-regulated kinase signal pathways in pancreatic beta cells. Mol Cell Endocrinol. 2013;375:89–96.PubMedCrossRef
58.
Zurück zum Zitat Lu J, He Y, Cui L, et al. Hyperuricemia predisposes to the onset of diabetes via promoting pancreatic beta-cell death in uricase-deficient male mice. Diabetes. 2020;69:1149–63.PubMedPubMedCentralCrossRef Lu J, He Y, Cui L, et al. Hyperuricemia predisposes to the onset of diabetes via promoting pancreatic beta-cell death in uricase-deficient male mice. Diabetes. 2020;69:1149–63.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Hu Y, Zhao H, Lu J, et al. High uric acid promotes dysfunction in pancreatic beta cells by blocking IRS2/AKT signalling. Mol Cell Endocrinol. 2021;520:111070.PubMedCrossRef Hu Y, Zhao H, Lu J, et al. High uric acid promotes dysfunction in pancreatic beta cells by blocking IRS2/AKT signalling. Mol Cell Endocrinol. 2021;520:111070.PubMedCrossRef
60.
Zurück zum Zitat Zhu Y, Hu Y, Huang T, et al. High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochem Biophys Res Commun. 2014;447:707–14.PubMedCrossRef Zhu Y, Hu Y, Huang T, et al. High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochem Biophys Res Commun. 2014;447:707–14.PubMedCrossRef
61.
Zurück zum Zitat Yuan H, Hu Y, Zhu Y, et al. Metformin ameliorates high uric acid-induced insulin resistance in skeletal muscle cells. Mol Cell Endocrinol. 2017;443:138–45.PubMedCrossRef Yuan H, Hu Y, Zhu Y, et al. Metformin ameliorates high uric acid-induced insulin resistance in skeletal muscle cells. Mol Cell Endocrinol. 2017;443:138–45.PubMedCrossRef
62.
Zurück zum Zitat Baldwin W, McRae S, Marek G, et al. Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes. 2011;60:1258–69.PubMedPubMedCentralCrossRef Baldwin W, McRae S, Marek G, et al. Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes. 2011;60:1258–69.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Liu C, Zhou XR, Ye MY, et al. RBP4 is associated with insulin resistance in hyperuricemia-induced rats and patients with hyperuricemia. Front Endocrinol (Lausanne). 2021;12:653819.PubMedCrossRef Liu C, Zhou XR, Ye MY, et al. RBP4 is associated with insulin resistance in hyperuricemia-induced rats and patients with hyperuricemia. Front Endocrinol (Lausanne). 2021;12:653819.PubMedCrossRef
64.
Zurück zum Zitat Wan X, Xu C, Lin Y, et al. Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome-dependent mechanism. J Hepatol. 2016;64:925–32.PubMedCrossRef Wan X, Xu C, Lin Y, et al. Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome-dependent mechanism. J Hepatol. 2016;64:925–32.PubMedCrossRef
65.
Zurück zum Zitat He F, Wang M, Zhao H, et al. Autophagy protects against high uric acid-induced hepatic insulin resistance. Mol Cell Endocrinol. 2022;547:111599.PubMedCrossRef He F, Wang M, Zhao H, et al. Autophagy protects against high uric acid-induced hepatic insulin resistance. Mol Cell Endocrinol. 2022;547:111599.PubMedCrossRef
66.
Zurück zum Zitat Tanaka Y, Nagoshi T, Takahashi H, et al. URAT1-selective inhibition ameliorates insulin resistance by attenuating diet-induced hepatic steatosis and brown adipose tissue whitening in mice. Mol Metab. 2022;55:101411.PubMedCrossRef Tanaka Y, Nagoshi T, Takahashi H, et al. URAT1-selective inhibition ameliorates insulin resistance by attenuating diet-induced hepatic steatosis and brown adipose tissue whitening in mice. Mol Metab. 2022;55:101411.PubMedCrossRef
67.
Zurück zum Zitat Zhi L, Yuzhang Z, Tianliang H, et al. High uric acid induces insulin resistance in cardiomyocytes in vitro and in vivo. PLoS ONE. 2016;11:e0147737.PubMedPubMedCentralCrossRef Zhi L, Yuzhang Z, Tianliang H, et al. High uric acid induces insulin resistance in cardiomyocytes in vitro and in vivo. PLoS ONE. 2016;11:e0147737.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Jiao Z, Chen Y, Xie Y, et al. Metformin protects against insulin resistance induced by high uric acid in cardiomyocytes via AMPK signalling pathways in vitro and in vivo. J Cell Mol Med. 2021;25:6733–45.PubMedPubMedCentralCrossRef Jiao Z, Chen Y, Xie Y, et al. Metformin protects against insulin resistance induced by high uric acid in cardiomyocytes via AMPK signalling pathways in vitro and in vivo. J Cell Mol Med. 2021;25:6733–45.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Choi YJ, Yoon Y, Lee KY, et al. Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis. FASEB J. 2014;28:3197–204.PubMedCrossRef Choi YJ, Yoon Y, Lee KY, et al. Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis. FASEB J. 2014;28:3197–204.PubMedCrossRef
70.
Zurück zum Zitat Tassone EJ, Cimellaro A, Perticone M, et al. Uric acid impairs insulin signaling by promoting Enpp1 binding to insulin receptor in human umbilical vein endothelial cells. Front Endocrinol (Lausanne). 2018;9:98.PubMedCrossRef Tassone EJ, Cimellaro A, Perticone M, et al. Uric acid impairs insulin signaling by promoting Enpp1 binding to insulin receptor in human umbilical vein endothelial cells. Front Endocrinol (Lausanne). 2018;9:98.PubMedCrossRef
71.
Zurück zum Zitat Yu W, Chen C, Zhuang W, et al. Silencing TXNIP ameliorates high uric acid-induced insulin resistance via the IRS2/AKT and Nrf2/HO-1 pathways in macrophages. Free Radic Biol Med. 2022;178:42–53.PubMedCrossRef Yu W, Chen C, Zhuang W, et al. Silencing TXNIP ameliorates high uric acid-induced insulin resistance via the IRS2/AKT and Nrf2/HO-1 pathways in macrophages. Free Radic Biol Med. 2022;178:42–53.PubMedCrossRef
72.
Zurück zum Zitat Zhao H, He F, Lu J, et al. Hyperuricemia contributes to glucose intolerance of hepatic inflammatory macrophages and impairs the insulin signaling pathway via IRS2-proteasome degradation. Front Immunol. 2022;13:931087.PubMedPubMedCentralCrossRef Zhao H, He F, Lu J, et al. Hyperuricemia contributes to glucose intolerance of hepatic inflammatory macrophages and impairs the insulin signaling pathway via IRS2-proteasome degradation. Front Immunol. 2022;13:931087.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Li M, Gu L, Yang J, Lou Q. Serum uric acid to creatinine ratio correlates with β-cell function in type 2 diabetes. Diabetes Metab Res Rev. 2018;34:e3001.PubMedCrossRef Li M, Gu L, Yang J, Lou Q. Serum uric acid to creatinine ratio correlates with β-cell function in type 2 diabetes. Diabetes Metab Res Rev. 2018;34:e3001.PubMedCrossRef
74.
Zurück zum Zitat Tang W, Fu Q, Zhang Q et al. The association between serum uric acid and residual β -cell function in type 2 diabetes. J Diabetes Res 2014;2014:709691. Tang W, Fu Q, Zhang Q et al. The association between serum uric acid and residual β -cell function in type 2 diabetes. J Diabetes Res 2014;2014:709691.
75.
Zurück zum Zitat Zhong X, Zhang D, Yang L, et al. The relationship between serum uric acid within the normal range and β-cell function in chinese patients with type 2 diabetes: differences by body mass index and gender. PeerJ. 2019;7:e6666.PubMedPubMedCentralCrossRef Zhong X, Zhang D, Yang L, et al. The relationship between serum uric acid within the normal range and β-cell function in chinese patients with type 2 diabetes: differences by body mass index and gender. PeerJ. 2019;7:e6666.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Kutoh E, Wada A, Kuto AN, Hayashi J. Regulation of serum uric acid with canagliflozin monotherapy in type 2 diabetes: a potential link between uric acid and pancreatic β-cell function. Int J Clin Pharmacol Ther. 2019;57:590–5.PubMedCrossRef Kutoh E, Wada A, Kuto AN, Hayashi J. Regulation of serum uric acid with canagliflozin monotherapy in type 2 diabetes: a potential link between uric acid and pancreatic β-cell function. Int J Clin Pharmacol Ther. 2019;57:590–5.PubMedCrossRef
77.
Zurück zum Zitat Yu P, Huang L, Wang Z, et al. The Association of serum uric acid with Beta-cell function and insulin resistance in nondiabetic individuals: a cross-sectional study. Diabetes Metab Syndr Obes. 2021;14:2673–82.PubMedPubMedCentralCrossRef Yu P, Huang L, Wang Z, et al. The Association of serum uric acid with Beta-cell function and insulin resistance in nondiabetic individuals: a cross-sectional study. Diabetes Metab Syndr Obes. 2021;14:2673–82.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Martinez-Sanchez FD, Vargas-Abonce VP, Guerrero-Castillo AP, et al. Serum uric acid concentration is associated with insulin resistance and impaired insulin secretion in adults at risk for type 2 diabetes. Prim Care Diabetes. 2021;15:293–9.PubMedCrossRef Martinez-Sanchez FD, Vargas-Abonce VP, Guerrero-Castillo AP, et al. Serum uric acid concentration is associated with insulin resistance and impaired insulin secretion in adults at risk for type 2 diabetes. Prim Care Diabetes. 2021;15:293–9.PubMedCrossRef
79.
Zurück zum Zitat Fernandez-Chirino L, Antonio-Villa NE, Fermin-Martinez CA et al. Elevated serum uric acid is a facilitating mechanism for insulin resistance mediated accumulation of visceral adipose tissue. Clin Endocrinol (Oxf). 2022;96:707–18. Fernandez-Chirino L, Antonio-Villa NE, Fermin-Martinez CA et al. Elevated serum uric acid is a facilitating mechanism for insulin resistance mediated accumulation of visceral adipose tissue. Clin Endocrinol (Oxf). 2022;96:707–18.
80.
Zurück zum Zitat Watt MJ, Miotto PM, De Nardo W, Montgomery MK. The liver as an endocrine organ-linking NAFLD and insulin resistance. Endocr Rev. 2019;40:1367–93.PubMedCrossRef Watt MJ, Miotto PM, De Nardo W, Montgomery MK. The liver as an endocrine organ-linking NAFLD and insulin resistance. Endocr Rev. 2019;40:1367–93.PubMedCrossRef
81.
Zurück zum Zitat Feuvray D, Darmellah A. Diabetes-related metabolic perturbations in cardiac myocyte. Diabetes Metab. 2008;34(Suppl 1):3–9.CrossRef Feuvray D, Darmellah A. Diabetes-related metabolic perturbations in cardiac myocyte. Diabetes Metab. 2008;34(Suppl 1):3–9.CrossRef
82.
Zurück zum Zitat Delarue J, Magnan C. Free fatty acids and insulin resistance. Curr Opin Clin Nutr Metab Care. 2007;10:142–8.PubMedCrossRef Delarue J, Magnan C. Free fatty acids and insulin resistance. Curr Opin Clin Nutr Metab Care. 2007;10:142–8.PubMedCrossRef
83.
Zurück zum Zitat Vaduganathan M, Greene SJ, Ambrosy AP, et al. Relation of serum uric acid levels and outcomes among patients hospitalized for worsening heart failure with reduced ejection fraction (from the efficacy of vasopressin antagonism in heart failure outcome study with tolvaptan trial). Am J Cardiol. 2014;114:1713–21.PubMedCrossRef Vaduganathan M, Greene SJ, Ambrosy AP, et al. Relation of serum uric acid levels and outcomes among patients hospitalized for worsening heart failure with reduced ejection fraction (from the efficacy of vasopressin antagonism in heart failure outcome study with tolvaptan trial). Am J Cardiol. 2014;114:1713–21.PubMedCrossRef
84.
Zurück zum Zitat Huang H, Huang B, Li Y, et al. Uric acid and risk of heart failure: a systematic review and meta-analysis. Eur J Heart Fail. 2014;16:15–24.PubMedCrossRef Huang H, Huang B, Li Y, et al. Uric acid and risk of heart failure: a systematic review and meta-analysis. Eur J Heart Fail. 2014;16:15–24.PubMedCrossRef
85.
Zurück zum Zitat Palazzuoli A, Ruocco G, De Vivo O, et al. Prevalence of hyperuricemia in patients with acute heart failure with either reduced or preserved ejection fraction. Am J Cardiol. 2017;120:1146–50.PubMedCrossRef Palazzuoli A, Ruocco G, De Vivo O, et al. Prevalence of hyperuricemia in patients with acute heart failure with either reduced or preserved ejection fraction. Am J Cardiol. 2017;120:1146–50.PubMedCrossRef
86.
Zurück zum Zitat Pavlusova M, Jarkovsky J, Benesova K, et al. Hyperuricemia treatment in acute heart failure patients does not improve their long-term prognosis: a propensity score matched analysis from the AHEAD registry. Clin Cardiol. 2019;42:720–7.PubMedPubMedCentralCrossRef Pavlusova M, Jarkovsky J, Benesova K, et al. Hyperuricemia treatment in acute heart failure patients does not improve their long-term prognosis: a propensity score matched analysis from the AHEAD registry. Clin Cardiol. 2019;42:720–7.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008.PubMedCrossRef McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008.PubMedCrossRef
88.
Zurück zum Zitat Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–24.PubMedCrossRef Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–24.PubMedCrossRef
89.
Zurück zum Zitat Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020;396:819–29.PubMedCrossRef Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020;396:819–29.PubMedCrossRef
90.
Zurück zum Zitat Wilcox CS, Shen W, Boulton DW et al. Interaction between the sodium-glucose-linked transporter 2 inhibitor dapagliflozin and the loop diuretic bumetanide in normal human subjects. J Am Heart Assoc. 2018;7:e007046. Wilcox CS, Shen W, Boulton DW et al. Interaction between the sodium-glucose-linked transporter 2 inhibitor dapagliflozin and the loop diuretic bumetanide in normal human subjects. J Am Heart Assoc. 2018;7:e007046.
91.
Zurück zum Zitat Zhao Y, Xu L, Tian D, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20:458–62.PubMedCrossRef Zhao Y, Xu L, Tian D, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20:458–62.PubMedCrossRef
92.
Zurück zum Zitat Xin Y, Guo Y, Li Y, et al. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: a systematic review with an indirect comparison meta-analysis. Saudi J Biol Sci. 2019;26:421–6.PubMedCrossRef Xin Y, Guo Y, Li Y, et al. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: a systematic review with an indirect comparison meta-analysis. Saudi J Biol Sci. 2019;26:421–6.PubMedCrossRef
93.
Zurück zum Zitat Bailey CJ, Gross JL, Pieters A, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:2223–33.PubMedCrossRef Bailey CJ, Gross JL, Pieters A, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:2223–33.PubMedCrossRef
94.
Zurück zum Zitat Honka H, Solis-Herrera C, Triplitt C, et al. Therapeutic manipulation of myocardial metabolism: JACC state-of-the-art review. J Am Coll Cardiol. 2021;77:2022–39.PubMedCrossRef Honka H, Solis-Herrera C, Triplitt C, et al. Therapeutic manipulation of myocardial metabolism: JACC state-of-the-art review. J Am Coll Cardiol. 2021;77:2022–39.PubMedCrossRef
95.
Zurück zum Zitat Dyck JRB, Sossalla S, Hamdani N, et al. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: evidence for potential off-target effects. J Mol Cell Cardiol. 2022;167:17–31.PubMedCrossRef Dyck JRB, Sossalla S, Hamdani N, et al. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: evidence for potential off-target effects. J Mol Cell Cardiol. 2022;167:17–31.PubMedCrossRef
96.
Zurück zum Zitat Joshi SS, Singh T, Newby DE, Singh J. Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure. Heart. 2021;107:1032–8. Joshi SS, Singh T, Newby DE, Singh J. Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure. Heart. 2021;107:1032–8.
97.
Zurück zum Zitat Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME Trial: a “Thrifty Substrate” hypothesis. Diabetes Care. 2016;39:1108–14.PubMedCrossRef Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME Trial: a “Thrifty Substrate” hypothesis. Diabetes Care. 2016;39:1108–14.PubMedCrossRef
98.
Zurück zum Zitat Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39:1115–22.PubMedCrossRef Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39:1115–22.PubMedCrossRef
99.
Zurück zum Zitat Zhou H, Wang S, Zhu P, et al. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018;15:335–46.PubMedCrossRef Zhou H, Wang S, Zhu P, et al. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018;15:335–46.PubMedCrossRef
100.
Zurück zum Zitat Hawley SA, Ford RJ, Smith BK, et al. The Na+/Glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65:2784–94.PubMedCrossRef Hawley SA, Ford RJ, Smith BK, et al. The Na+/Glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65:2784–94.PubMedCrossRef
101.
Zurück zum Zitat Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Hyperuricemia-induced endothelial insulin resistance: the nitric oxide connection. Pflugers Arch. 2022;474:83–98.PubMedCrossRef Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Hyperuricemia-induced endothelial insulin resistance: the nitric oxide connection. Pflugers Arch. 2022;474:83–98.PubMedCrossRef
102.
103.
Zurück zum Zitat Xu S, Ilyas I, Little PJ, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev. 2021;73:924–67.PubMedCrossRef Xu S, Ilyas I, Little PJ, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev. 2021;73:924–67.PubMedCrossRef
104.
Zurück zum Zitat Cassano V, Crescibene D, Hribal ML et al. Uric acid and vascular damage in essential hypertension: role of insulin resistance. Nutrients. 2020;12:2509. Cassano V, Crescibene D, Hribal ML et al. Uric acid and vascular damage in essential hypertension: role of insulin resistance. Nutrients. 2020;12:2509.
107.
Zurück zum Zitat DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard lecture 2009. Diabetologia. 2010;53:1270–87.PubMedPubMedCentralCrossRef DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard lecture 2009. Diabetologia. 2010;53:1270–87.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Mukhuty A, Fouzder C, Kundu R. Fetuin-A secretion from beta-cells leads to accumulation of macrophages in islets, aggravates inflammation and impairs insulin secretion. J Cell Sci. 2021;134:jcs258507. Mukhuty A, Fouzder C, Kundu R. Fetuin-A secretion from beta-cells leads to accumulation of macrophages in islets, aggravates inflammation and impairs insulin secretion. J Cell Sci. 2021;134:jcs258507.
109.
Zurück zum Zitat Rehman K, Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci. 2016;23:87.PubMedPubMedCentralCrossRef Rehman K, Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci. 2016;23:87.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Imai Y, Dobrian AD, Weaver JR, et al. Interaction between cytokines and inflammatory cells in islet dysfunction, insulin resistance and vascular disease. Diabetes Obes Metab. 2013;15(Suppl 3):117–29.PubMedPubMedCentralCrossRef Imai Y, Dobrian AD, Weaver JR, et al. Interaction between cytokines and inflammatory cells in islet dysfunction, insulin resistance and vascular disease. Diabetes Obes Metab. 2013;15(Suppl 3):117–29.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Imai Y, Dobrian AD, Morris MA, Nadler JL. Islet inflammation: a unifying target for diabetes treatment? Trends Endocrinol Metab. 2013;24:351–60.PubMedPubMedCentralCrossRef Imai Y, Dobrian AD, Morris MA, Nadler JL. Islet inflammation: a unifying target for diabetes treatment? Trends Endocrinol Metab. 2013;24:351–60.PubMedPubMedCentralCrossRef
112.
114.
Zurück zum Zitat Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72:4111–26.PubMedCrossRef Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72:4111–26.PubMedCrossRef
115.
Zurück zum Zitat Chow A, Brown BD, Merad M. Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol. 2011;11:788–98.PubMedCrossRef Chow A, Brown BD, Merad M. Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol. 2011;11:788–98.PubMedCrossRef
116.
Zurück zum Zitat Rehman A, Pacher P, Haskó G. Role of macrophages in the endocrine system. Trends Endocrinol Metab. 2021;32:238–56.PubMedCrossRef Rehman A, Pacher P, Haskó G. Role of macrophages in the endocrine system. Trends Endocrinol Metab. 2021;32:238–56.PubMedCrossRef
117.
Zurück zum Zitat Tateya S, Kim F, Tamori Y. Recent advances in obesity-induced inflammation and insulin resistance. Front Endocrinol (Lausanne). 2013;4:93.PubMedCrossRef Tateya S, Kim F, Tamori Y. Recent advances in obesity-induced inflammation and insulin resistance. Front Endocrinol (Lausanne). 2013;4:93.PubMedCrossRef
118.
Zurück zum Zitat Yu W, Liu W, Xie et al. High level of uric acid promotes atherosclerosis by targeting NRF2-mediated autophagy dysfunction and ferroptosis. Oxid Med Cell Longev. 2022;2022:9304383. Yu W, Liu W, Xie et al. High level of uric acid promotes atherosclerosis by targeting NRF2-mediated autophagy dysfunction and ferroptosis. Oxid Med Cell Longev. 2022;2022:9304383.
119.
Zurück zum Zitat Kimura Y, Yanagida T, Onda A, et al. Soluble uric acid promotes atherosclerosis via AMPK (AMP-Activated protein Kinase)-Mediated inflammation. Arterioscler Thromb Vasc Biol. 2020;40:570–82.PubMedCrossRef Kimura Y, Yanagida T, Onda A, et al. Soluble uric acid promotes atherosclerosis via AMPK (AMP-Activated protein Kinase)-Mediated inflammation. Arterioscler Thromb Vasc Biol. 2020;40:570–82.PubMedCrossRef
120.
Zurück zum Zitat Qayyum N, Haseeb M, Kim MS, Choi S. Role of thioredoxin-interacting protein in diseases and its therapeutic outlook. Int J Mol Sci. 2021;22:275422. Qayyum N, Haseeb M, Kim MS, Choi S. Role of thioredoxin-interacting protein in diseases and its therapeutic outlook. Int J Mol Sci. 2021;22:275422.
121.
Zurück zum Zitat Thielen LA, Chen J, Jing G, et al. Identification of an anti-diabetic, orally available small molecule that regulates TXNIP expression and glucagon action. Cell Metab. 2020;32:353–65.PubMedPubMedCentralCrossRef Thielen LA, Chen J, Jing G, et al. Identification of an anti-diabetic, orally available small molecule that regulates TXNIP expression and glucagon action. Cell Metab. 2020;32:353–65.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Zhang W, Xu P, Li JY. The crucial role of thioredoxin interacting protein in the liver insulin resistance induced by di (2-ethylhexyl) phthalates. Food Chem Toxicol. 2022;164:113045.PubMedCrossRef Zhang W, Xu P, Li JY. The crucial role of thioredoxin interacting protein in the liver insulin resistance induced by di (2-ethylhexyl) phthalates. Food Chem Toxicol. 2022;164:113045.PubMedCrossRef
123.
Zurück zum Zitat Zhang QY, Pan Y, Wang R, et al. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. J Nutr Biochem. 2014;25:420–8.PubMedCrossRef Zhang QY, Pan Y, Wang R, et al. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. J Nutr Biochem. 2014;25:420–8.PubMedCrossRef
124.
Zurück zum Zitat Li S, Eguchi N, Lau H, Ichii H. The role of the Nrf2 signaling in obesity and insulin resistance. Int J Mol Sci. 2020;21:6973. Li S, Eguchi N, Lau H, Ichii H. The role of the Nrf2 signaling in obesity and insulin resistance. Int J Mol Sci. 2020;21:6973.
125.
Zurück zum Zitat Yagishita Y, Uruno A, Fukutomi T, et al. Nrf2 improves leptin and insulin resistance provoked by hypothalamic oxidative stress. Cell Rep. 2017;18:2030–44.PubMedCrossRef Yagishita Y, Uruno A, Fukutomi T, et al. Nrf2 improves leptin and insulin resistance provoked by hypothalamic oxidative stress. Cell Rep. 2017;18:2030–44.PubMedCrossRef
126.
Zurück zum Zitat Chartoumpekis DV, Ziros PG, Psyrogiannis AI, et al. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice. Diabetes. 2011;60:2465–73.PubMedPubMedCentralCrossRef Chartoumpekis DV, Ziros PG, Psyrogiannis AI, et al. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice. Diabetes. 2011;60:2465–73.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Meakin PJ, Chowdhry S, Sharma RS, et al. Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance. Mol Cell Biol. 2014;34:3305–20.PubMedPubMedCentralCrossRef Meakin PJ, Chowdhry S, Sharma RS, et al. Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance. Mol Cell Biol. 2014;34:3305–20.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Liu Z, Dou W, Ni Z, et al. Deletion of Nrf2 leads to hepatic insulin resistance via the activation of NF-κB in mice fed a high-fat diet. Mol Med Rep. 2016;14:1323–31.PubMedCrossRef Liu Z, Dou W, Ni Z, et al. Deletion of Nrf2 leads to hepatic insulin resistance via the activation of NF-κB in mice fed a high-fat diet. Mol Med Rep. 2016;14:1323–31.PubMedCrossRef
129.
130.
Zurück zum Zitat Buhl ES, Jessen N, Pold R, et al. Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome. Diabetes. 2002;51:2199–206.PubMedCrossRef Buhl ES, Jessen N, Pold R, et al. Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome. Diabetes. 2002;51:2199–206.PubMedCrossRef
131.
Zurück zum Zitat Cool B, Zinker B, Chiou W, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006;3:403–16.PubMedCrossRef Cool B, Zinker B, Chiou W, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006;3:403–16.PubMedCrossRef
132.
Zurück zum Zitat Lan P, Romero FA, Wodka D, et al. Hit-to-lead optimization and discovery of 5-((5-([1,1’-Biphenyl]-4-yl)-6-chloro-1H-benzo[d]imidazol-2-yl)oxy)-2-methylbenzoic acid (MK-3903): a novel class of benzimidazole-based activators of AMP-activated protein kinase. J Med Chem. 2017;60:9040–52.PubMedCrossRef Lan P, Romero FA, Wodka D, et al. Hit-to-lead optimization and discovery of 5-((5-([1,1’-Biphenyl]-4-yl)-6-chloro-1H-benzo[d]imidazol-2-yl)oxy)-2-methylbenzoic acid (MK-3903): a novel class of benzimidazole-based activators of AMP-activated protein kinase. J Med Chem. 2017;60:9040–52.PubMedCrossRef
133.
Zurück zum Zitat Liu Y, Jurczak MJ, Lear TB, et al. A Fbxo48 inhibitor prevents pAMPKalpha degradation and ameliorates insulin resistance. Nat Chem Biol. 2021;17:298–306.PubMedPubMedCentralCrossRef Liu Y, Jurczak MJ, Lear TB, et al. A Fbxo48 inhibitor prevents pAMPKalpha degradation and ameliorates insulin resistance. Nat Chem Biol. 2021;17:298–306.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Rheinheimer J, de Souza BM, Cardoso NS, et al. Current role of the NLRP3 inflammasome on obesity and insulin resistance: a systematic review. Metabolism. 2017;74:1–9.PubMedCrossRef Rheinheimer J, de Souza BM, Cardoso NS, et al. Current role of the NLRP3 inflammasome on obesity and insulin resistance: a systematic review. Metabolism. 2017;74:1–9.PubMedCrossRef
135.
Zurück zum Zitat Hull C, Dekeryte R, Buchanan H, et al. NLRP3 inflammasome inhibition with MCC950 improves insulin sensitivity and inflammation in a mouse model of frontotemporal dementia. Neuropharmacology. 2020;180:108305.PubMedCrossRef Hull C, Dekeryte R, Buchanan H, et al. NLRP3 inflammasome inhibition with MCC950 improves insulin sensitivity and inflammation in a mouse model of frontotemporal dementia. Neuropharmacology. 2020;180:108305.PubMedCrossRef
136.
Zurück zum Zitat Chen X, Zhang D, Li Y, et al. NLRP3 inflammasome and IL-1β pathway in type 2 diabetes and atherosclerosis: friend or foe? Pharmacol Res. 2021;173:105885.PubMedCrossRef Chen X, Zhang D, Li Y, et al. NLRP3 inflammasome and IL-1β pathway in type 2 diabetes and atherosclerosis: friend or foe? Pharmacol Res. 2021;173:105885.PubMedCrossRef
137.
Zurück zum Zitat Sun K, Wang J, Lan Z, et al. Sleeve gastroplasty combined with the NLRP3 inflammasome inhibitor CY-09 reduces body weight, improves insulin resistance and alleviates hepatic steatosis in mouse model. Obes Surg. 2020;30:3435–43.PubMedCrossRef Sun K, Wang J, Lan Z, et al. Sleeve gastroplasty combined with the NLRP3 inflammasome inhibitor CY-09 reduces body weight, improves insulin resistance and alleviates hepatic steatosis in mouse model. Obes Surg. 2020;30:3435–43.PubMedCrossRef
138.
Zurück zum Zitat Chinta PK, Tambe S, Umrani D, et al. Effect of parthenolide, an NLRP3 inflammasome inhibitor, on insulin resistance in high-fat diet-obese mice. Can J Physiol Pharmacol. 2022;100:272–81.PubMedCrossRef Chinta PK, Tambe S, Umrani D, et al. Effect of parthenolide, an NLRP3 inflammasome inhibitor, on insulin resistance in high-fat diet-obese mice. Can J Physiol Pharmacol. 2022;100:272–81.PubMedCrossRef
139.
Zurück zum Zitat Kitada M, Koya D. Autophagy in metabolic disease and ageing. Nat Rev Endocrinol. 2021;17:647–61.PubMedCrossRef Kitada M, Koya D. Autophagy in metabolic disease and ageing. Nat Rev Endocrinol. 2021;17:647–61.PubMedCrossRef
140.
Zurück zum Zitat Zhou W, Ye S. Rapamycin improves insulin resistance and hepatic steatosis in type 2 diabetes rats through activation of autophagy. Cell Biol Int. 2018;42:1282–91.PubMedCrossRef Zhou W, Ye S. Rapamycin improves insulin resistance and hepatic steatosis in type 2 diabetes rats through activation of autophagy. Cell Biol Int. 2018;42:1282–91.PubMedCrossRef
141.
Zurück zum Zitat Zhang D, Ma Y, Liu J, et al. Metformin alleviates hepatic steatosis and insulin resistance in a mouse model of high-fat diet-induced nonalcoholic fatty liver disease by promoting transcription factor EB-dependent autophagy. Front Pharmacol. 2021;12:689111.PubMedPubMedCentralCrossRef Zhang D, Ma Y, Liu J, et al. Metformin alleviates hepatic steatosis and insulin resistance in a mouse model of high-fat diet-induced nonalcoholic fatty liver disease by promoting transcription factor EB-dependent autophagy. Front Pharmacol. 2021;12:689111.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436:356–62.PubMedCrossRef Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436:356–62.PubMedCrossRef
143.
Zurück zum Zitat Nono Nankam PA, Bluher M. Retinol-binding protein 4 in obesity and metabolic dysfunctions. Mol Cell Endocrinol. 2021;531:111312.PubMedCrossRef Nono Nankam PA, Bluher M. Retinol-binding protein 4 in obesity and metabolic dysfunctions. Mol Cell Endocrinol. 2021;531:111312.PubMedCrossRef
144.
Zurück zum Zitat Prudente S, Morini E, Trischitta V. Insulin signaling regulating genes: effect on T2DM and cardiovascular risk. Nat Rev Endocrinol. 2009;5:682–93.PubMedCrossRef Prudente S, Morini E, Trischitta V. Insulin signaling regulating genes: effect on T2DM and cardiovascular risk. Nat Rev Endocrinol. 2009;5:682–93.PubMedCrossRef
145.
Zurück zum Zitat Di Paola R, Caporarello N, Marucci A, et al. ENPP1 affects insulin action and secretion: evidences from in vitro studies. PLoS ONE. 2011;6:e19462.PubMedPubMedCentralCrossRef Di Paola R, Caporarello N, Marucci A, et al. ENPP1 affects insulin action and secretion: evidences from in vitro studies. PLoS ONE. 2011;6:e19462.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Yang B, Xin M, Liang S, et al. New insight into the management of renal excretion and hyperuricemia: potential therapeutic strategies with natural bioactive compounds. Front Pharmacol. 2022;13:1026246.PubMedPubMedCentralCrossRef Yang B, Xin M, Liang S, et al. New insight into the management of renal excretion and hyperuricemia: potential therapeutic strategies with natural bioactive compounds. Front Pharmacol. 2022;13:1026246.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Zhang X, Nie Q, Zhang Z et al. Resveratrol affects the expression of uric acid transporter by improving inflammation. Mol Med Rep. 2021;24:564. Zhang X, Nie Q, Zhang Z et al. Resveratrol affects the expression of uric acid transporter by improving inflammation. Mol Med Rep. 2021;24:564.
148.
Zurück zum Zitat Sang M, Du G, Hao J, et al. Modeling and optimizing inhibitory activities of Nelumbinis folium extract on xanthine oxidase using response surface methodology. J Pharm Biomed Anal. 2017;139:37–43.PubMedCrossRef Sang M, Du G, Hao J, et al. Modeling and optimizing inhibitory activities of Nelumbinis folium extract on xanthine oxidase using response surface methodology. J Pharm Biomed Anal. 2017;139:37–43.PubMedCrossRef
149.
Zurück zum Zitat Xu K, Liu S, Zhao X, et al. Treating hyperuricemia related non-alcoholic fatty liver disease in rats with resveratrol. Biomed Pharmacother. 2019;110:844–9.PubMedCrossRef Xu K, Liu S, Zhao X, et al. Treating hyperuricemia related non-alcoholic fatty liver disease in rats with resveratrol. Biomed Pharmacother. 2019;110:844–9.PubMedCrossRef
150.
Zurück zum Zitat Yang S, Cao S, Li C, et al. Berberrubine, a main metabolite of berberine, alleviates non-alcoholic fatty liver disease via modulating glucose and lipid metabolism and restoring gut microbiota. Front Pharmacol. 2022;13:913378.PubMedPubMedCentralCrossRef Yang S, Cao S, Li C, et al. Berberrubine, a main metabolite of berberine, alleviates non-alcoholic fatty liver disease via modulating glucose and lipid metabolism and restoring gut microbiota. Front Pharmacol. 2022;13:913378.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Zhou YJ, Xu N, Zhang XC, et al. Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. J Agric Food Chem. 2021;69:5618–27.PubMedCrossRef Zhou YJ, Xu N, Zhang XC, et al. Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. J Agric Food Chem. 2021;69:5618–27.PubMedCrossRef
152.
Zurück zum Zitat Kim SM, Imm JY. The effect of chrysin-loaded phytosomes on insulin resistance and blood sugar control in type 2 diabetic db/db mice. Molecules. 2020;25:550325. Kim SM, Imm JY. The effect of chrysin-loaded phytosomes on insulin resistance and blood sugar control in type 2 diabetic db/db mice. Molecules. 2020;25:550325.
153.
Zurück zum Zitat Chang YH, Chiang YF, Chen HY et al. Anti-inflammatory and anti-hyperuricemic effects of chrysin on a high fructose corn syrup-induced hyperuricemia rat model via the amelioration of urate transporters and inhibition of NLRP3 inflammasome signaling pathway. Antioxidants (Basel). 2021;10:564. Chang YH, Chiang YF, Chen HY et al. Anti-inflammatory and anti-hyperuricemic effects of chrysin on a high fructose corn syrup-induced hyperuricemia rat model via the amelioration of urate transporters and inhibition of NLRP3 inflammasome signaling pathway. Antioxidants (Basel). 2021;10:564.
154.
Zurück zum Zitat Liu W, Chen X, Ge Y, et al. Network pharmacology strategy for revealing the pharmacological mechanism of pharmacokinetic target components of San-Ye-Tang-Zhi-Qing formula for the treatment of type 2 diabetes mellitus. J Ethnopharmacol. 2020;260:113044.PubMedCrossRef Liu W, Chen X, Ge Y, et al. Network pharmacology strategy for revealing the pharmacological mechanism of pharmacokinetic target components of San-Ye-Tang-Zhi-Qing formula for the treatment of type 2 diabetes mellitus. J Ethnopharmacol. 2020;260:113044.PubMedCrossRef
155.
Zurück zum Zitat Guo Y, Yu Y, Li H, et al. Inulin supplementation ameliorates hyperuricemia and modulates gut microbiota in Uox-knockout mice. Eur J Nutr. 2021;60:2217–30.PubMedCrossRef Guo Y, Yu Y, Li H, et al. Inulin supplementation ameliorates hyperuricemia and modulates gut microbiota in Uox-knockout mice. Eur J Nutr. 2021;60:2217–30.PubMedCrossRef
156.
Zurück zum Zitat Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med. 2013;34:39–58.PubMedCrossRef Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med. 2013;34:39–58.PubMedCrossRef
157.
Zurück zum Zitat Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716–24.PubMedCrossRef Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716–24.PubMedCrossRef
158.
Zurück zum Zitat Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiol (Bethesda). 2016;31:283–93. Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiol (Bethesda). 2016;31:283–93.
159.
Zurück zum Zitat Zhang W, Wang T, Guo R, et al. Variation of serum uric acid is associated with gut microbiota in patients with Diabetes Mellitus. Front Cell Infect Microbiol. 2021;11:761757.PubMedCrossRef Zhang W, Wang T, Guo R, et al. Variation of serum uric acid is associated with gut microbiota in patients with Diabetes Mellitus. Front Cell Infect Microbiol. 2021;11:761757.PubMedCrossRef
160.
161.
Zurück zum Zitat Quirós PM, Langer T, López-Otín C. New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol. 2015;16:345–59.PubMedCrossRef Quirós PM, Langer T, López-Otín C. New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol. 2015;16:345–59.PubMedCrossRef
162.
Zurück zum Zitat Villalobos-Labra R, Subiabre M, Toledo F, et al. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetoplacental tissue in diabesity. Mol Aspects Med. 2019;66:49–61.PubMedCrossRef Villalobos-Labra R, Subiabre M, Toledo F, et al. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetoplacental tissue in diabesity. Mol Aspects Med. 2019;66:49–61.PubMedCrossRef
163.
Zurück zum Zitat Ouyang R, Zhao X, Zhang R et al. FGF21 attenuates high uric acid–induced endoplasmic reticulum stress, inflammation and vascular endothelial cell dysfunction by activating Sirt1. Mol Med Rep. 2022;25:35. Ouyang R, Zhao X, Zhang R et al. FGF21 attenuates high uric acid–induced endoplasmic reticulum stress, inflammation and vascular endothelial cell dysfunction by activating Sirt1. Mol Med Rep. 2022;25:35.
164.
Zurück zum Zitat Yan M, Chen K, He L, et al. Uric acid induces cardiomyocyte apoptosis via activation of calpain-1 and endoplasmic reticulum stress. Cell Physiol Biochem. 2018;45:2122–35.PubMedCrossRef Yan M, Chen K, He L, et al. Uric acid induces cardiomyocyte apoptosis via activation of calpain-1 and endoplasmic reticulum stress. Cell Physiol Biochem. 2018;45:2122–35.PubMedCrossRef
165.
Zurück zum Zitat Choi YJ, Shin HS, Choi HS, et al. Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Lab Invest. 2014;94:1114–25.PubMedCrossRef Choi YJ, Shin HS, Choi HS, et al. Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Lab Invest. 2014;94:1114–25.PubMedCrossRef
166.
Zurück zum Zitat Li S, Zhao F, Cheng S, et al. Uric acid-induced endoplasmic reticulum stress triggers phenotypic change in rat glomerular mesangial cells. Nephrol (Carlton). 2013;18:682–9. Li S, Zhao F, Cheng S, et al. Uric acid-induced endoplasmic reticulum stress triggers phenotypic change in rat glomerular mesangial cells. Nephrol (Carlton). 2013;18:682–9.
167.
Zurück zum Zitat Ebrahimi R, Pasalar P, Shokri H et al. Evidence for the effect of soluble uric acid in augmenting endoplasmic reticulum stress markers in human peripheral blood mononuclear cells. J Physiol Biochem. 2022;78:343–53. Ebrahimi R, Pasalar P, Shokri H et al. Evidence for the effect of soluble uric acid in augmenting endoplasmic reticulum stress markers in human peripheral blood mononuclear cells. J Physiol Biochem. 2022;78:343–53.
169.
Zurück zum Zitat Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–40.PubMedCrossRef Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–40.PubMedCrossRef
Metadaten
Titel
Mechanistic insights of soluble uric acid-induced insulin resistance: Insulin signaling and beyond
verfasst von
Wei Yu
De Xie
Tetsuya Yamamoto
Hidenori Koyama
Jidong Cheng
Publikationsdatum
30.01.2023
Verlag
Springer US
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 2/2023
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-023-09787-4

Weitere Artikel der Ausgabe 2/2023

Reviews in Endocrine and Metabolic Disorders 2/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.