Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2016

Open Access 01.12.2016 | Research

Microarray data analysis to identify crucial genes regulated by CEBPB in human SNB19 glioma cells

verfasst von: Chenghua Du, Pan Pan, Yan Jiang, Qiuli Zhang, Jinsuo Bao, Chang Liu

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2016

Abstract

Background

Glioma is one of the most common primary malignancies in the brain or spine. The transcription factor (TF) CCAAT/enhancer binding protein beta (CEBPB) is important for maintaining the tumor initiating capacity and invasion ability. To investigate the regulation mechanism of CEBPB in glioma, microarray data GSE47352 was analyzed.

Methods

GSE47352 was downloaded from Gene Expression Omnibus, including three samples of SNB19 human glioma cells transduced with non-target control small hairpin RNA (shRNA) lentiviral vectors for 72 h (normal glioma cells) and three samples of SNB19 human glioma cells transduced with CEBPB shRNA lentiviral vectors for 72 h (CEBPB-silenced glioma cells). The differentially expressed genes (DEGs) were screened using limma package and then annotated. Afterwards, the Database for Annotation, Visualization, and Integrated Discovery (DAVID) software was applied to perform enrichment analysis for the DEGs. Furthermore, the protein-protein interaction (PPI) network and transcriptional regulatory network were constructed using Cytoscape software.

Results

Total 529 DEGs were identified in the normal glioma cells compared with the CEBPB-silenced glioma cells, including 336 up-regulated and 193 down-regulated genes. The significantly enriched pathways included chemokine signaling pathway (which involved CCL2), focal adhesion (which involved THBS1 and THBS2), TGF-beta signaling pathway (which involved THBS1, THBS2, SMAD5, and SMAD6) and chronic myeloid leukemia (which involved TGFBR2 and CCND1). In the PPI network, CCND1 (degree = 29) and CCL2 (degree = 12) were hub nodes. Additionally, CEBPB and TCF12 might function in glioma through targeting others (CEBPB → TCF12, CEBPB → TGFBR2, and TCF12 → TGFBR2).

Conclusions

CEBPB might act in glioma by regulating CCL2, CCND1, THBS1, THBS2, SMAD5, SMAD6, TGFBR2, and TCF12.
Abkürzungen
BH
Benjamini-Hochberg
DEGs
Differentially expressed genes
ECM
Extracellular matrix
ENCODE
Encyclopedia of DNA Elements
FDR
False discovery rate
GEO
Gene Expression Omnibus
KEGG
The Kyoto Encyclopedia of Genes and Genomes
MSC
Mesenchymal stem cells
PPI
Protein-protein interaction
TAG
Tumor-associated gene
TF
Transcription factor
TSG
Tumor suppressor gene

Background

Glioma, which is known as one of the most common primary malignancies in the brain or spine, accounts for nearly 30 % of all brain and central nervous system tumors and 80 % of all malignant brain tumors [1, 2]. Previous researches have shown that the most important hallmarks of malignant glioma are its invasion and angiogenesis [3]. So far, researchers have indicated that glioma can be induced by neurofibromatoses and tuberous sclerosis complex [4], electromagnetic radiation [5], DNA repair genes (such as excision repair cross-complementing 1, ERCC1, and X-ray repair cross-complementing group 1, XRCC1) [6]. However, the exact molecular mechanisms of glioma were still unclear.
In the central nervous system, the neoplastic transformation can convert the neural cells into cells of mesenchymal phenotype which possess the ability of invasion and promoting angiogenesis [7, 8]. What is more, it has been identified that mesenchymal stem cells (MSC)-like properties may play a role in the tumorigenesis, invasion, and recurrence of primary glioblastoma tumors [8]. The transcription factor (TF) CCAAT/enhancer binding protein beta (CEBPB) is associated with the mesenchymal state of primary glioblastoma, and its expression in glioma is important for maintaining the tumor initiating capacity and invasion ability [9, 10]. Moreover, the transforming growth factor beta 1/SMAD family member 3 (TGFB1/SMAD3) plays a key role in the extracellular matrix (ECM) production which can lead to glioblastoma aggression [11, 12]. It has been revealed that CEBPB can regulate the synthesis of ECM [13]. However, the regulation mechanism of CEBPB on TGFB1/SMAD3 in glioma was seldom studied.
In our study, in order to gain a better understanding of the regulation mechanisms of CEBPB and investigate whether CEBPB could regulate the production of ECM via the TGFB1/SMAD3 signaling pathway in glioma, the microarray data deposited by Carro et al. were further analyzed with bioinformatics methods. Firstly, the differentially expressed genes (DEGs) between SNB19 human glioma cells transduced with non-target control small hairpin RNA (shRNA) lentiviral vectors for 72 h and SNB19 human glioma cells transduced with CEBPB shRNA lentiviral vectors for 72 h were identified and annotated. Subsequently, their potential functions were predicted by enrichment analysis. Finally, protein-protein interaction (PPI) network and transcriptional regulatory network were constructed to screen key genes.

Methods

Microarray dataset

The microarray dataset of GSE19114 [14] was downloaded from Gene Expression Omnibus (GEO, http://​www.​ncbi.​nlm.​nih.​gov/​geo/​) database, which was based on the platform of GPL6947 IlluminaHumanHT-12 V3.0 expression beadchip. A total of 74 samples were included in the dataset, among which 3 samples of SNB19 human glioma cells transduced with non-target control shRNA lentiviral vectors for 72 h (normal glioma cells) and 3 samples of SNB19 human glioma cells transduced with CEBPB shRNA lentiviral vectors for 72 h (CEBPB-silenced glioma cells) were used to study the effect of CEBPB on glioma.

Data preprocessing and DEGs screening

The preprocessed microarray data were obtained from GEO2R of National Center of Biotechnology Information (NCBI, http://​www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r/​), including 48803 probes. The linear models for microarray data (limma) package [15] were used to identify the DEGs between the normal glioma cells and the CEBPB-silenced glioma cells. Benjamini-Hochberg (BH) method [16] was applied to adjust the raw p value into false discovery rate (FDR). The FDR <0.05 and |log2 fold change (FC) >1 were used as cut-off criteria.

Functional and pathway enrichment analysis

Gene Ontology (GO, http://​www.​geneontology.​org/​) annotations are of great importance for mining biological and functional significance from large dataset [17]. The Kyoto Encyclopedia of Genes and Genomes (KEGG, http://​www.​genome.​ad.​jp/​kegg) database represents higher order of functions in terms of the network of the interacting molecules [18]. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) online tool [19] was employed to perform GO functional and KEGG pathway enrichment analyses for the DEGs. The p value <0.05 was used as the cut-off criterion.

DEGs annotation

TSGene database (http://​bioinfo.​mc.​vanderbilt.​edu/​TSGene/​), which contains detailed annotations for each tumor suppressor gene (TSG), such as cancer mutations, gene expressions, methylation sites, transcriptional regulations, and PPIs, was applied to identify the TSGs from the DEGs [20]. Additionally, tumor-associated gene (TAG) database (http://​www.​binfo.​ncku.​edu.​tw/​TAG/​), which provides information about commonly shared functional domains in well-characterized oncogenes and TSGs, was used for screening the TAGs from the DEGs [21]. Besides, as a collection of data about the transcriptional regulatory network, the Encyclopedia of DNA Elements (ENCODE) project was introduced for screening the TFs from the DEGs [22].

PPI network construction

The PPI pairs were searched using the Search Tool for the Retrieval of Interacting Genes (STRING, http://​string-db.​org/​) online tool [23]. The required confidence (combined score) >0.4 was used as the cut-off criterion. Then, the Cytoscape software [24] was used to visualize the PPI network. Furthermore, connectivity degree analysis was performed to search the hub nodes of PPI networks. The degree of a node was corresponded to the number of interactions involved it [25]. In addition, hub nodes were nodes with higher degrees.

Transcriptional regulatory network construction

ENCODE project is a collection of data about the transcriptional regulatory network, which helps illuminate TF-binding sites, histone marks, chromatin accessibility, DNA methylation, RNA expression, RNA binding, and other cell-state indicators [22]. Based on the transcriptional regulation interactions derived from ENCODE project, the regulatory network containing CEBPB and TGFB1/SMAD3 was constructed by Cytoscape software [24].

Results

Identification of DEGs

According to the analysis of the microarray dataset, a total of 529 DEGs (including 336 up-regulated genes and 193 down-regulated genes) were identified in the normal glioma cells compared with the CEBPB-silenced glioma cells. Among them, the top ten significantly up-regulated genes (such as thrombospondin 1 (THBS1) and chemokine (C-C motif) ligand 2 (CCL2)) and down-regulated genes (such as cyclin D1 (CCND1)) are displayed in Table 1.
Table 1
The top ten up- and down-regulated genes
DEGs
Gene symbol
FDR
Log2 FC
Up-regulated
AXL
9.39E−07
1.846031
 
SERPINE1
8.58E−07
1.741651
 
ITGB1
6.28E−08
1.739866
 
PRPF31
6.28E−08
1.644503
 
TXNDC5
3.26E−08
1.629988
 
WDFY1
3.26E−08
1.622947
 
AXL
1.57E−07
1.554728
 
SLC1A3
5.96E−08
1.484443
 
SET
3.90E−07
1.477058
 
ITGB1
2.66E−07
1.466634
Down−regulated
AKR1B10
3.26E−08
−2.19537
 
SLC2A3
6.28E−08
−2.01825
 
HMOX1
6.28E−08
−1.58464
 
CCND1
9.30E−08
−1.49158
 
HIST1H2BK
1.16E−07
−1.38961
 
STX3
3.36E−07
−1.2468
 
TDG
8.98E−08
−1.23629
 
SRXN1
8.97E−07
−1.22479
 
DICER1
5.00E−07
−1.20817
 
STK40
9.14E−07
−1.19625
DEGs differentially expressed genes, FDR false discovery rate, FC fold change

Functional and pathway enrichment analysis

For the up-regulated genes, the enriched functions included transcription from RNA polymerase II promoter (p = 1.01E−03), cytoskeleton organization (p = 2.76E−04), and endocytosis (p = 2.57E−05) (Table 2A). Meanwhile, the down-regulated genes were mainly enriched in the function of enzyme-linked receptor protein signaling pathway (p = 2.89E−03), skin development (p = 4.97E−03), and response to hyperoxia (p = 2.97E−05) (Table 2B).
Table 2
The top ten functions enriched for the differentially expressed genes
GO ID
Description
Gene number
p value
Gene symbols
(A)
 GO:0006366
Transcription from RNA polymerase II promoter
47
1.01E−03
SOX21, TCF25, TOP2A, GTF2F2, CIAO1, SERPINE1, DKK1, CYR61, SOX18, PAF1…
 GO:0007010
Cytoskeleton organization
32
2.76E−04
PTK2, DPYSL2, CNN3, BICD2, CLIC4, CTGF, EDN1, NRAS, ITGB1, RHOG…
 GO:0006897
Endocytosis
23
2.57E−05
PTK2, PIK3R2, THBS1, SERPINE1, DKK1, CYFIP2, AXL, RABEPK, LRP1B, ABCA1…
 GO:0071375
Cellular response to peptide hormone stimulus
15
5.75E−04
PTK2, PIK3R2, GNG10, PPM1A, GNG5, PIK3R1, ATP6V1G1, NRAS, SOCS2, GNG12…
 GO:0000398
mRNA splicing, via spliceosome
10
1.02E−02
PABPC1, GTF2F2, LSM7, LSM3, POLR2C, UPF3B, MBNL2, C1QBP, PRPF31, PAPOLA
 GO:0048469
Cell maturation
9
8.96E−04
SOX18, AXL, GJA1, DLD, FOXO3,TYMS,CLN5,EPAS1,PTBP3
 GO:0043200
Response to amino acid stimulus
7
6.71E−04
CTGF, EDN1, CEBPB, TYMS, CCL2, LAMTOR3, LAMTOR1
 GO:0006112
Energy reserve metabolic process
7
4.38E−02
GNG10, GNG5, GFPT2, RAP1B, PPP1CC, GNG12, PYGB
 GO:0018279
Protein N-linked glycosylation via asparagine
6
1.02E−02
UGGT1, MLEC, GFPT2, B4GALT5, PGM3, STT3B
 GO:0006261
DNA-dependent DNA replication
6
1.49E−02
POLB, MCM3, RFC5, TOP2A, BAZ1A, RPAIN
(B)
 GO:0007167
Enzyme-linked receptor protein signaling pathway
19
2.89E−03
KANK1, RTN4, ATP6V1D, PTPRK, EEF2K, ERRFI1, CGN, TGFBR2, ATP6V0A1, MVP…
 GO:0043588
Skin development
9
4.97E−03
PTHLH, ALDH3A2, ERRFI1, YAP1, STK4, EMP1, COL5A2, NCOA3, DICER1
 GO:0030330
DNA damage response, signal transduction by p53 class mediator
7
1.41E−04
NDRG1, SPRED1, PSME3, CDKN1A, E2F7, CASP2, HIPK2
 GO:0001890
Placenta development
7
4.74E−04
TXNRD1, ADM, CCNF, SPP1, STK4, NDP, E2F7
 GO:0031100
Organ regeneration
5
6.05E−05
ADM, TGFBR2, CCND1, LCP1, CDKN1A
 GO:0071456
Cellular response to hypoxia
5
2.26E−03
HMOX1, NPEPPS, NDRG1, BNIP3, HIPK2
 GO:0048002
Antigen processing and presentation of peptide antigen
5
4.35E−02
CTSD, NPEPPS, PSME3, AP1S1, AP1S2
 GO:0055093
Response to hyperoxia
4
2.97E−05
TXNRD1, BNIP3, CAV1, CDKN1A
 GO:0000188
Inactivation of MAPK activity
4
1.36E−04
DUSP5, SPRED1, CAV1, DUSP22
 GO:0060443
Mammary gland morphogenesis
4
2.15E−03
PTHLH, TGFBR2, CAV1, NCOA3
GO Gene Ontology, ID identification
(A) The top ten functions enriched for the up-regulated genes. (B) The top ten functions enriched for the down-regulated genes
Among the up-regulated genes, CCL2 was significantly enriched in the pathway of chemokine signaling pathway (p = 1.63E−03). THBS1 and thrombospondin 2 (THBS2) were significantly involved in the pathway of focal adhesion (p = 7.54E−03). And the up-regulated genes, such as THBS1, THBS2, SMAD family member 5 (SMAD5) and SMAD family member 6 (SMAD6), were significantly enriched in transforming growth factor beta (TGF-beta) signaling pathway (p = 4.83E−02) (Table 3A). Meanwhile, the down-regulated transforming growth factor beta receptor II (TGFBR2) and CCND1 were significantly enriched in both the pathways of chronic myeloid leukemia (p = 9.85E−03) and pancreatic cancer (p = 4.69E−02) (Table 3B).
Table 3
The pathways enriched for the differentially expressed genes
KEGG ID
Name
Gene number
p value
Gene symbols
(A)
 4062
Chemokine signaling pathway
12
1.63E−03
PTK2, PIK3R2, GNG10, GNG5, RAP1B, PIK3R1, NRAS, IL8, GNG12, CSK, FOXO3, CCL2
 4510
Focal adhesion
11
7.54E−03
PTK2, PIK3R2, THBS1, THBS2, RAP1B, PPP1CC, PIK3R1, ITGB1, ACTG1, FLNB, CAV2
 4810
Regulation of actin cytoskeleton
11
1.18E−02
PTK2, PIK3R2, CYFIP2, PPP1CC, PIK3R1, NRAS, ITGB1, GNG12, ACTG1, CSK, ARHGEF6
 4910
Insulin signaling pathway
9
5.22E−03
PIK3R2, PPP1CC, PIK3R1, NRAS, SOCS2, PTPN1, PYGB, CALM2, PTPRF
 3013
RNA transport
9
9.27E−03
PABPC1, EIF3A, NUP54, EIF3G, UPF3B, NUP155, KPNB1, NUP37, EIF2S3
 4145
Phagosome
8
2.82E−02
TAP1, THBS1, THBS2, ATP6V1G1, ITGB1, ACTG1, LAMP2, DYNC1LI2
 5100
Bacterial invasion of epithelial cells
7
1.24E−03
PTK2, PIK3R2, PIK3R1, ITGB1, RHOG, ACTG1, CAV2
 5142
Chagas disease (American trypanosomiasis)
7
1.13E−02
PIK3R2, SERPINE1, GNA11, PIK3R1, IL8, IFNGR1, CCL2
 4722
Neurotrophin signaling pathway
7
3.05E−02
PIK3R2, RAP1B, PIK3R1, NRAS, CALM2, CSK, FOXO3
 4360
Axon guidance
7
3.28E−02
PTK2, DPYSL2, SEMA4F, NRAS, ITGB1, SLIT2, EFNA1
5131
Shigellosis
6
3.01E−03
ITGB1, IL8, RHOG, ACTG1, FBXW11, CSK
 5211
Renal cell carcinoma
5
2.45E−02
PIK3R2, RAP1B, PIK3R1, NRAS, EPAS1
 5412
Arrhythmogenic right ventricular cardiomyopathy (ARVC)
5
3.03E−02
ITGB1, DAG1, GJA1, ACTG1, CDH2
 5410
Hypertrophic cardiomyopathy
5
4.62E−02
TPM3, ITGB1, DAG1, TPM1, ACTG1
 4350
TGF-beta signaling pathway
5
4.83E−02
THBS1, THBS2, SMAD6, ID3, SMAD5
 20
Citrate cycle (TCA cycle)
4
5.11E−03
CS, DLD, DLAT, SDHA
5144
Malaria
4
3.19E−02
THBS1, THBS2, IL8, CCL2
 5213
Endometrial cancer
4
3.39E−02
PIK3R2, PIK3R1, NRAS, FOXO3
 5223
Non-small cell lung cancer
4
3.82E−02
PIK3R2, PIK3R1, NRAS, FOXO3
 3410
Base excision repair
3
4.23E−02
POLB, PARP1, PARP3
(B)
 4144
Endocytosis
9
4.62E−04
ASAP2, VPS36, TGFBR2, ASAP1, CAV1, SH3KBP1, EHD1, RAB22A, DNM3
 4142
Lysosome
7
4.55E−04
CTSD, TPP1, ATP6V0A1, ABCB9, AP1S1, AP1S2, NEU1
 2010
ABC transporters
4
1.58E−03
ABCC2, ABCC3, ABCB9, ABCC5
 10
Glycolysis/gluconeogenesis
4
6.56E−03
ENO2, ALDH3A2, PGAM1, PGK1
 5220
Chronic myeloid leukemia
4
9.85E−03
TGFBR2, CCND1, CDKN1A, BCL2L1
 561
Glycerolipid metabolism
3
1.98E−02
ALDH3A2, AGPAT9, LCLAT1
 5212
Pancreatic cancer
3
4.69E−02
TGFBR2, CCND1, BCL2L1
 4966
Collecting duct acid secretion
2
3.85E−02
ATP6V1D, ATP6V0A1
  650
Butanoate metabolism
2
4.67E−02
AKR1B10, HMGCS1
(A) The pathways enriched for the up-regulated genes. (B) The pathways enriched for the down-regulated genes. Kyoto Encyclopedia of Genes and Genomes, KEGG; identification, ID

The annotation of DEGs

A total of 54 DEGs were screened as TAGs, including 33 up-regulated and 21 down-regulated genes. Among the 33 up-regulated genes, there were 22 TSGs (such as THBS1), 6 oncogenes, and 5 other genes (such as CCL2). Meanwhile, there were 13 TSGs, 4 oncogenes (such as CCND1), and 4 other genes in the 21 down-regulated genes. Additionally, 9 DEGs were screened as the TFs, including 8 up-regulated and 1 down-regulated genes (Table 4).
Table 4
The identified transcription factors (TFs) and tumor associated genes (TAGs) among the differentially expressed genes (DEGs). Tumor suppressed genes, TSGs
DEGs
TF numbers
TFs
TAG numbers
TAGs
TSGs
Oncogenes
Others
Up-regulated
1
KLF12
33
BAP1, THBS1, DKK1, PAF1, ST13, LRP1B, PDGFRL, ITGB1, TPM1, GJA1, CDH11, SLIT2, GLIPR1, FAT1, SOD2, FOXO3, EFNA1, GAS1, PTPRF, RAD51C, CAV2, SDHA
SET, CCNA2, AXL, NRAS, ROS1, SCK
GTF2F2, CTGF, FHL2, C1QBP, CCL2
Down-regulated
8
ASCL1, ETV4, HSF1, LMO3, PML, RUNX3, TCF7, USF2
21
HIPK2, YAP1, ERRFI1, PTPRK, KANK1, BNIP3L, DUSP22, SASH1, CDKN1A, NDRG4, ZFHX3, NDRG1, TGFBR2,
BCL2L2, NCOA3, CCND1, CDC25B
PTHLH, EMP1, CAV1, GLS

PPI network analysis

The constructed PPI network was consisted of 810 interactions (such as CCND1-THBS1 and THBS1-CCL2) (Fig. 1). Besides, the top 10 % nodes with higher degrees in the PPI network were identified, including CCND1 (degree = 29) and CCL2 (degree = 12) (Table 5).
Table 5
The top 10 % DEGs with higher degrees in the protein-protein interaction (PPI) network
Gene
Degree
Gene
Degree
Gene
Degree
Gene
Degree
CCND1
29
SOD2
19
CENPN
16
KIF11
15
PIK3R1
25
TYMS
19
CAV1
16
PTK2
15
PGK1
22
CDKN1A
18
PIK3R2
16
EDN1
14
NUP37
22
PARP1
18
CTGF
15
CS
13
CALM2
21
TOP2A
18
RFC5
15
CCL2
13
MCM3
21
ITGB1
18
NUP155
15
RSL24D1
12
GMNN
20
TCP1
18
NRAS
15
CDCA7
12
CCNA2
20
SERPINE1
17
NIP7
15
BCL2L1
12

Transcriptional regulatory network analysis

For further study, the regulation of TGFB1/SMAD3 by CEBPB, the transcriptional regulation interactions related to TGFB1/SMAD3, and the members of TGFB family were screened out from the ENCODE database and the transcriptional regulatory network was visualized by Cytoscape software (Fig. 2). The transcriptional regulation network showed that the CEBPB could regulate SMAD3, transcription factor 12 (TCF12), transforming growth factor beta 2 (TGFB2), TGFBR2, and TGFBR3 directly. Additionally, TCF12 targeted TGFB1, TGFBR1, TGFBR2, TGFBR3, and SMAD3.

Discussion

In this study, a total of 529 DEGs were obtained, including 336 up-regulated genes and 193 down-regulated genes. Enrichment analysis indicated that the up-regulated CCL2 was significantly enriched in the chemokine signaling pathway. Reports have found that chemokine expressed by stromal cells or endogenously produced in glioma cells may play key roles in tumor cell migration, invasion, proliferation, angiogenesis and immune cell infiltration in the tumor mass [26]. The chemokine CCL2 can promote glioma tumor aggressiveness by promoting attraction of T regulatory cells (which suppress the lymphocyte anti-tumor effector function) and microglial cells (which can reduce the anti-tumor functions and secrete pro-invasive metalloproteinases) [27, 28]. Meanwhile, metalloproteinases can promote the glioma invasion through the detachment of ECM [29]. Besides, results of DEGs annotation showed that CCL2 was screened out as a TAG. Therefore, we speculated that the increased expression of CCL2 could promote glioma aggressiveness through the pathway of chemokine signaling.
In addition, some up-regulated genes (such as THBS1, THBS2, SMAD5, and SMAD6) were significantly enriched in the TGF-beta signaling pathway in our study. Recently, it has been reported that the TGFB is a key factor in controlling migration, invasion and angiogenesis in glioblastoma and induces profound immunosuppression [30]. Besides, the THBS1 (belonging to thrombospondin family), which is referred as a TGFB activating protein, induces the glioma invasion [31]. THBS1 is a powerful anti-angiogenesis protein in glioblastoma [32]. These suggested that THBS1 might play a key role in regulating the angiogenesis in glioma. As another member of thrombospondin family, THBS2 may be a potential inhibitor of tumor growth and angiogenesis [33]. Moreover, it has been shown that THBS2 can function as an endogenous inhibitor of angiogenesis through directly affecting endothelial cell migration, proliferation, survival, and apoptosis [34]. In our study, we also found that THBS1 and THBS2 were significantly involved in the pathway of focal adhesion. Previous study reported that focal adhesion can suppress the migration and metastasis of tumor cells [35]. Therefore, we speculated that THBS1 and THBS2 could regulate angiogenesis and invasion in glioma via TGF-beta signaling pathway and focal adhesion pathway. Former researches have shown that SMAD6 is an inhibitor of TGFB signaling and blocked the phosphorylation of receptor-regulated SMADs (such as SMAD5) in the cytoplasm [36]. As a result, we assumed that SMAD5 and SMAD6 might affect glioma by regulating the TGFB signaling. In the PPI network, THBS1 could interact with CCL2, to some extent, indicating that THBS1 might play key roles in glioma through regulating CCL2. Consequently, THBS1, THBS2, SAMD5 and SMAD6 could be key factors involved in the CEBPB-silenced glioma.
Moreover, CCND1, as a member of the cyclin family, possessed the highest degree in the PPI network. Cyclins can modulate tumor cell cycle through alterations in cyclin-dependent kinase activity [37]. What’s more, researchers have discovered that overexpression of CCND1 can elevate the proliferation and invasion potential of human glioblastoma cells [38]. In the PPI network, we also found that CCND1 had interaction with THBS1, suggesting that CCND1 could be involved in regulating proliferation and invasion of glioma via interacting with THBS1.
TGFBR2 plays a key role in TGFB signal propagation via activating TGFBR1 and the phosphorylation of SMAD proteins [39]. Moreover, silencing of TGFBR2 can abolish TGFB-induced invasion and migratory responses of glioblastoma in vitro [40]. In our study, we also discovered that the up-regulated TCF12 could regulate TGFB1 and SMAD3, indicating that CEBPB might regulate TGFB1 and SMAD3 through TCF12. Previous studies have shown that TGFB1/SMAD3 can promote tumor cell migration, invasion and metastasis through inducing epithelial-mesenchymal transition [41, 42]. What is more, TCF12 has been found to suppress the expression of E-cadherin, which can lead to the metastasis of tumor cells [43]. Therefore, we assumed that CEBPB might regulate TGFBR2 and SMAD3 through TGF-β1/SMAD3 signaling pathway in glioma, and CEBPB could also affect metastasis of glioma by regulating TCF12. However, in our study, TGFB1 and SMAD3 were not significantly expressed, which might due to the relatively short time for CEBPB silencing. In our further research, the regulation of CEBPB on TGFB1/SMAD3 will be studied with CEBPB-silenced for a relatively long time.

Conclusions

We conducted a comprehensive bioinformatics analysis to identify genes which may be correlated with CEBPB-silenced glioma. A total of 529 DEGs were identified in the normal glioma cells compared with the CEBPB-silenced glioma cells. Besides, The identified DEGs, such as TCF12, TGFBR2, CCL2, THBS1, THBS2, SMAD5, SMAD6, and CCND1, might play important roles in the progression of glioma via the regulation of CEBPB. However, further researches are still needed to unravel their action mechanisms in glioma.

Acknowledgements

None.

Funding

None.

Availability of data and materials

The datasets supporting the conclusions of this article are too many to share. There was no new software.

Authors’ contributions

CHD and PP participated in the design of this study, and they both performed the statistical analysis. PP, YJ, QZ, JSB, and CL carried out the study and collected important background information. CHD and PP drafted the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Not applicable.
Not applicable.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Mei P, Bai J, Shi M, Liu Q, Li Z, Fan Y, Zheng J. BRMS1 suppresses glioma progression by regulating invasion. Migration and adhesion of glioma cells. PLoS One. 2014;9:e98544.CrossRefPubMedPubMedCentral Mei P, Bai J, Shi M, Liu Q, Li Z, Fan Y, Zheng J. BRMS1 suppresses glioma progression by regulating invasion. Migration and adhesion of glioma cells. PLoS One. 2014;9:e98544.CrossRefPubMedPubMedCentral
2.
3.
Zurück zum Zitat Onishi M, Ichikawa T, Kurozumi K, Date I. Angiogenesis and invasion in glioma. Brain Tumor Pathol. 2011;28:13–24.CrossRefPubMed Onishi M, Ichikawa T, Kurozumi K, Date I. Angiogenesis and invasion in glioma. Brain Tumor Pathol. 2011;28:13–24.CrossRefPubMed
4.
Zurück zum Zitat Reuss D, von Deimling A. Hereditary tumor syndromes and gliomas. In: Gliomas. Heidelberg: Springer Berlin; 2009. p. 83-102. Reuss D, von Deimling A. Hereditary tumor syndromes and gliomas. In: Gliomas. Heidelberg: Springer Berlin; 2009. p. 83-102.
5.
Zurück zum Zitat Cancer IAfRo. IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. Lyon: World Health Organization; 2011. Cancer IAfRo. IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. Lyon: World Health Organization; 2011.
6.
Zurück zum Zitat Fahmideh MA, Schwartzbaum J, Frumento P, Feychting M. Association between DNA repair gene polymorphisms and risk of glioma: a systematic review and meta-analysis. Neuro Oncol. 2014;16:807–14.CrossRef Fahmideh MA, Schwartzbaum J, Frumento P, Feychting M. Association between DNA repair gene polymorphisms and risk of glioma: a systematic review and meta-analysis. Neuro Oncol. 2014;16:807–14.CrossRef
7.
Zurück zum Zitat Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9:157–73.CrossRefPubMed Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9:157–73.CrossRefPubMed
8.
Zurück zum Zitat Tso C-L, Shintaku P, Chen J, Liu Q, Liu J, Chen Z, Yoshimoto K, Mischel PS, Cloughesy TF, Liau LM. Primary glioblastomas express mesenchymal stem-like properties. Mol Cancer Res. 2006;4:607–19.CrossRefPubMed Tso C-L, Shintaku P, Chen J, Liu Q, Liu J, Chen Z, Yoshimoto K, Mischel PS, Cloughesy TF, Liau LM. Primary glioblastomas express mesenchymal stem-like properties. Mol Cancer Res. 2006;4:607–19.CrossRefPubMed
9.
Zurück zum Zitat Singh R, Sharma MC, Sarkar C, Singh M, Chauhan SS. Transcription factor C/EBP-β mediates downregulation of dipeptidyl-peptidase III expression by interleukin-6 in human glioblastoma cells. FEBS J. 2014;281:1629–41.CrossRefPubMed Singh R, Sharma MC, Sarkar C, Singh M, Chauhan SS. Transcription factor C/EBP-β mediates downregulation of dipeptidyl-peptidase III expression by interleukin-6 in human glioblastoma cells. FEBS J. 2014;281:1629–41.CrossRefPubMed
10.
Zurück zum Zitat Aguilarmorante D, Moralesgarcia JA, Santos A, Perezcastillo A. CCAAT/enhancer binding protein β induces motility and invasion of glioblastoma cells through transcriptional regulation of the calcium binding protein S100A4. Oncotarget. 2015;6:454–63. Aguilarmorante D, Moralesgarcia JA, Santos A, Perezcastillo A. CCAAT/enhancer binding protein β induces motility and invasion of glioblastoma cells through transcriptional regulation of the calcium binding protein S100A4. Oncotarget. 2015;6:454–63.
11.
Zurück zum Zitat Okano K, Hibi A, Miyaoka T, Inoue T, Sugimoto H, Tsuchiya K, Akiba T, Nitta K. Inhibitory effects of the transcription factor Ets-1 on the expression of type I collagen in TGF-β1-stimulated renal epithelial cells. Mol Cell Biochem. 2012;369:247–54.CrossRefPubMed Okano K, Hibi A, Miyaoka T, Inoue T, Sugimoto H, Tsuchiya K, Akiba T, Nitta K. Inhibitory effects of the transcription factor Ets-1 on the expression of type I collagen in TGF-β1-stimulated renal epithelial cells. Mol Cell Biochem. 2012;369:247–54.CrossRefPubMed
12.
Zurück zum Zitat Barnes JM, Weaver VM. Abstract B04: the role of mechanical force and integrin-ECM signaling in glioblastoma aggression. Cancer Res. 2013;73:B04.CrossRef Barnes JM, Weaver VM. Abstract B04: the role of mechanical force and integrin-ECM signaling in glioblastoma aggression. Cancer Res. 2013;73:B04.CrossRef
13.
Zurück zum Zitat Luft FC. C/EBPβ LIP induces a tumor menagerie making it an oncogene. J Mol Med. 2015;93:1–3.CrossRefPubMed Luft FC. C/EBPβ LIP induces a tumor menagerie making it an oncogene. J Mol Med. 2015;93:1–3.CrossRefPubMed
14.
Zurück zum Zitat Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H. The transcriptional network for mesenchymal transformation of brain tumours. Nature. 2009;463:318–25.CrossRefPubMedPubMedCentral Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H. The transcriptional network for mesenchymal transformation of brain tumours. Nature. 2009;463:318–25.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.CrossRefPubMedPubMedCentral Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Ghosh D. Incorporating the empirical null hypothesis into the Benjamini-Hochberg procedure. Stat Appl Genet Mol Biol. 2012;11:1–21. Ghosh D. Incorporating the empirical null hypothesis into the Benjamini-Hochberg procedure. Stat Appl Genet Mol Biol. 2012;11:1–21.
17.
Zurück zum Zitat Consortium GO. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43:1049–56.CrossRef Consortium GO. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43:1049–56.CrossRef
18.
Zurück zum Zitat Du J, Yuan Z, Ma Z, Song J, Xie X, Chen Y. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Mol Biosyst. 2014;10:2441–7.CrossRefPubMed Du J, Yuan Z, Ma Z, Song J, Xie X, Chen Y. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Mol Biosyst. 2014;10:2441–7.CrossRefPubMed
19.
Zurück zum Zitat Jiao X, Sherman BT, Huang DW, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics. 2012;28:1805–6.CrossRefPubMedPubMedCentral Jiao X, Sherman BT, Huang DW, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics. 2012;28:1805–6.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Zhao M, Sun J, Zhao Z. TSGene: a web resource for tumor suppressor genes. Nucleic Acids Res. 2013;41:D970–6.CrossRefPubMed Zhao M, Sun J, Zhao Z. TSGene: a web resource for tumor suppressor genes. Nucleic Acids Res. 2013;41:D970–6.CrossRefPubMed
21.
Zurück zum Zitat Chen J-S, Hung W-S, Chan H-H, Tsai S-J, Sun HS. In silico identification of oncogenic potential of fyn-related kinase in hepatocellular carcinoma. Bioinformatics. 2013;29:420–7.CrossRefPubMed Chen J-S, Hung W-S, Chan H-H, Tsai S-J, Sun HS. In silico identification of oncogenic potential of fyn-related kinase in hepatocellular carcinoma. Bioinformatics. 2013;29:420–7.CrossRefPubMed
22.
Zurück zum Zitat Raney BJ, Cline MS, Rosenbloom KR, Dreszer TR, Learned K, Barber GP, Meyer LR, Sloan CA, Malladi VS, Roskin KM, et al. ENCODE whole-genome data in the UCSC genome browser (2011 update). Nucleic Acids Res. 2011;39:30.CrossRef Raney BJ, Cline MS, Rosenbloom KR, Dreszer TR, Learned K, Barber GP, Meyer LR, Sloan CA, Malladi VS, Roskin KM, et al. ENCODE whole-genome data in the UCSC genome browser (2011 update). Nucleic Acids Res. 2011;39:30.CrossRef
23.
Zurück zum Zitat Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–15.CrossRefPubMed Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–15.CrossRefPubMed
24.
Zurück zum Zitat Saito R, Smoot ME, Ono K, Ruscheinski J, Wang P-L, Lotia S, Pico AR, Bader GD, Ideker T. A travel guide to Cytoscape plugins. Nat Methods. 2012;9:1069–76.CrossRefPubMedPubMedCentral Saito R, Smoot ME, Ono K, Ruscheinski J, Wang P-L, Lotia S, Pico AR, Bader GD, Ideker T. A travel guide to Cytoscape plugins. Nat Methods. 2012;9:1069–76.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Chao W, Zhu J, Zhang X. Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes. BMC Bioinf. 2012;13:1–10.CrossRef Chao W, Zhu J, Zhang X. Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes. BMC Bioinf. 2012;13:1–10.CrossRef
26.
Zurück zum Zitat Domanska UM, Kruizinga RC, Dunnen WFAD, Timmer-Bosscha H, Vries EGED, Walenkamp AME. The chemokine network, a newly discovered target in high grade gliomas. Crit Rev Oncol Hematol. 2011;79:154–63.CrossRefPubMed Domanska UM, Kruizinga RC, Dunnen WFAD, Timmer-Bosscha H, Vries EGED, Walenkamp AME. The chemokine network, a newly discovered target in high grade gliomas. Crit Rev Oncol Hematol. 2011;79:154–63.CrossRefPubMed
27.
Zurück zum Zitat Carrillo-de Sauvage MA, Gómez A, Ros CM, Ros-Bernal F, Martín ED, Perez-Vallés A, Gallego-Sanchez JM, Fernández-Villalba E, Sr BC, Jr BC. CCL2-expressing astrocytes mediate the extravasation of T lymphocytes in the brain. Evidence from patients with glioma and experimental models in vivo. PLoS One. 2012;7:e30762.CrossRefPubMedPubMedCentral Carrillo-de Sauvage MA, Gómez A, Ros CM, Ros-Bernal F, Martín ED, Perez-Vallés A, Gallego-Sanchez JM, Fernández-Villalba E, Sr BC, Jr BC. CCL2-expressing astrocytes mediate the extravasation of T lymphocytes in the brain. Evidence from patients with glioma and experimental models in vivo. PLoS One. 2012;7:e30762.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Lindemann C, Marschall V, Weigert A, Klingebiel T, Fulda S. Smac mimetic-induced upregulation of CCL2/MCP-1 triggers migration and invasion of glioblastoma cells and influences the tumor microenvironment in a paracrine manner 1. Neoplasia. 2015;17:481–9.CrossRefPubMedPubMedCentral Lindemann C, Marschall V, Weigert A, Klingebiel T, Fulda S. Smac mimetic-induced upregulation of CCL2/MCP-1 triggers migration and invasion of glioblastoma cells and influences the tumor microenvironment in a paracrine manner 1. Neoplasia. 2015;17:481–9.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Könnecke H, Bechmann I. The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas. Clin Dev Immunol. 2013;2013:914104.CrossRefPubMedPubMedCentral Könnecke H, Bechmann I. The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas. Clin Dev Immunol. 2013;2013:914104.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Roth P, Silginer M, Goodman SL, Hasenbach K, Thies S, Maurer G, Schraml P, Tabatabai G, Moch H, Tritschler I. Integrin control of the transforming growth factor-β pathway in glioblastoma. Brain. 2013;136:564–76.CrossRefPubMed Roth P, Silginer M, Goodman SL, Hasenbach K, Thies S, Maurer G, Schraml P, Tabatabai G, Moch H, Tritschler I. Integrin control of the transforming growth factor-β pathway in glioblastoma. Brain. 2013;136:564–76.CrossRefPubMed
31.
Zurück zum Zitat Seliger C, Leukel P, Moeckel S, Jachnik B, Lottaz C, Kreutz M, Brawanski A, Proescholdt M, Bogdahn U, Bosserhoff A-K. Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro. PLoS One. 2013;8:e78935.CrossRefPubMedPubMedCentral Seliger C, Leukel P, Moeckel S, Jachnik B, Lottaz C, Kreutz M, Brawanski A, Proescholdt M, Bogdahn U, Bosserhoff A-K. Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro. PLoS One. 2013;8:e78935.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Brooks MD, Jackson E, Piwnica-Worms D, Mitre RD, Rubin JB. Downregulation of THBS1 is a critical step in glioblastoma angiogenesis. In: Cancer research. Philadelphia: AMER Assoc Cancer Research; 2013. Brooks MD, Jackson E, Piwnica-Worms D, Mitre RD, Rubin JB. Downregulation of THBS1 is a critical step in glioblastoma angiogenesis. In: Cancer research. Philadelphia: AMER Assoc Cancer Research; 2013.
33.
Zurück zum Zitat Hawighorst T, Velasco P, Streit M, Hong YK, Kyriakides TR, Brown LF, Bornstein P, Detmar M. Thrombospondin‐2 plays a protective role in multistep carcinogenesis: a novel host anti‐tumor defense mechanism. EMBO J. 2001;20:2631–40.CrossRefPubMedPubMedCentral Hawighorst T, Velasco P, Streit M, Hong YK, Kyriakides TR, Brown LF, Bornstein P, Detmar M. Thrombospondin‐2 plays a protective role in multistep carcinogenesis: a novel host anti‐tumor defense mechanism. EMBO J. 2001;20:2631–40.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Lawler PR, Lawler J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med. 2012;2:a006627.CrossRefPubMedPubMedCentral Lawler PR, Lawler J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med. 2012;2:a006627.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Jarjour AA, Durko M, Luk TL, Marçal N, Shekarabi M, Kennedy TE. Autocrine netrin function inhibits glioma cell motility and promotes focal adhesion formation. PLoS One. 2011;6:e25408.CrossRefPubMedPubMedCentral Jarjour AA, Durko M, Luk TL, Marçal N, Shekarabi M, Kennedy TE. Autocrine netrin function inhibits glioma cell motility and promotes focal adhesion formation. PLoS One. 2011;6:e25408.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Jung SM, Lee JH, Park J, Oh YS, Lee SK, Park JS, Lee YS, Kim JH, Lee JY, Bae YS, et al. Smad6 inhibits non-canonical TGF-β1 signalling by recruiting the deubiquitinase A20 to TRAF6. Nat Commun. 2013;4:2562.PubMed Jung SM, Lee JH, Park J, Oh YS, Lee SK, Park JS, Lee YS, Kim JH, Lee JY, Bae YS, et al. Smad6 inhibits non-canonical TGF-β1 signalling by recruiting the deubiquitinase A20 to TRAF6. Nat Commun. 2013;4:2562.PubMed
37.
38.
Zurück zum Zitat Phull P, Shipley A, Mowat N. NOTCH3 is a prognostic factor that promotes glioma cell proliferation, migration and invasion via activation of CCND1 and EGFR. PLoS One. 2013;8:271–2. Phull P, Shipley A, Mowat N. NOTCH3 is a prognostic factor that promotes glioma cell proliferation, migration and invasion via activation of CCND1 and EGFR. PLoS One. 2013;8:271–2.
39.
Zurück zum Zitat Rožmarić M, Ivšić AG, Grahek Ž. TGF-beta induced Erk phosphorylation of smad linker region regulates smad signaling. PLoS One. 2012;7:2016. Rožmarić M, Ivšić AG, Grahek Ž. TGF-beta induced Erk phosphorylation of smad linker region regulates smad signaling. PLoS One. 2012;7:2016.
40.
Zurück zum Zitat Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M, Franciszkiewicz K, Chouaib S, Kaminska B. Microglia-derived TGF-β as an important regulator of glioblastoma invasion—an inhibition of TGF-β-dependent effects by shRNA against human TGF-β type II receptor. Oncogene. 2007;27:918–30.CrossRefPubMed Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M, Franciszkiewicz K, Chouaib S, Kaminska B. Microglia-derived TGF-β as an important regulator of glioblastoma invasion—an inhibition of TGF-β-dependent effects by shRNA against human TGF-β type II receptor. Oncogene. 2007;27:918–30.CrossRefPubMed
41.
Zurück zum Zitat Fuxe J, Vincent T, Garcia de Herreros A. Transcriptional crosstalk between TGF-beta and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell Cycle. 2010;9:2363–74.CrossRefPubMed Fuxe J, Vincent T, Garcia de Herreros A. Transcriptional crosstalk between TGF-beta and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell Cycle. 2010;9:2363–74.CrossRefPubMed
42.
Zurück zum Zitat Bae E, Kim S-J, Hong S, Liu F, Ooshima A. Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF-β1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells. Biochem Biophys Res Commun. 2012;427:593–9.CrossRefPubMed Bae E, Kim S-J, Hong S, Liu F, Ooshima A. Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF-β1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells. Biochem Biophys Res Commun. 2012;427:593–9.CrossRefPubMed
43.
Zurück zum Zitat Lee CC, Chen WS, Chen CC, Chen LL, Lin YS, Fan CS, Huang TS. TCF12 protein functions as transcriptional repressor of E-cadherin, and its overexpression is correlated with metastasis of colorectal cancer. J Biol Chem. 2011;287:2798–809.CrossRefPubMedPubMedCentral Lee CC, Chen WS, Chen CC, Chen LL, Lin YS, Fan CS, Huang TS. TCF12 protein functions as transcriptional repressor of E-cadherin, and its overexpression is correlated with metastasis of colorectal cancer. J Biol Chem. 2011;287:2798–809.CrossRefPubMedPubMedCentral
Metadaten
Titel
Microarray data analysis to identify crucial genes regulated by CEBPB in human SNB19 glioma cells
verfasst von
Chenghua Du
Pan Pan
Yan Jiang
Qiuli Zhang
Jinsuo Bao
Chang Liu
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2016
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-016-0997-z

Weitere Artikel der Ausgabe 1/2016

World Journal of Surgical Oncology 1/2016 Zur Ausgabe

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Wie sieht der OP der Zukunft aus?

04.05.2024 DCK 2024 Kongressbericht

Der OP in der Zukunft wird mit weniger Personal auskommen – nicht, weil die Technik das medizinische Fachpersonal verdrängt, sondern weil der Personalmangel es nötig macht.

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Recycling im OP – möglich, aber teuer

02.05.2024 DCK 2024 Kongressbericht

Auch wenn sich Krankenhäuser nachhaltig und grün geben – sie tragen aktuell erheblich zu den CO2-Emissionen bei und produzieren jede Menge Müll. Ein Pilotprojekt aus Bonn zeigt, dass viele Op.-Abfälle wiederverwertet werden können.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.