Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3/2019

16.09.2019 | Metastasis

Functional disparities within the TIMP family in cancer: hints from molecular divergence

verfasst von: Celina Eckfeld, Daniel Häußler, Benjamin Schoeps, Chris D. Hermann, Achim Krüger

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

The members of the tissue inhibitor of metalloproteinase (TIMP) family (TIMP-1, 2, 3, 4) are prominently appreciated as natural inhibitors of cancer-promoting metalloproteinases. However, clinical and recent functional studies indicate that some of them correlate with bad prognosis and contribute to the progression of cancer and metastasis, pointing towards mechanisms beyond inhibition of cancer-promoting proteases. Indeed, it is increasingly recognized that TIMPs are multi-functional proteins mediating a variety of cellular effects including direct cell signaling. Our aim was to provide comprehensive information towards a better appreciation and understanding of the biological heterogeneity and complexity of the TIMPs in cancer. Comparison of all four members revealed distinct cancer-associated expression patterns and distinct prognostic impact including a clear correlation of TIMP-1 with bad prognosis for almost all cancer types. For the first time, we present the interactomes of all TIMPs regarding overlapping and non-overlapping interaction partners. Interestingly, the overlap was maximal for metalloproteinases (e.g., matrix metalloproteinase 1, 2, 3, 9) and decreased for non-protease molecules, especially cell surface receptors (e.g., CD63, overlapping only for TIMP-1 and 4; IGF-1R unique for TIMP-2; VEGFR2 unique for TIMP-3). Finally, we attempted to identify and summarize experimental evidence for common and unique structural traits of the four TIMPs on the basis of amino acid sequence and protein folding, which account for functional disparities. Altogether, the four TIMPs have to be appreciated as molecules with commonalities, but, more importantly, functional disparities, which need to be investigated further in the future, since those determine their distinct roles in cancer and metastasis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lambert, E., Dassé, E., Haye, B., & Petitfrère, E. (2004). TIMPs as multifacial proteins. Critical Reviews in Oncology/Hematology, 49(3), 187–198.PubMedCrossRef Lambert, E., Dassé, E., Haye, B., & Petitfrère, E. (2004). TIMPs as multifacial proteins. Critical Reviews in Oncology/Hematology, 49(3), 187–198.PubMedCrossRef
2.
Zurück zum Zitat Lu, P., Takai, K., Weaver, V. M., & Werb, Z. (2011). Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology, 3, a005058. Lu, P., Takai, K., Weaver, V. M., & Werb, Z. (2011). Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology, 3, a005058.
3.
Zurück zum Zitat Arpino, V., Brock, M., & Gill, S. E. (2015). The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biology: Journal of the International Society for Matrix Biology, 44-46, 247–254.CrossRef Arpino, V., Brock, M., & Gill, S. E. (2015). The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biology: Journal of the International Society for Matrix Biology, 44-46, 247–254.CrossRef
4.
Zurück zum Zitat Bonnans, C., Chou, J., & Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology, 15(12), 786–801.PubMedPubMedCentralCrossRef Bonnans, C., Chou, J., & Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology, 15(12), 786–801.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Brand, K. (2002). Cancer gene therapy with tissue inhibitors of metalloproteinases (TIMPs). Current Gene Therapy, 2(2), 255–271.PubMedCrossRef Brand, K. (2002). Cancer gene therapy with tissue inhibitors of metalloproteinases (TIMPs). Current Gene Therapy, 2(2), 255–271.PubMedCrossRef
6.
Zurück zum Zitat Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., & Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284(5751), 67–68.PubMedCrossRef Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., & Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284(5751), 67–68.PubMedCrossRef
7.
Zurück zum Zitat Köppel, P., Baici, A., Keist, R., Matzku, S., & Keller, R. (1984). Cathepsin B-like proteinase as a marker for metastatic tumor cell variants. Pathobiology: Journal of Immunopathology, Molecular and Cellular Biology, 52(5), 293–299.CrossRef Köppel, P., Baici, A., Keist, R., Matzku, S., & Keller, R. (1984). Cathepsin B-like proteinase as a marker for metastatic tumor cell variants. Pathobiology: Journal of Immunopathology, Molecular and Cellular Biology, 52(5), 293–299.CrossRef
8.
Zurück zum Zitat Thorgeirsson, U. P., Liotta, L., Kalebic, T., Thomas, K., Rios-Candelore, M., & Russo, R. G. (1982). Effect of natural protease inhibitors and a chemoattractant on tumor cell invasion in vitro. Journal of the National Cancer Institute, 69(5), 1049–1054.PubMed Thorgeirsson, U. P., Liotta, L., Kalebic, T., Thomas, K., Rios-Candelore, M., & Russo, R. G. (1982). Effect of natural protease inhibitors and a chemoattractant on tumor cell invasion in vitro. Journal of the National Cancer Institute, 69(5), 1049–1054.PubMed
9.
Zurück zum Zitat Joyce, J. A., Baruch, A., Chehade, K., Meyer-Morse, N., Giraudo, E., Tsai, F.-Y., Greenbaum, D. C., Hager, J. H., Bogyo, M., & Hanahan, D. (2004). Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell, 5(5), 443–453.PubMedCrossRef Joyce, J. A., Baruch, A., Chehade, K., Meyer-Morse, N., Giraudo, E., Tsai, F.-Y., Greenbaum, D. C., Hager, J. H., Bogyo, M., & Hanahan, D. (2004). Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell, 5(5), 443–453.PubMedCrossRef
10.
Zurück zum Zitat Albini, A., Melchiori, A., Santi, L., Liotta, L. A., Brown, P. D., & Stetler-Stevenson, W. G. (1991). Tumor cell invasion inhibited by TIMP-2. Journal of the National Cancer Institute, 83(11), 775–779.PubMedCrossRef Albini, A., Melchiori, A., Santi, L., Liotta, L. A., Brown, P. D., & Stetler-Stevenson, W. G. (1991). Tumor cell invasion inhibited by TIMP-2. Journal of the National Cancer Institute, 83(11), 775–779.PubMedCrossRef
11.
Zurück zum Zitat Khokha, R. (1994). Suppression of the tumorigenic and metastatic abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1. Journal of the National Cancer Institute, 86(4), 299–304.PubMedCrossRef Khokha, R. (1994). Suppression of the tumorigenic and metastatic abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1. Journal of the National Cancer Institute, 86(4), 299–304.PubMedCrossRef
12.
Zurück zum Zitat Rigg, A. S., & Lemoine, N. R. (2001). Adenoviral delivery of TIMP1 or TIMP2 can modify the invasive behavior of pancreatic cancer and can have a significant antitumor effect in vivo. Cancer Gene Therapy, 8(11), 869–878.PubMedCrossRef Rigg, A. S., & Lemoine, N. R. (2001). Adenoviral delivery of TIMP1 or TIMP2 can modify the invasive behavior of pancreatic cancer and can have a significant antitumor effect in vivo. Cancer Gene Therapy, 8(11), 869–878.PubMedCrossRef
13.
Zurück zum Zitat Jiang, Y., Goldberg, I. D., & Shi, Y. E. (2002). Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene, 21(14), 2245–2252.PubMedCrossRef Jiang, Y., Goldberg, I. D., & Shi, Y. E. (2002). Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene, 21(14), 2245–2252.PubMedCrossRef
14.
Zurück zum Zitat Baker, A. H., George, S. J., Zaltsman, A. B., Murphy, G., & Newby, A. C. (1999). Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. British Journal of Cancer, 79(9), 1347–1355.PubMedPubMedCentralCrossRef Baker, A. H., George, S. J., Zaltsman, A. B., Murphy, G., & Newby, A. C. (1999). Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. British Journal of Cancer, 79(9), 1347–1355.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat McCarthy, K., Maguire, T., McGreal, G., McDermott, E., O’Higgins, N., & Duffy, M. J. (1999). High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. International Journal of Cancer, 84(1), 44–48.PubMedCrossRef McCarthy, K., Maguire, T., McGreal, G., McDermott, E., O’Higgins, N., & Duffy, M. J. (1999). High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. International Journal of Cancer, 84(1), 44–48.PubMedCrossRef
16.
Zurück zum Zitat Remacle, A., McCarthy, K., Noël, A., Maguire, T., McDermott, E., O’Higgins, N., Foidart, J. M., & Duffy, M. J. (2000). High levels of TIMP-2 correlate with adverse prognosis in breast cancer. International Journal of Cancer, 89(2), 118–121.PubMedCrossRef Remacle, A., McCarthy, K., Noël, A., Maguire, T., McDermott, E., O’Higgins, N., Foidart, J. M., & Duffy, M. J. (2000). High levels of TIMP-2 correlate with adverse prognosis in breast cancer. International Journal of Cancer, 89(2), 118–121.PubMedCrossRef
17.
Zurück zum Zitat Kopitz, C., Gerg, M., Bandapalli, O. R., Ister, D., Pennington, C. J., Hauser, S., Flechsig, C., Krell, H.-W., Antolovic, D., Brew, K., Nagase, H., Stangl, M., von Weyhern, C. W. H., Brücher, B. L. D. M., Brand, K., Coussens, L. M., Edwards, D. R., & Krüger, A. (2007). Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Research, 67(18), 8615–8623.PubMedCrossRef Kopitz, C., Gerg, M., Bandapalli, O. R., Ister, D., Pennington, C. J., Hauser, S., Flechsig, C., Krell, H.-W., Antolovic, D., Brew, K., Nagase, H., Stangl, M., von Weyhern, C. W. H., Brücher, B. L. D. M., Brand, K., Coussens, L. M., Edwards, D. R., & Krüger, A. (2007). Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Research, 67(18), 8615–8623.PubMedCrossRef
18.
Zurück zum Zitat Schelter, F., Grandl, M., Seubert, B., Schaten, S., Hauser, S., Gerg, M., Boccaccio, C., Comoglio, P., & Krüger, A. (2011). Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10. Clinical & Experimental Metastasis, 28(8), 793–802.CrossRef Schelter, F., Grandl, M., Seubert, B., Schaten, S., Hauser, S., Gerg, M., Boccaccio, C., Comoglio, P., & Krüger, A. (2011). Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10. Clinical & Experimental Metastasis, 28(8), 793–802.CrossRef
19.
Zurück zum Zitat Seubert, B., Grünwald, B., Kobuch, J., Cui, H., Schelter, F., Schaten, S., Siveke, J. T., Lim, N. H., Nagase, H., Simonavicius, N., Heikenwalder, M., Reinheckel, T., Sleeman, J. P., Janssen, K. P., Knolle, P. A., & Krüger, A. (2015). Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology, 61(1), 238–248.PubMedCrossRef Seubert, B., Grünwald, B., Kobuch, J., Cui, H., Schelter, F., Schaten, S., Siveke, J. T., Lim, N. H., Nagase, H., Simonavicius, N., Heikenwalder, M., Reinheckel, T., Sleeman, J. P., Janssen, K. P., Knolle, P. A., & Krüger, A. (2015). Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology, 61(1), 238–248.PubMedCrossRef
20.
Zurück zum Zitat Cui, H., Seubert, B., Stahl, E., Dietz, H., Reuning, U., Moreno-Leon, L., Ilie, M., Hofman, P., Nagase, H., Mari, B., & Krüger, A. (2015). Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene, 34(28), 3640–3650.PubMedCrossRef Cui, H., Seubert, B., Stahl, E., Dietz, H., Reuning, U., Moreno-Leon, L., Ilie, M., Hofman, P., Nagase, H., Mari, B., & Krüger, A. (2015). Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene, 34(28), 3640–3650.PubMedCrossRef
21.
Zurück zum Zitat Grünwald, B., Schoeps, B., & Krüger, A. (2019). Recognizing the molecular multifunctionality and interactome of TIMP-1. Trends in Cell Biology, 29(1), 6–19.PubMedCrossRef Grünwald, B., Schoeps, B., & Krüger, A. (2019). Recognizing the molecular multifunctionality and interactome of TIMP-1. Trends in Cell Biology, 29(1), 6–19.PubMedCrossRef
22.
Zurück zum Zitat Ries, C. (2014). Cytokine functions of TIMP-1. Cellular and Molecular Life Sciences, 71(4), 659–672.PubMedCrossRef Ries, C. (2014). Cytokine functions of TIMP-1. Cellular and Molecular Life Sciences, 71(4), 659–672.PubMedCrossRef
23.
Zurück zum Zitat Chirco, R., Liu, X.-W., Jung, K.-K., & Kim, H.-R. C. (2006). Novel functions of TIMPs in cell signaling. Cancer Metastasis Reviews, 25(1), 99–113.PubMedCrossRef Chirco, R., Liu, X.-W., Jung, K.-K., & Kim, H.-R. C. (2006). Novel functions of TIMPs in cell signaling. Cancer Metastasis Reviews, 25(1), 99–113.PubMedCrossRef
24.
Zurück zum Zitat Mason, S. D., & Joyce, J. A. (2011). Proteolytic networks in cancer. Trends in Cell Biology, 21(4), 228–237.PubMedCrossRef Mason, S. D., & Joyce, J. A. (2011). Proteolytic networks in cancer. Trends in Cell Biology, 21(4), 228–237.PubMedCrossRef
25.
Zurück zum Zitat Murthy, A., Cruz-Munoz, W., & Khokha, R. (2008). TIMPs: Extracellular modifiers in cancer development. In D. Edwards, G. Hoyer-Hansen, F. Blasi, & B. F. Sloane (Eds.), The cancer degradome (pp. 373–400). Springer. Murthy, A., Cruz-Munoz, W., & Khokha, R. (2008). TIMPs: Extracellular modifiers in cancer development. In D. Edwards, G. Hoyer-Hansen, F. Blasi, & B. F. Sloane (Eds.), The cancer degradome (pp. 373–400). Springer.
26.
Zurück zum Zitat Murphy, G., Cawston, T. E., & Reynolds, J. J. (1981). An inhibitor of collagenase from human amniotic fluid. Purification, characterization and action on metalloproteinases. The Biochemical Journal, 195(1), 167–170.PubMedPubMedCentralCrossRef Murphy, G., Cawston, T. E., & Reynolds, J. J. (1981). An inhibitor of collagenase from human amniotic fluid. Purification, characterization and action on metalloproteinases. The Biochemical Journal, 195(1), 167–170.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Docherty, A. J. P., Lyons, A., Smith, B. J., Wright, E. M., Stephens, P. E., Harris, T. J. R., Murphy, G., & Reynolds, J. J. (1985). Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature, 318(6041), 66–69.PubMedCrossRef Docherty, A. J. P., Lyons, A., Smith, B. J., Wright, E. M., Stephens, P. E., Harris, T. J. R., Murphy, G., & Reynolds, J. J. (1985). Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature, 318(6041), 66–69.PubMedCrossRef
28.
Zurück zum Zitat Gasson, J. C., Golde, D. W., Kaufman, S. E., Westbrook, C. A., Hewick, R. M., Kaufman, R. J., Wong, G. G., Temple, P. A., Leary, A. C., Brown, E. L., Orr, E. C., & Clark, S. C. (1985). Molecular characterization and expression of the gene encoding human erythroid-potentiating activity. Nature, 315(6022), 768–771.PubMedCrossRef Gasson, J. C., Golde, D. W., Kaufman, S. E., Westbrook, C. A., Hewick, R. M., Kaufman, R. J., Wong, G. G., Temple, P. A., Leary, A. C., Brown, E. L., Orr, E. C., & Clark, S. C. (1985). Molecular characterization and expression of the gene encoding human erythroid-potentiating activity. Nature, 315(6022), 768–771.PubMedCrossRef
29.
Zurück zum Zitat Cruz-Munoz, W., & Khokha, R. (2008). The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis. Critical Reviews in Clinical Laboratory Sciences, 45(3), 291–338.PubMedCrossRef Cruz-Munoz, W., & Khokha, R. (2008). The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis. Critical Reviews in Clinical Laboratory Sciences, 45(3), 291–338.PubMedCrossRef
30.
Zurück zum Zitat Goldberg, G. I., Marmer, B. L., Grant, G. A., Eisen, A. Z., Wilhelm, S., & He, C. S. (1989). Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proceedings of the National Academy of Sciences of the United States of America, 86(21), 8207–8211.PubMedPubMedCentralCrossRef Goldberg, G. I., Marmer, B. L., Grant, G. A., Eisen, A. Z., Wilhelm, S., & He, C. S. (1989). Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proceedings of the National Academy of Sciences of the United States of America, 86(21), 8207–8211.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Hamze, A. B., Wei, S., Bahudhanapati, H., Kota, S., Acharya, K. R., & Brew, K. (2007). Constraining specificity in the N-domain of tissue inhibitor of metalloproteinases-1; gelatinase-selective inhibitors. Protein Science, 16(9), 1905–1913.PubMedPubMedCentralCrossRef Hamze, A. B., Wei, S., Bahudhanapati, H., Kota, S., Acharya, K. R., & Brew, K. (2007). Constraining specificity in the N-domain of tissue inhibitor of metalloproteinases-1; gelatinase-selective inhibitors. Protein Science, 16(9), 1905–1913.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Stetler-Stevenson, W. G., Bersch, N., & Golde, D. W. (1992). Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS Letters, 296(2), 231–234.PubMedCrossRef Stetler-Stevenson, W. G., Bersch, N., & Golde, D. W. (1992). Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS Letters, 296(2), 231–234.PubMedCrossRef
33.
Zurück zum Zitat Stetler-Stevenson, W. G., Brown, P. D., Onisto, M., Levy, A. T., & Liotta, L. A. (1990). Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. The Journal of Biological Chemistry, 265(23), 13933–13938.PubMed Stetler-Stevenson, W. G., Brown, P. D., Onisto, M., Levy, A. T., & Liotta, L. A. (1990). Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. The Journal of Biological Chemistry, 265(23), 13933–13938.PubMed
34.
Zurück zum Zitat Pavloff, N., Staskus, P. W., Kishnani, N. S., & Hawkes, S. P. (1992). A new inhibitor of metalloproteinases from chicken: ChIMP-3. A third member of the TIMP family. The Journal of Biological Chemistry, 267(24), 17321–17326.PubMed Pavloff, N., Staskus, P. W., Kishnani, N. S., & Hawkes, S. P. (1992). A new inhibitor of metalloproteinases from chicken: ChIMP-3. A third member of the TIMP family. The Journal of Biological Chemistry, 267(24), 17321–17326.PubMed
35.
Zurück zum Zitat Greene, J., Wang, M., Liu, Y. E., Raymond, L. A., Rosen, C., & Shi, Y. E. (1996). Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. The Journal of Biological Chemistry, 271(48), 30375–30380.PubMedCrossRef Greene, J., Wang, M., Liu, Y. E., Raymond, L. A., Rosen, C., & Shi, Y. E. (1996). Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. The Journal of Biological Chemistry, 271(48), 30375–30380.PubMedCrossRef
36.
Zurück zum Zitat Terpos, E., Dimopoulos, M. A., Shrivastava, V., Leitzel, K., Christoulas, D., Migkou, M., Gavriatopoulou, M., Anargyrou, K., Hamer, P., Kastritis, E., Carney, W., & Lipton, A. (2010). High levels of serum TIMP-1 correlate with advanced disease and predict for poor survival in patients with multiple myeloma treated with novel agents. Leukemia Research, 34(3), 399–402.PubMedCrossRef Terpos, E., Dimopoulos, M. A., Shrivastava, V., Leitzel, K., Christoulas, D., Migkou, M., Gavriatopoulou, M., Anargyrou, K., Hamer, P., Kastritis, E., Carney, W., & Lipton, A. (2010). High levels of serum TIMP-1 correlate with advanced disease and predict for poor survival in patients with multiple myeloma treated with novel agents. Leukemia Research, 34(3), 399–402.PubMedCrossRef
37.
Zurück zum Zitat Fong, K. M., Kida, Y., Zimmerman, P. V., & Smith, P. J. (1996). TIMP1 and adverse prognosis in non-small cell lung cancer. Clinical Cancer Research, 2(8), 1369–1372.PubMed Fong, K. M., Kida, Y., Zimmerman, P. V., & Smith, P. J. (1996). TIMP1 and adverse prognosis in non-small cell lung cancer. Clinical Cancer Research, 2(8), 1369–1372.PubMed
38.
Zurück zum Zitat Honkavuori, M., Talvensaari-Mattila, A., Puistola, U., Turpeenniemi-Hujanen, T., & Santala, M. (2008). High serum TIMP-1 is associated with adverse prognosis in endometrial carcinoma. Anticancer Research, 28(5A), 2715–2719.PubMed Honkavuori, M., Talvensaari-Mattila, A., Puistola, U., Turpeenniemi-Hujanen, T., & Santala, M. (2008). High serum TIMP-1 is associated with adverse prognosis in endometrial carcinoma. Anticancer Research, 28(5A), 2715–2719.PubMed
39.
Zurück zum Zitat Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., & Asplund, A. (2015). Tissue-based map of the human proteome. Science, 347(6220), 1260419.PubMedCrossRef Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., & Asplund, A. (2015). Tissue-based map of the human proteome. Science, 347(6220), 1260419.PubMedCrossRef
40.
Zurück zum Zitat Lichtinghagen, R., Musholt, P. B., Lein, M., Römer, A., Rudolph, B., Kristiansen, G., Hauptmann, S., Schnorr, D., Loening, S. A., & Jung, K. (2002). Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue. European Urology, 42(4), 398–406.PubMedCrossRef Lichtinghagen, R., Musholt, P. B., Lein, M., Römer, A., Rudolph, B., Kristiansen, G., Hauptmann, S., Schnorr, D., Loening, S. A., & Jung, K. (2002). Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue. European Urology, 42(4), 398–406.PubMedCrossRef
41.
Zurück zum Zitat Grünwald, B., Harant, V., Schaten, S., Frühschütz, M., Spallek, R., Höchst, B., Stutzer, K., Berchtold, S., Erkan, M., Prokopchuk, O., Martignoni, M., Esposito, I., Heikenwalder, M., Gupta, A., Siveke, J., Saftig, P., Knolle, P., Wohlleber, D., & Krüger, A. (2016). Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology, 151(5), 1011–1024.PubMedCrossRef Grünwald, B., Harant, V., Schaten, S., Frühschütz, M., Spallek, R., Höchst, B., Stutzer, K., Berchtold, S., Erkan, M., Prokopchuk, O., Martignoni, M., Esposito, I., Heikenwalder, M., Gupta, A., Siveke, J., Saftig, P., Knolle, P., Wohlleber, D., & Krüger, A. (2016). Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology, 151(5), 1011–1024.PubMedCrossRef
42.
Zurück zum Zitat Prokopchuk, O., Grünwald, B., Nitsche, U., Jäger, C., Prokopchuk, O. L., Schubert, E. C., Friess, H., Martignoni, M. E., & Krüger, A. (2018). Elevated systemic levels of the matrix metalloproteinase inhibitor TIMP-1 correlate with clinical markers of cachexia in patients with chronic pancreatitis and pancreatic cancer. BMC Cancer, 18(1), 128.PubMedPubMedCentralCrossRef Prokopchuk, O., Grünwald, B., Nitsche, U., Jäger, C., Prokopchuk, O. L., Schubert, E. C., Friess, H., Martignoni, M. E., & Krüger, A. (2018). Elevated systemic levels of the matrix metalloproteinase inhibitor TIMP-1 correlate with clinical markers of cachexia in patients with chronic pancreatitis and pancreatic cancer. BMC Cancer, 18(1), 128.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Laitinen, A., Hagström, J., Mustonen, H., Kokkola, A., Tervahartiala, T., Sorsa, T., Böckelman, C., & Haglund, C. (2018). Serum MMP-8 and TIMP-1 as prognostic biomarkers in gastric cancer. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 40(9), 1010428318799266.CrossRef Laitinen, A., Hagström, J., Mustonen, H., Kokkola, A., Tervahartiala, T., Sorsa, T., Böckelman, C., & Haglund, C. (2018). Serum MMP-8 and TIMP-1 as prognostic biomarkers in gastric cancer. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 40(9), 1010428318799266.CrossRef
44.
Zurück zum Zitat Wang, C.-S., Wu, T.-L., Tsao, K.-C., & Sun, C.-F. (2006). Serum TIMP-1 in gastric cancer patients: a potential prognostic biomarker. Annals of Clinical and Laboratory Science, 36(1), 23–30.PubMed Wang, C.-S., Wu, T.-L., Tsao, K.-C., & Sun, C.-F. (2006). Serum TIMP-1 in gastric cancer patients: a potential prognostic biomarker. Annals of Clinical and Laboratory Science, 36(1), 23–30.PubMed
45.
Zurück zum Zitat Gouyer, V., Conti, M., Devos, P., Zerimech, F., Copin, M.-C., Créme, E., Wurtz, A., Porte, H., & Huet, G. (2005). Tissue inhibitor of metalloproteinase 1 is an independent predictor of prognosis in patients with nonsmall cell lung carcinoma who undergo resection with curative intent. Cancer, 103(8), 1676–1684.PubMedCrossRef Gouyer, V., Conti, M., Devos, P., Zerimech, F., Copin, M.-C., Créme, E., Wurtz, A., Porte, H., & Huet, G. (2005). Tissue inhibitor of metalloproteinase 1 is an independent predictor of prognosis in patients with nonsmall cell lung carcinoma who undergo resection with curative intent. Cancer, 103(8), 1676–1684.PubMedCrossRef
46.
Zurück zum Zitat Visscher, D. W., Höyhtyä, M., Ottosen, S. K., Liang, C.-M., Sarkar, F. H., Crissman, J. D., & Fridman, R. (1994). Enhanced expression of tissue inhibitor of metalloproteinase-2 (TIMP-2) in the stroma of breast carcinomas correlates with tumor recurrence. International Journal of Cancer, 59(3), 339–344.PubMedCrossRef Visscher, D. W., Höyhtyä, M., Ottosen, S. K., Liang, C.-M., Sarkar, F. H., Crissman, J. D., & Fridman, R. (1994). Enhanced expression of tissue inhibitor of metalloproteinase-2 (TIMP-2) in the stroma of breast carcinomas correlates with tumor recurrence. International Journal of Cancer, 59(3), 339–344.PubMedCrossRef
47.
Zurück zum Zitat Ylisirniö, S., Höyhtyä, M., & Turpeenniemi-Hujanen, T. (2000). Serum matrix metalloproteinases-2,-9 and tissue inhibitors of metalloproteinases-1,-2 in lung cancer--TIMP-1 as a prognostic marker. Anticancer Research, 20(2B), 1311–1316.PubMed Ylisirniö, S., Höyhtyä, M., & Turpeenniemi-Hujanen, T. (2000). Serum matrix metalloproteinases-2,-9 and tissue inhibitors of metalloproteinases-1,-2 in lung cancer--TIMP-1 as a prognostic marker. Anticancer Research, 20(2B), 1311–1316.PubMed
48.
Zurück zum Zitat Drzewiecka-Jędrzejczyk, M., Wlazeł, R., Terlecka, M., & Jabłoński, S. (2017). Serum metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in lung carcinoma patients. Journal of Thoracic Disease, 9(12), 5306–5313.PubMedPubMedCentralCrossRef Drzewiecka-Jędrzejczyk, M., Wlazeł, R., Terlecka, M., & Jabłoński, S. (2017). Serum metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in lung carcinoma patients. Journal of Thoracic Disease, 9(12), 5306–5313.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Suemitsu, R., Yoshino, I., Tomiyasu, M., Fukuyama, S., Okamoto, T., & Maehara, Y. (2004). Serum tissue inhibitors of metalloproteinase-1 and -2 in patients with non-small cell lung cancer. Surgery Today, 34(11), 896–901.PubMedCrossRef Suemitsu, R., Yoshino, I., Tomiyasu, M., Fukuyama, S., Okamoto, T., & Maehara, Y. (2004). Serum tissue inhibitors of metalloproteinase-1 and -2 in patients with non-small cell lung cancer. Surgery Today, 34(11), 896–901.PubMedCrossRef
50.
Zurück zum Zitat Giannelli, G., Bergamini, C., Marinosci, F., Fransvea, E., Quaranta, M., Lupo, L., Schiraldi, O., & Antonaci, S. (2002). Clinical role of MMP-2/TIMP-2 imbalance in hepatocellular carcinoma. International Journal of Cancer, 97(4), 425–431.PubMedCrossRef Giannelli, G., Bergamini, C., Marinosci, F., Fransvea, E., Quaranta, M., Lupo, L., Schiraldi, O., & Antonaci, S. (2002). Clinical role of MMP-2/TIMP-2 imbalance in hepatocellular carcinoma. International Journal of Cancer, 97(4), 425–431.PubMedCrossRef
51.
Zurück zum Zitat Bachman, K. E., Herman, J. G., Corn, P. G., Merlo, A., Costello, J. F., Cavenee, W. K., Baylin, S. B., & Graff, J. R. (1999). Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggests a suppressor role in kidney, brain, and other human cancers. Cancer Research, 59(4), 798–802.PubMed Bachman, K. E., Herman, J. G., Corn, P. G., Merlo, A., Costello, J. F., Cavenee, W. K., Baylin, S. B., & Graff, J. R. (1999). Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggests a suppressor role in kidney, brain, and other human cancers. Cancer Research, 59(4), 798–802.PubMed
52.
Zurück zum Zitat Cymbaluk-Płoska, A., Chudecka-Głaz, A., Pius-Sadowska, E., Machaliński, B., Menkiszak, J., & Sompolska-Rzechuła, A. (2018). Suitability assessment of baseline concentration of MMP3, TIMP3, HE4 and CA125 in the serum of patients with ovarian cancer. Journal of Ovarian Research, 11(1), 1.PubMedPubMedCentralCrossRef Cymbaluk-Płoska, A., Chudecka-Głaz, A., Pius-Sadowska, E., Machaliński, B., Menkiszak, J., & Sompolska-Rzechuła, A. (2018). Suitability assessment of baseline concentration of MMP3, TIMP3, HE4 and CA125 in the serum of patients with ovarian cancer. Journal of Ovarian Research, 11(1), 1.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Gu, X., Fu, M., Ding, Y., Ni, H., Zhang, W., Zhu, Y., Tang, X., Xiong, L., Li, J., Qiu, L., Xu, J., & Zhu, J. (2014). TIMP-3 expression associates with malignant behaviors and predicts favorable survival in HCC. PLoS One, 9(8), e106161.PubMedPubMedCentralCrossRef Gu, X., Fu, M., Ding, Y., Ni, H., Zhang, W., Zhu, Y., Tang, X., Xiong, L., Li, J., Qiu, L., Xu, J., & Zhu, J. (2014). TIMP-3 expression associates with malignant behaviors and predicts favorable survival in HCC. PLoS One, 9(8), e106161.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Sounni, N. E., Rozanov, D. V., Remacle, A. G., Golubkov, V. S., Noel, A., & Strongin, A. Y. (2010). Timp-2 binding with cellular MT1-MMP stimulates invasion-promoting MEK/ERK signaling in cancer cells. International Journal of Cancer, 126(5), 1067–1078.PubMedPubMedCentral Sounni, N. E., Rozanov, D. V., Remacle, A. G., Golubkov, V. S., Noel, A., & Strongin, A. Y. (2010). Timp-2 binding with cellular MT1-MMP stimulates invasion-promoting MEK/ERK signaling in cancer cells. International Journal of Cancer, 126(5), 1067–1078.PubMedPubMedCentral
55.
Zurück zum Zitat Valacca, C., Tassone, E., & Mignatti, P. (2015). TIMP-2 interaction with MT1-MMP activates the AKT pathway and protects tumor cells from apoptosis. PLoS One, 10(9), e0136797.PubMedPubMedCentralCrossRef Valacca, C., Tassone, E., & Mignatti, P. (2015). TIMP-2 interaction with MT1-MMP activates the AKT pathway and protects tumor cells from apoptosis. PLoS One, 10(9), e0136797.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Valente, P., Fassina, G., Melchiori, A., Masiello, L., Cilli, M., Vacca, A., Onisto, M., Santi, L., Stetler-Stevenson, W. G., & Albini, A. (1998). TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. International Journal of Cancer, 75(2), 246–253.PubMedCrossRef Valente, P., Fassina, G., Melchiori, A., Masiello, L., Cilli, M., Vacca, A., Onisto, M., Santi, L., Stetler-Stevenson, W. G., & Albini, A. (1998). TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. International Journal of Cancer, 75(2), 246–253.PubMedCrossRef
57.
Zurück zum Zitat Forte, D., Salvestrini, V., Corradi, G., Rossi, L., Catani, L., Lemoli, R. M., Cavo, M., & Curti, A. (2017). The tissue inhibitor of metalloproteinases-1 (TIMP-1) promotes survival and migration of acute myeloid leukemia cells through CD63/PI3K/Akt/p21 signaling. Oncotarget, 8(2), 2261.PubMedCrossRef Forte, D., Salvestrini, V., Corradi, G., Rossi, L., Catani, L., Lemoli, R. M., Cavo, M., & Curti, A. (2017). The tissue inhibitor of metalloproteinases-1 (TIMP-1) promotes survival and migration of acute myeloid leukemia cells through CD63/PI3K/Akt/p21 signaling. Oncotarget, 8(2), 2261.PubMedCrossRef
58.
Zurück zum Zitat Jiang, Y., Wang, M., Celiker, M. Y., Liu, Y. E., Sang, Q. X., Goldberg, I. D., & Shi, Y. E. (2001). Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Research, 61(6), 2365–2370.PubMed Jiang, Y., Wang, M., Celiker, M. Y., Liu, Y. E., Sang, Q. X., Goldberg, I. D., & Shi, Y. E. (2001). Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Research, 61(6), 2365–2370.PubMed
59.
Zurück zum Zitat Scilabra, S. D., Troeberg, L., Yamamoto, K., Emonard, H., Thøgersen, I., Enghild, J. J., Strickland, D. K., & Nagase, H. (2013). Differential regulation of extracellular tissue inhibitor of metalloproteinases-3 levels by cell membrane-bound and shed low density lipoprotein receptor-related protein 1. The Journal of Biological Chemistry, 288(1), 332–342.PubMedCrossRef Scilabra, S. D., Troeberg, L., Yamamoto, K., Emonard, H., Thøgersen, I., Enghild, J. J., Strickland, D. K., & Nagase, H. (2013). Differential regulation of extracellular tissue inhibitor of metalloproteinases-3 levels by cell membrane-bound and shed low density lipoprotein receptor-related protein 1. The Journal of Biological Chemistry, 288(1), 332–342.PubMedCrossRef
60.
Zurück zum Zitat Emonard, H., Bellon, G., Troeberg, L., Berton, A., Robinet, A., Henriet, P., Marbaix, E., Kirkegaard, K., Patthy, L., Eeckhout, Y., Nagase, H., Hornebeck, W., & Courtoy, P. J. (2004). Low density lipoprotein receptor-related protein mediates endocytic clearance of pro-MMP-2. TIMP-2 complex through a thrombospondin-independent mechanism. The Journal of Biological Chemistry, 279(52), 54944–54951.PubMedCrossRef Emonard, H., Bellon, G., Troeberg, L., Berton, A., Robinet, A., Henriet, P., Marbaix, E., Kirkegaard, K., Patthy, L., Eeckhout, Y., Nagase, H., Hornebeck, W., & Courtoy, P. J. (2004). Low density lipoprotein receptor-related protein mediates endocytic clearance of pro-MMP-2. TIMP-2 complex through a thrombospondin-independent mechanism. The Journal of Biological Chemistry, 279(52), 54944–54951.PubMedCrossRef
61.
Zurück zum Zitat Hahn-Dantona, E., Ruiz, J. F., Bornstein, P., & Strickland, D. K. (2001). The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism. The Journal of Biological Chemistry, 276(18), 15498–15503.PubMedCrossRef Hahn-Dantona, E., Ruiz, J. F., Bornstein, P., & Strickland, D. K. (2001). The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism. The Journal of Biological Chemistry, 276(18), 15498–15503.PubMedCrossRef
62.
Zurück zum Zitat Jackson, H. W., Defamie, V., Waterhouse, P., & Khokha, R. (2017). TIMPs: versatile extracellular regulators in cancer. Nature Reviews Cancer, 17(1), 38–53.PubMedCrossRef Jackson, H. W., Defamie, V., Waterhouse, P., & Khokha, R. (2017). TIMPs: versatile extracellular regulators in cancer. Nature Reviews Cancer, 17(1), 38–53.PubMedCrossRef
64.
Zurück zum Zitat Brew, K., & Nagase, H. (2010). The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochimica et Biophysica Acta, 1803(1), 55–71.PubMedPubMedCentralCrossRef Brew, K., & Nagase, H. (2010). The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochimica et Biophysica Acta, 1803(1), 55–71.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Lambert, E., Bridoux, L., Devy, J., Dassé, E., Sowa, M.-L., Duca, L., Hornebeck, W., Martiny, L., & Petitfrère-Charpentier, E. (2009). TIMP-1 binding to proMMP-9/CD44 complex localized at the cell surface promotes erythroid cell survival. The International Journal of Biochemistry & Cell Biology, 41(5), 1102–1115.CrossRef Lambert, E., Bridoux, L., Devy, J., Dassé, E., Sowa, M.-L., Duca, L., Hornebeck, W., Martiny, L., & Petitfrère-Charpentier, E. (2009). TIMP-1 binding to proMMP-9/CD44 complex localized at the cell surface promotes erythroid cell survival. The International Journal of Biochemistry & Cell Biology, 41(5), 1102–1115.CrossRef
66.
Zurück zum Zitat Tsagaraki, I., Tsilibary, E. C., & Tzinia, A. K. (2010). TIMP-1 interaction with αvβ3 integrin confers resistance to human osteosarcoma cell line MG-63 against TNF-α-induced apoptosis. Cell and Tissue Research, 342(1), 87–96.PubMedCrossRef Tsagaraki, I., Tsilibary, E. C., & Tzinia, A. K. (2010). TIMP-1 interaction with αvβ3 integrin confers resistance to human osteosarcoma cell line MG-63 against TNF-α-induced apoptosis. Cell and Tissue Research, 342(1), 87–96.PubMedCrossRef
67.
Zurück zum Zitat Zhang, J., Wu, T., Zhan, S., Qiao, N., Zhang, X., Zhu, Y., Yang, N., Sun, Y., Zhang, X. A., Bleich, D., & Han, X. (2017). TIMP-1 and CD82, a promising combined evaluation marker for PDAC. Oncotarget, 8(4), 6496–6512.PubMed Zhang, J., Wu, T., Zhan, S., Qiao, N., Zhang, X., Zhu, Y., Yang, N., Sun, Y., Zhang, X. A., Bleich, D., & Han, X. (2017). TIMP-1 and CD82, a promising combined evaluation marker for PDAC. Oncotarget, 8(4), 6496–6512.PubMed
68.
Zurück zum Zitat Jung, K.-K., Liu, X.-W., Chirco, R., Fridman, R., & Kim, H.-R. C. (2006). Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. The EMBO Journal, 25(17), 3934–3942.PubMedPubMedCentralCrossRef Jung, K.-K., Liu, X.-W., Chirco, R., Fridman, R., & Kim, H.-R. C. (2006). Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. The EMBO Journal, 25(17), 3934–3942.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Pols, M. S., & Klumperman, J. (2009). Trafficking and function of the tetraspanin CD63. Experimental Cell Research, 315(9), 1584–1592.PubMedCrossRef Pols, M. S., & Klumperman, J. (2009). Trafficking and function of the tetraspanin CD63. Experimental Cell Research, 315(9), 1584–1592.PubMedCrossRef
70.
Zurück zum Zitat Groft, L. L., Muzik, H., Rewcastle, N. B., Johnston, R. N., Knäuper, V., Lafleur, M. A., Forsyth, P. A., & Edwards, D. R. (2001). Differential expression and localization of TIMP-1 and TIMP-4 in human gliomas. British Journal of Cancer, 85(1), 55–63.PubMedPubMedCentralCrossRef Groft, L. L., Muzik, H., Rewcastle, N. B., Johnston, R. N., Knäuper, V., Lafleur, M. A., Forsyth, P. A., & Edwards, D. R. (2001). Differential expression and localization of TIMP-1 and TIMP-4 in human gliomas. British Journal of Cancer, 85(1), 55–63.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Rorive, S., Lopez, X. M., Maris, C., Trepant, A.-L., Sauvage, S., Sadeghi, N., Roland, I., Decaestecker, C., & Salmon, I. (2010). TIMP-4 and CD63: new prognostic biomarkers in human astrocytomas. Modern Pathology, 23(10), 1418–1428.PubMedCrossRef Rorive, S., Lopez, X. M., Maris, C., Trepant, A.-L., Sauvage, S., Sadeghi, N., Roland, I., Decaestecker, C., & Salmon, I. (2010). TIMP-4 and CD63: new prognostic biomarkers in human astrocytomas. Modern Pathology, 23(10), 1418–1428.PubMedCrossRef
72.
Zurück zum Zitat Ahonen, M., Baker, A. H., & Kähäri, V.-M. (1998). Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Research, 58(11), 2310–2315.PubMed Ahonen, M., Baker, A. H., & Kähäri, V.-M. (1998). Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Research, 58(11), 2310–2315.PubMed
73.
Zurück zum Zitat Zhang, H., Wang, Y.-S., Han, G., & Shi, Y. (2007). TIMP-3 gene transfection suppresses invasive and metastatic capacity of human hepatocarcinoma cell line HCC-7721. Hepatobiliary & Pancreatic Diseases International: HBPD INT, 6(5), 487–491.CrossRef Zhang, H., Wang, Y.-S., Han, G., & Shi, Y. (2007). TIMP-3 gene transfection suppresses invasive and metastatic capacity of human hepatocarcinoma cell line HCC-7721. Hepatobiliary & Pancreatic Diseases International: HBPD INT, 6(5), 487–491.CrossRef
74.
Zurück zum Zitat Amour, A., Knight, C. G., Webster, A., Slocombe, P. M., Stephens, P. E., Knäuper, V., Docherty, A. J. P., & Murphy, G. (2000). The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Letters, 473(3), 275–279.PubMedCrossRef Amour, A., Knight, C. G., Webster, A., Slocombe, P. M., Stephens, P. E., Knäuper, V., Docherty, A. J. P., & Murphy, G. (2000). The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Letters, 473(3), 275–279.PubMedCrossRef
75.
Zurück zum Zitat Kashiwagi, M., Tortorella, M., Nagase, H., & Brew, K. (2001). TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). The Journal of Biological Chemistry, 276(16), 12501–12504.PubMedCrossRef Kashiwagi, M., Tortorella, M., Nagase, H., & Brew, K. (2001). TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). The Journal of Biological Chemistry, 276(16), 12501–12504.PubMedCrossRef
76.
Zurück zum Zitat Wang, W.-M., Ge, G., Lim, N. H., Nagase, H., & Greenspan, D. S. (2006). TIMP-3 inhibits the procollagen N-proteinase ADAMTS-2. The Biochemical Journal, 398(3), 515–519.PubMedPubMedCentralCrossRef Wang, W.-M., Ge, G., Lim, N. H., Nagase, H., & Greenspan, D. S. (2006). TIMP-3 inhibits the procollagen N-proteinase ADAMTS-2. The Biochemical Journal, 398(3), 515–519.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Qi, J. H., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, L., Bond, M., Baker, A., & Anand-Apte, B. (2003). A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Medicine, 9(4), 407–415.PubMedCrossRef Qi, J. H., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, L., Bond, M., Baker, A., & Anand-Apte, B. (2003). A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Medicine, 9(4), 407–415.PubMedCrossRef
78.
Zurück zum Zitat Kang, K.-H., Park, S.-Y., Rho, S. B., & Lee, J.-H. (2008). Tissue inhibitor of metalloproteinases-3 interacts with angiotensin II type 2 receptor and additively inhibits angiogenesis. Cardiovascular Research, 79(1), 150–160.PubMedCrossRef Kang, K.-H., Park, S.-Y., Rho, S. B., & Lee, J.-H. (2008). Tissue inhibitor of metalloproteinases-3 interacts with angiotensin II type 2 receptor and additively inhibits angiogenesis. Cardiovascular Research, 79(1), 150–160.PubMedCrossRef
79.
Zurück zum Zitat Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMedCrossRef Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMedCrossRef
80.
Zurück zum Zitat Klenotic, P. A., Munier, F. L., Marmorstein, L. Y., & Anand-Apte, B. (2004). Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1). Implications for macular degenerations. The Journal of Biological Chemistry, 279(29), 30469–30473.PubMedCrossRef Klenotic, P. A., Munier, F. L., Marmorstein, L. Y., & Anand-Apte, B. (2004). Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1). Implications for macular degenerations. The Journal of Biological Chemistry, 279(29), 30469–30473.PubMedCrossRef
81.
Zurück zum Zitat Yu, W.-H., Shuan-su, C. Y., Meng, Q., Brew, K., & Woessner, J. F. (2000). TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. The Journal of Biological Chemistry, 275(40), 31226–31232.PubMedCrossRef Yu, W.-H., Shuan-su, C. Y., Meng, Q., Brew, K., & Woessner, J. F. (2000). TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. The Journal of Biological Chemistry, 275(40), 31226–31232.PubMedCrossRef
82.
Zurück zum Zitat Hayakawa, T., Yamashita, K., Ohuchi, E., & Shinagawa, A. (1994). Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). Journal of Cell Science, 107(Pt 9), 2373–2379.PubMed Hayakawa, T., Yamashita, K., Ohuchi, E., & Shinagawa, A. (1994). Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). Journal of Cell Science, 107(Pt 9), 2373–2379.PubMed
83.
Zurück zum Zitat Hoegy, S. E., Oh, H.-R., Corcoran, M. L., & Stetler-Stevenson, W. G. (2001). Tissue inhibitor of metalloproteinases-2 (TIMP-2) suppresses TKR-growth factor signaling independent of metalloproteinase inhibition. The Journal of Biological Chemistry, 276(5), 3203–3214.PubMedCrossRef Hoegy, S. E., Oh, H.-R., Corcoran, M. L., & Stetler-Stevenson, W. G. (2001). Tissue inhibitor of metalloproteinases-2 (TIMP-2) suppresses TKR-growth factor signaling independent of metalloproteinase inhibition. The Journal of Biological Chemistry, 276(5), 3203–3214.PubMedCrossRef
84.
Zurück zum Zitat Oh, J., Diaz, T., Wei, B., Chang, H., Noda, M., & Stetler-Stevenson, W. G. (2006). TIMP-2 upregulates RECK expression via dephosphorylation of paxillin tyrosine residues 31 and 118. Oncogene, 25(30), 4230–4234.PubMedPubMedCentralCrossRef Oh, J., Diaz, T., Wei, B., Chang, H., Noda, M., & Stetler-Stevenson, W. G. (2006). TIMP-2 upregulates RECK expression via dephosphorylation of paxillin tyrosine residues 31 and 118. Oncogene, 25(30), 4230–4234.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Seo, D.-W., Li, H., Qu, C.-K., Oh, J., Kim, Y.-S., Diaz, T., Wei, B., Han, J.-W., & Stetler-Stevenson, W. G. (2006). Shp-1 mediates the antiproliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. The Journal of Biological Chemistry, 281(6), 3711–3721.PubMedCrossRef Seo, D.-W., Li, H., Qu, C.-K., Oh, J., Kim, Y.-S., Diaz, T., Wei, B., Han, J.-W., & Stetler-Stevenson, W. G. (2006). Shp-1 mediates the antiproliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. The Journal of Biological Chemistry, 281(6), 3711–3721.PubMedCrossRef
86.
Zurück zum Zitat Fernandez, C. A., Roy, R., Lee, S., Yang, J., Panigrahy, D., van Vliet, K. J., & Moses, M. A. (2010). The anti-angiogenic peptide, loop 6, binds insulin-like growth factor-1 receptor. The Journal of Biological Chemistry, 285(53), 41886–41895.PubMedPubMedCentralCrossRef Fernandez, C. A., Roy, R., Lee, S., Yang, J., Panigrahy, D., van Vliet, K. J., & Moses, M. A. (2010). The anti-angiogenic peptide, loop 6, binds insulin-like growth factor-1 receptor. The Journal of Biological Chemistry, 285(53), 41886–41895.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat D’Alessio, S., Ferrari, G., Cinnante, K., Scheerer, W., Galloway, A. C., Roses, D. F., Rozanov, D. V., Remacle, A. G., Oh, E.-S., & Shiryaev, S. A. (2008). Tissue inhibitor of metalloproteinases-2 binding to membrane-type 1 matrix metalloproteinase induces MAPK activation and cell growth by a non-proteolytic mechanism. The Journal of Biological Chemistry, 283(1), 87–99.PubMedCrossRef D’Alessio, S., Ferrari, G., Cinnante, K., Scheerer, W., Galloway, A. C., Roses, D. F., Rozanov, D. V., Remacle, A. G., Oh, E.-S., & Shiryaev, S. A. (2008). Tissue inhibitor of metalloproteinases-2 binding to membrane-type 1 matrix metalloproteinase induces MAPK activation and cell growth by a non-proteolytic mechanism. The Journal of Biological Chemistry, 283(1), 87–99.PubMedCrossRef
88.
Zurück zum Zitat López-Otín, C., & Overall, C. M. (2002). Protease degradomics: a new challenge for proteomics. Nature Reviews Molecular Cell Biology, 3(7), 509–519.PubMedCrossRef López-Otín, C., & Overall, C. M. (2002). Protease degradomics: a new challenge for proteomics. Nature Reviews Molecular Cell Biology, 3(7), 509–519.PubMedCrossRef
89.
Zurück zum Zitat Gomez, D. E., Alonso, D. F., Yoshiji, H., & Thorgeirsson, U. P. (1997). Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. European Journal of Cell Biology, 74(2), 111–122.PubMed Gomez, D. E., Alonso, D. F., Yoshiji, H., & Thorgeirsson, U. P. (1997). Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. European Journal of Cell Biology, 74(2), 111–122.PubMed
90.
Zurück zum Zitat Bode, W., & Maskos, K. (2003). Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Biological Chemistry, 384(6), 863–872.PubMedCrossRef Bode, W., & Maskos, K. (2003). Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Biological Chemistry, 384(6), 863–872.PubMedCrossRef
91.
Zurück zum Zitat Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69(3), 562–573.PubMedCrossRef Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69(3), 562–573.PubMedCrossRef
92.
Zurück zum Zitat Maskos, K., & Bode, W. (2003). Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Molecular Biotechnology, 25(3), 241–266.PubMedCrossRef Maskos, K., & Bode, W. (2003). Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Molecular Biotechnology, 25(3), 241–266.PubMedCrossRef
93.
Zurück zum Zitat Tuuttila, A., Morgunova, E., Bergmann, U., Lindqvist, Y., Maskos, K., Fernandez-Catalan, C., Bode, W., Tryggvason, K., & Schneider, G. (1998). Three-dimensional structure of human tissue inhibitor of metalloproteinases-2 at 2.1 Å resolution. Journal of Molecular Biology, 284(4), 1133–1140.PubMedCrossRef Tuuttila, A., Morgunova, E., Bergmann, U., Lindqvist, Y., Maskos, K., Fernandez-Catalan, C., Bode, W., Tryggvason, K., & Schneider, G. (1998). Three-dimensional structure of human tissue inhibitor of metalloproteinases-2 at 2.1 Å resolution. Journal of Molecular Biology, 284(4), 1133–1140.PubMedCrossRef
94.
Zurück zum Zitat Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.PubMedCrossRef Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.PubMedCrossRef
95.
Zurück zum Zitat Gomis-R, F.-X., Maskos, K., Betz, M., Bergner, A., Huber, R., Suzuki, K., Yoshida, N., Nagase, H., Brew, K., & Bourenkov, G. P. (1997). Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature, 389(6646), 77–81.CrossRef Gomis-R, F.-X., Maskos, K., Betz, M., Bergner, A., Huber, R., Suzuki, K., Yoshida, N., Nagase, H., Brew, K., & Bourenkov, G. P. (1997). Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature, 389(6646), 77–81.CrossRef
96.
Zurück zum Zitat Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874.PubMedCrossRefPubMedCentral Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874.PubMedCrossRefPubMedCentral
97.
Zurück zum Zitat Wisniewska, M., Goettig, P., Maskos, K., Belouski, E., Winters, D., Hecht, R., Black, R., & Bode, W. (2008). Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex. Journal of Molecular Biology, 381(5), 1307–1319.PubMedCrossRef Wisniewska, M., Goettig, P., Maskos, K., Belouski, E., Winters, D., Hecht, R., Black, R., & Bode, W. (2008). Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex. Journal of Molecular Biology, 381(5), 1307–1319.PubMedCrossRef
98.
Zurück zum Zitat Meng, Q., Malinovskii, V., Huang, W., Hu, Y., Chung, L., Nagase, H., Bode, W., Maskos, K., & Brew, K. (1999). Residue 2 of TIMP-1 is a major determinant of affinity and specificity for matrix metalloproteinases but effects of substitutions do not correlate with those of the corresponding P1′ residue of substrate. The Journal of Biological Chemistry, 274(15), 10184–10189.PubMedCrossRef Meng, Q., Malinovskii, V., Huang, W., Hu, Y., Chung, L., Nagase, H., Bode, W., Maskos, K., & Brew, K. (1999). Residue 2 of TIMP-1 is a major determinant of affinity and specificity for matrix metalloproteinases but effects of substitutions do not correlate with those of the corresponding P1′ residue of substrate. The Journal of Biological Chemistry, 274(15), 10184–10189.PubMedCrossRef
99.
Zurück zum Zitat Wei, S., Chen, Y., Chung, L., Nagase, H., & Brew, K. (2003). Protein engineering of the tissue inhibitor of metalloproteinase 1 (TIMP-1) inhibitory domain. In search of selective matrix metalloproteinase inhibitors. The Journal of Biological Chemistry, 278(11), 9831–9834.PubMedCrossRef Wei, S., Chen, Y., Chung, L., Nagase, H., & Brew, K. (2003). Protein engineering of the tissue inhibitor of metalloproteinase 1 (TIMP-1) inhibitory domain. In search of selective matrix metalloproteinase inhibitors. The Journal of Biological Chemistry, 278(11), 9831–9834.PubMedCrossRef
100.
Zurück zum Zitat Lee, M.-H., Rapti, M., Knäuper, V., & Murphy, G. (2004). Threonine 98, the pivotal residue of tissue inhibitor of metalloproteinases (TIMP)-1 in metalloproteinase recognition. The Journal of Biological Chemistry, 279(17), 17562–17569.PubMedCrossRef Lee, M.-H., Rapti, M., Knäuper, V., & Murphy, G. (2004). Threonine 98, the pivotal residue of tissue inhibitor of metalloproteinases (TIMP)-1 in metalloproteinase recognition. The Journal of Biological Chemistry, 279(17), 17562–17569.PubMedCrossRef
101.
Zurück zum Zitat Rapti, M., Knäuper, V., Murphy, G., & Williamson, R. A. (2006). Characterization of the AB loop region of TIMP-2 involvement in pro-MMP-2 activation. The Journal of Biological Chemistry, 281(33), 23386–23394.PubMedCrossRef Rapti, M., Knäuper, V., Murphy, G., & Williamson, R. A. (2006). Characterization of the AB loop region of TIMP-2 involvement in pro-MMP-2 activation. The Journal of Biological Chemistry, 281(33), 23386–23394.PubMedCrossRef
102.
Zurück zum Zitat Fernandez-Catalan, C., Bode, W., Huber, R., Turk, D., Calvete, J. J., Lichte, A., Tschesche, H., & Maskos, K. (1998). Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. The EMBO Journal, 17(17), 5238–5248.PubMedPubMedCentralCrossRef Fernandez-Catalan, C., Bode, W., Huber, R., Turk, D., Calvete, J. J., Lichte, A., Tschesche, H., & Maskos, K. (1998). Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. The EMBO Journal, 17(17), 5238–5248.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Nagase, H., & Brew, K. (2003). Designing TIMP (tissue inhibitor of metalloproteinases) variants that are selective metalloproteinase inhibitors. Biochemical Society Symposium, 70, 201–212. Nagase, H., & Brew, K. (2003). Designing TIMP (tissue inhibitor of metalloproteinases) variants that are selective metalloproteinase inhibitors. Biochemical Society Symposium, 70, 201–212.
104.
Zurück zum Zitat Batra, J., Soares, A. S., Mehner, C., & Radisky, E. S. (2013). Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes. PLoS One, 8(9), e75836.PubMedPubMedCentralCrossRef Batra, J., Soares, A. S., Mehner, C., & Radisky, E. S. (2013). Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes. PLoS One, 8(9), e75836.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Lee, M.-H., Rapti, M., & Murphy, G. (2005). Total conversion of tissue inhibitor of metalloproteinase (TIMP) for specific metalloproteinase targeting: fine-tuning TIMP-4 for optimal inhibition of tumor necrosis factor-{alpha}-converting enzyme. The Journal of Biological Chemistry, 280(16), 15967–15975.PubMedCrossRef Lee, M.-H., Rapti, M., & Murphy, G. (2005). Total conversion of tissue inhibitor of metalloproteinase (TIMP) for specific metalloproteinase targeting: fine-tuning TIMP-4 for optimal inhibition of tumor necrosis factor-{alpha}-converting enzyme. The Journal of Biological Chemistry, 280(16), 15967–15975.PubMedCrossRef
106.
Zurück zum Zitat Nagase, H., & Murphy, G. (2008). Tailoring TIMPs for selective metalloproteinase inhibition. In D. Edwards, G. Hoyer-Hansen, F. Blasi, & B. F. Sloane (Eds.), The Cancer Degradome (pp. 787–810). Springer. Nagase, H., & Murphy, G. (2008). Tailoring TIMPs for selective metalloproteinase inhibition. In D. Edwards, G. Hoyer-Hansen, F. Blasi, & B. F. Sloane (Eds.), The Cancer Degradome (pp. 787–810). Springer.
107.
Zurück zum Zitat Rapti, M., Atkinson, S. J., Lee, M.-H., Trim, A., Moss, M., & Murphy, G. (2008). The isolated N-terminal domains of TIMP-1 and TIMP-3 are insufficient for ADAM10 inhibition. The Biochemical Journal, 411(2), 433–439.PubMedCrossRef Rapti, M., Atkinson, S. J., Lee, M.-H., Trim, A., Moss, M., & Murphy, G. (2008). The isolated N-terminal domains of TIMP-1 and TIMP-3 are insufficient for ADAM10 inhibition. The Biochemical Journal, 411(2), 433–439.PubMedCrossRef
108.
Zurück zum Zitat Morgunova, E., Tuuttila, A., Bergmann, U., & Tryggvason, K. (2002). Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proceedings of the National Academy of Sciences of the United States of America, 99(11), 7414–7419.PubMedPubMedCentralCrossRef Morgunova, E., Tuuttila, A., Bergmann, U., & Tryggvason, K. (2002). Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proceedings of the National Academy of Sciences of the United States of America, 99(11), 7414–7419.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Kobuch, J., Cui, H., Grünwald, B., Saftig, P., Knolle, P. A., & Krüger, A. (2015). TIMP-1 signaling via CD63 triggers granulopoiesis and neutrophilia in mice. Haematologica, 100(8), 1005–1013.PubMedPubMedCentral Kobuch, J., Cui, H., Grünwald, B., Saftig, P., Knolle, P. A., & Krüger, A. (2015). TIMP-1 signaling via CD63 triggers granulopoiesis and neutrophilia in mice. Haematologica, 100(8), 1005–1013.PubMedPubMedCentral
110.
Zurück zum Zitat Cui, H., Grosso, S., Schelter, F., Mari, B., & Krüger, A. (2012). On the pro-metastatic stress response to cancer therapies: evidence for a positive co-operation between TIMP-1, HIF-1α, and miR-210. Frontiers in Pharmacology, 3, 134.PubMedPubMedCentralCrossRef Cui, H., Grosso, S., Schelter, F., Mari, B., & Krüger, A. (2012). On the pro-metastatic stress response to cancer therapies: evidence for a positive co-operation between TIMP-1, HIF-1α, and miR-210. Frontiers in Pharmacology, 3, 134.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Mittal, S., & Saluja, D. (2015). Protein post-translational modifications: role in protein structure, function and stability. In Proteostasis and Chaperone Surveillance (pp. 25–37). Springer. Mittal, S., & Saluja, D. (2015). Protein post-translational modifications: role in protein structure, function and stability. In Proteostasis and Chaperone Surveillance (pp. 25–37). Springer.
113.
Zurück zum Zitat Xin, F., & Radivojac, P. (2012). Post-translational modifications induce significant yet not extreme changes to protein structure. Bioinformatics (Oxford, England), 28(22), 2905–2913.CrossRef Xin, F., & Radivojac, P. (2012). Post-translational modifications induce significant yet not extreme changes to protein structure. Bioinformatics (Oxford, England), 28(22), 2905–2913.CrossRef
115.
Zurück zum Zitat Khoury, G. A., Baliban, R. C., & Floudas, C. A. (2011). Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Scientific Reports, 1, 90.PubMedCentralCrossRef Khoury, G. A., Baliban, R. C., & Floudas, C. A. (2011). Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Scientific Reports, 1, 90.PubMedCentralCrossRef
116.
117.
Zurück zum Zitat Okada, Y., Watanabe, S., Nakanishi, I., Kishi, J.-I., Hayakawa, T., Watorek, W., Travis, J., & Nagase, H. (1988). Inactivation of tissue inhibitor of metalloproteinases by neutrophil elastase and other serine proteinases. FEBS Letters, 229(1), 157–160.PubMedCrossRef Okada, Y., Watanabe, S., Nakanishi, I., Kishi, J.-I., Hayakawa, T., Watorek, W., Travis, J., & Nagase, H. (1988). Inactivation of tissue inhibitor of metalloproteinases by neutrophil elastase and other serine proteinases. FEBS Letters, 229(1), 157–160.PubMedCrossRef
118.
Zurück zum Zitat Nagase, H., Suzuki, K., Cawston, T. E., & Brew, K. (1997). Involvement of a region near valine-69 of tissue inhibitor of metalloproteinases (TIMP)-1 in the interaction with matrix metalloproteinase 3 (stromelysin 1). The Biochemical Journal, 325(1), 163–167.PubMedPubMedCentralCrossRef Nagase, H., Suzuki, K., Cawston, T. E., & Brew, K. (1997). Involvement of a region near valine-69 of tissue inhibitor of metalloproteinases (TIMP)-1 in the interaction with matrix metalloproteinase 3 (stromelysin 1). The Biochemical Journal, 325(1), 163–167.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Jackson, P. L., Xu, X., Wilson, L., Weathington, N. M., Clancy, J. P., Blalock, J. E., & Gaggar, A. (2010). Human neutrophil elastase-mediated cleavage sites of MMP-9 and TIMP-1: implications to cystic fibrosis proteolytic dysfunction. Molecular Medicine (Cambridge, Mass.), 16(5-6), 159–166. Jackson, P. L., Xu, X., Wilson, L., Weathington, N. M., Clancy, J. P., Blalock, J. E., & Gaggar, A. (2010). Human neutrophil elastase-mediated cleavage sites of MMP-9 and TIMP-1: implications to cystic fibrosis proteolytic dysfunction. Molecular Medicine (Cambridge, Mass.), 16(5-6), 159–166.
120.
Zurück zum Zitat Itoh, Y., & Nagase, H. (1995). Preferential inactivation of tissue inhibitor of metalloproteinases-1 that is bound to the precursor of matrix metalloproteinase 9 (progelatinase B) by human neutrophil elastase. The Journal of Biological Chemistry, 270(28), 16518–16521.PubMedCrossRef Itoh, Y., & Nagase, H. (1995). Preferential inactivation of tissue inhibitor of metalloproteinases-1 that is bound to the precursor of matrix metalloproteinase 9 (progelatinase B) by human neutrophil elastase. The Journal of Biological Chemistry, 270(28), 16518–16521.PubMedCrossRef
Metadaten
Titel
Functional disparities within the TIMP family in cancer: hints from molecular divergence
verfasst von
Celina Eckfeld
Daniel Häußler
Benjamin Schoeps
Chris D. Hermann
Achim Krüger
Publikationsdatum
16.09.2019
Verlag
Springer US
Schlagwort
Metastasis
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3/2019
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-019-09812-6

Weitere Artikel der Ausgabe 3/2019

Cancer and Metastasis Reviews 3/2019 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.