Skip to main content
Erschienen in: Molecular Imaging and Biology 5/2018

12.03.2018 | Research Article

Metabolic Brain Network Analysis of Hypothyroidism Symptom Based on [18F]FDG-PET of Rats

verfasst von: Hongkai Wang, Ziyu Tan, Qiang Zheng, Jing Yu

Erschienen in: Molecular Imaging and Biology | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Recent researches have demonstrated the value of using 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) positron emission tomography (PET) imaging to reveal the hypothyroidism-related damages in local brain regions. However, the influence of hypothyroidism on the entire brain network is barely studied. This study focuses on the application of graph theory on analyzing functional brain networks of the hypothyroidism symptom.

Procedures

For both the hypothyroidism and the control groups of Wistar rats, the functional brain networks were constructed by thresholding the glucose metabolism correlation matrices of 58 brain regions. The network topological properties (including the small-world properties and the nodal centralities) were calculated and compared between the two groups.

Results

We found that the rat brains, like human brains, have typical properties of the small-world network in both the hypothyroidism and the control groups. However, the hypothyroidism group demonstrated lower global efficiency and decreased local cliquishness of the brain network, indicating hypothyroidism-related impairment to the brain network. The hypothyroidism group also has decreased nodal centrality in the left posterior hippocampus, the right hypothalamus, pituitary, pons, and medulla. This observation accorded with the hypothyroidism-related functional disorder of hypothalamus-pituitary-thyroid (HPT) feedback regulation mechanism.

Conclusion

Our research quantitatively confirms that hypothyroidism hampers brain cognitive function by causing impairment to the brain network of glucose metabolism. This study reveals the feasibility and validity of applying graph theory method to preclinical [18F]FDG-PET images and facilitates future study on human subjects.
Literatur
1.
Zurück zum Zitat Kudrjavcev T (1978) Neurologic complications of thyroid dysfunction. Adv Neurol 19:619–636PubMed Kudrjavcev T (1978) Neurologic complications of thyroid dysfunction. Adv Neurol 19:619–636PubMed
2.
Zurück zum Zitat Dugbartey AT (1998) Neurocognitive aspects of hypothyroidism. Arch Intern Med 158:1413–1418CrossRefPubMed Dugbartey AT (1998) Neurocognitive aspects of hypothyroidism. Arch Intern Med 158:1413–1418CrossRefPubMed
3.
Zurück zum Zitat Asiaei F, Fazel A, Rajabzadeh AA, Hosseini M, Beheshti F, Seghatoleslam M (2017) Neuroprotective effects of Nigella sativa extract upon the hippocampus in PTU-induced hypothyroidism juvenile rats: a stereological study. Metab Brain Dis 32:1755–1765CrossRefPubMed Asiaei F, Fazel A, Rajabzadeh AA, Hosseini M, Beheshti F, Seghatoleslam M (2017) Neuroprotective effects of Nigella sativa extract upon the hippocampus in PTU-induced hypothyroidism juvenile rats: a stereological study. Metab Brain Dis 32:1755–1765CrossRefPubMed
4.
Zurück zum Zitat Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872CrossRefPubMedPubMedCentral Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Davis JD, Tremont G (2007) Neuropsychiatric aspects of hypothyroidism and treatment reversibility. Minerva Endocrinol 32:49–65PubMed Davis JD, Tremont G (2007) Neuropsychiatric aspects of hypothyroidism and treatment reversibility. Minerva Endocrinol 32:49–65PubMed
6.
Zurück zum Zitat Salazar P, Cisternas P, Codocedo JF, Inestrosa NC (2017) Induction of hypothyroidism during early postnatal stages triggers a decrease in cognitive performance by decreasing hippocampal synaptic plasticity. Biochim Biophys Acta 1863:870–883CrossRefPubMed Salazar P, Cisternas P, Codocedo JF, Inestrosa NC (2017) Induction of hypothyroidism during early postnatal stages triggers a decrease in cognitive performance by decreasing hippocampal synaptic plasticity. Biochim Biophys Acta 1863:870–883CrossRefPubMed
7.
Zurück zum Zitat Singh S, Kumar M, Modi S, Kaur P, Shankar LR, Khushu S (2015) Alterations of functional connectivity among resting-state networks in hypothyroidism. J Neuroendocrinol 27:609–615CrossRefPubMed Singh S, Kumar M, Modi S, Kaur P, Shankar LR, Khushu S (2015) Alterations of functional connectivity among resting-state networks in hypothyroidism. J Neuroendocrinol 27:609–615CrossRefPubMed
8.
Zurück zum Zitat Kim CE, Kim YK, Chung G, Jeong JM, Lee DS, Kim J, Kim SJ (2014) Large-scale plastic changes of the brain network in an animal model of neuropathic pain. NeuroImage 98:203–215CrossRefPubMed Kim CE, Kim YK, Chung G, Jeong JM, Lee DS, Kim J, Kim SJ (2014) Large-scale plastic changes of the brain network in an animal model of neuropathic pain. NeuroImage 98:203–215CrossRefPubMed
9.
Zurück zum Zitat Gill RS, Mirsattari SM, Leung LS (2017) Resting state functional network disruptions in a kainic acid model of temporal lobe epilepsy. Neuroimage Clin 13:70–81CrossRefPubMed Gill RS, Mirsattari SM, Leung LS (2017) Resting state functional network disruptions in a kainic acid model of temporal lobe epilepsy. Neuroimage Clin 13:70–81CrossRefPubMed
10.
Zurück zum Zitat Lu H, Li B-M, Wei H (2012) A small-world of neuronal functional network from multi-electrode recordings during a working memory task [abstract]. IEEE Neural Network, 1-6P Lu H, Li B-M, Wei H (2012) A small-world of neuronal functional network from multi-electrode recordings during a working memory task [abstract]. IEEE Neural Network, 1-6P
11.
Zurück zum Zitat Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4:e1000100CrossRefPubMedPubMedCentral Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4:e1000100CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Coustaut M, Pallet V, Garcin H, Higueret P (1996) The influence of dietary vitamin a on triiodothyronine, retinoic acid, and glucocorticoid receptors in liver of hypothyroid rats. Br J Nutr 76:295–306CrossRefPubMed Coustaut M, Pallet V, Garcin H, Higueret P (1996) The influence of dietary vitamin a on triiodothyronine, retinoic acid, and glucocorticoid receptors in liver of hypothyroid rats. Br J Nutr 76:295–306CrossRefPubMed
13.
Zurück zum Zitat Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL (2006) Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods 155:272–284CrossRefPubMed Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL (2006) Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods 155:272–284CrossRefPubMed
14.
Zurück zum Zitat Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRefPubMed Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRefPubMed
15.
Zurück zum Zitat Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701CrossRefPubMed Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701CrossRefPubMed
16.
Zurück zum Zitat Shimbel A (1953) Structural parameters of communication networks. Bull Math Biophys 15:501–507CrossRef Shimbel A (1953) Structural parameters of communication networks. Bull Math Biophys 15:501–507CrossRef
17.
Zurück zum Zitat Bavelas A (1948) A mathematical model for group structures. Hum Organ 7:16–30CrossRef Bavelas A (1948) A mathematical model for group structures. Hum Organ 7:16–30CrossRef
18.
Zurück zum Zitat Melie-García L, Sanabria-Diaz G, Sánchez-Catasús C (2013) Studying the topological organization of the cerebral blood flow fluctuations in resting state. NeuroImage 64:173–184CrossRefPubMed Melie-García L, Sanabria-Diaz G, Sánchez-Catasús C (2013) Studying the topological organization of the cerebral blood flow fluctuations in resting state. NeuroImage 64:173–184CrossRefPubMed
19.
Zurück zum Zitat He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J Neurosci 4:4756–4766CrossRef He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J Neurosci 4:4756–4766CrossRef
20.
Zurück zum Zitat Sanabria-Diaz G, Martínez-Montes E, Melie-Garcia L (2013) Glucose metabolism during resting state reveals abnormal brain networks organization in the Alzheimer’s disease and mild cognitive impairment. PLoS One 8:e68860–e68860CrossRefPubMedPubMedCentral Sanabria-Diaz G, Martínez-Montes E, Melie-Garcia L (2013) Glucose metabolism during resting state reveals abnormal brain networks organization in the Alzheimer’s disease and mild cognitive impairment. PLoS One 8:e68860–e68860CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Hilgetag CC, Goulas A (2016) Is the brain really a small-world network? Brain Struct Funct 221:2361–2366CrossRefPubMed Hilgetag CC, Goulas A (2016) Is the brain really a small-world network? Brain Struct Funct 221:2361–2366CrossRefPubMed
22.
Zurück zum Zitat Liu Z, Ke L, Liu H, Huang W, Hu Z (2014) Changes in topological organization of functional PET brain network with normal aging. PLoS One 9:e88690CrossRefPubMedPubMedCentral Liu Z, Ke L, Liu H, Huang W, Hu Z (2014) Changes in topological organization of functional PET brain network with normal aging. PLoS One 9:e88690CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Liang X, Wang JHA (2010) Human connectome: structural and functional brain networks. Chin Sci Bull 55:1565–1583CrossRef Liang X, Wang JHA (2010) Human connectome: structural and functional brain networks. Chin Sci Bull 55:1565–1583CrossRef
25.
Zurück zum Zitat Diekman MJ, Romijn JA, Endert E et al (1998) Thyroid hormones modulate serum leptin levels: observations in thyrotoxic and hypothyroid women. Thyroid 8:1081–1086CrossRefPubMed Diekman MJ, Romijn JA, Endert E et al (1998) Thyroid hormones modulate serum leptin levels: observations in thyrotoxic and hypothyroid women. Thyroid 8:1081–1086CrossRefPubMed
26.
Zurück zum Zitat Morton GJ, Blevins JE, Kim F, Matsen M, Figlewicz DP (2009) The action of leptin in the ventral tegmental area to decrease food intake is dependent on Jak-2 signaling. Am J Physiol-Endocrinol Metab 297:E202–E210CrossRefPubMedPubMedCentral Morton GJ, Blevins JE, Kim F, Matsen M, Figlewicz DP (2009) The action of leptin in the ventral tegmental area to decrease food intake is dependent on Jak-2 signaling. Am J Physiol-Endocrinol Metab 297:E202–E210CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Figlewicz DP, Evans S, Murphy J et al (2003) Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964:107–115CrossRefPubMed Figlewicz DP, Evans S, Murphy J et al (2003) Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964:107–115CrossRefPubMed
28.
Zurück zum Zitat van den Heuvel MP, Sporns O (2013) Network hubs in the human brain. Trends Cogn Sci 17:683–696CrossRefPubMed van den Heuvel MP, Sporns O (2013) Network hubs in the human brain. Trends Cogn Sci 17:683–696CrossRefPubMed
29.
Zurück zum Zitat Tijms BM, Wink AM, de Haan W, van der Flier WM, Stam CJ, Scheltens P, Barkhof F (2013) Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiol Aging 34:2023–2036CrossRefPubMed Tijms BM, Wink AM, de Haan W, van der Flier WM, Stam CJ, Scheltens P, Barkhof F (2013) Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiol Aging 34:2023–2036CrossRefPubMed
Metadaten
Titel
Metabolic Brain Network Analysis of Hypothyroidism Symptom Based on [18F]FDG-PET of Rats
verfasst von
Hongkai Wang
Ziyu Tan
Qiang Zheng
Jing Yu
Publikationsdatum
12.03.2018
Verlag
Springer International Publishing
Erschienen in
Molecular Imaging and Biology / Ausgabe 5/2018
Print ISSN: 1536-1632
Elektronische ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1182-2

Weitere Artikel der Ausgabe 5/2018

Molecular Imaging and Biology 5/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.