Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3-4/2011

01.12.2011

MicroRNA and AU-rich element regulation of prostaglandin synthesis

verfasst von: Ashleigh E. Moore, Lisa E. Young, Dan A. Dixon

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3-4/2011

Einloggen, um Zugang zu erhalten

Abstract

Many lines of evidence demonstrate that prostaglandins play an important role in cancer, and enhanced synthesis of prostaglandin E2 (PGE2) is often observed in various human malignancies often associated with poor prognosis. PGE2 synthesis is initiated with the release of arachidonic acid by phospholipase enzymes, where it is then converted into the intermediate prostaglandin prostaglandin H2 (PGH2) by members of the cyclooxygenase family. The synthesis of PGE2 from PGH2 is facilitated by three different PGE synthases, and functional PGE2 can promote tumor growth by binding to four EP receptors to activate signaling pathways that control cell proliferation, migration, apoptosis, and angiogenesis. An integral method of controlling gene expression is by posttranscriptional mechanisms that regulate mRNA stability and protein translation. Messenger RNA regulatory elements typically reside within the 3′ untranslated region (3′UTR) of the transcript and play a critical role in targeting specific mRNAs for posttranscriptional regulation through microRNA (miRNA) binding and adenylate- and uridylate-rich element RNA-binding proteins. In this review, we highlight the current advances in our understanding of the impact these RNA sequence elements have upon regulating PGE2 levels. We also identify various RNA sequence elements consistently observed within the 3′UTRs of the genes involved in the PGE2 pathway, indicating these binding sites for miRNAs and RNA-binding proteins to be central regulators of PGE2 synthesis and function. These findings may provide a rationale for the development of new therapeutic approaches to control tumor growth and metastasis promoted by elevated PGE2 levels.
Literatur
1.
Zurück zum Zitat Funk, C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294(5548), 1871–1875.PubMed Funk, C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294(5548), 1871–1875.PubMed
2.
Zurück zum Zitat Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews Cancer, 10(3), 181–193.PubMed Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews Cancer, 10(3), 181–193.PubMed
3.
Zurück zum Zitat Legler, D. F., Bruckner, M., Uetz-von Allmen, E., & Krause, P. (2010). Prostaglandin E2 at new glance: novel insights in functional diversity offer therapeutic chances. International Journal of Biochemistry and Cell Biolgy, 42(2), 198–201. Legler, D. F., Bruckner, M., Uetz-von Allmen, E., & Krause, P. (2010). Prostaglandin E2 at new glance: novel insights in functional diversity offer therapeutic chances. International Journal of Biochemistry and Cell Biolgy, 42(2), 198–201.
4.
Zurück zum Zitat Rigas, B., Goldman, I. S., & Levine, L. (1993). Altered eicosanoid levels in human colon cancer. The Journal of Laboratory and Clinical Medicine, 122(5), 518–523.PubMed Rigas, B., Goldman, I. S., & Levine, L. (1993). Altered eicosanoid levels in human colon cancer. The Journal of Laboratory and Clinical Medicine, 122(5), 518–523.PubMed
5.
Zurück zum Zitat McLemore, T. L., Hubbard, W. C., Litterst, C. L., Liu, M. C., Miller, S., McMahon, N. A., et al. (1988). Profiles of prostaglandin biosynthesis in normal lung and tumor tissue from lung cancer patients. Cancer Research, 48(11), 3140–3147.PubMed McLemore, T. L., Hubbard, W. C., Litterst, C. L., Liu, M. C., Miller, S., McMahon, N. A., et al. (1988). Profiles of prostaglandin biosynthesis in normal lung and tumor tissue from lung cancer patients. Cancer Research, 48(11), 3140–3147.PubMed
6.
Zurück zum Zitat Hambek, M., Baghi, M., Wagenblast, J., Schmitt, J., Baumann, H., & Knecht, R. (2007). Inverse correlation between serum PGE2 and T classification in head and neck cancer. Head & Neck, 29(3), 244–248. Hambek, M., Baghi, M., Wagenblast, J., Schmitt, J., Baumann, H., & Knecht, R. (2007). Inverse correlation between serum PGE2 and T classification in head and neck cancer. Head & Neck, 29(3), 244–248.
7.
Zurück zum Zitat Cheadle, C., Fan, J., Cho-Chung, Y. S., Werner, T., Ray, J., Do, L., et al. (2005). Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. BioMed Central Genomics, 6(1), 75.PubMed Cheadle, C., Fan, J., Cho-Chung, Y. S., Werner, T., Ray, J., Do, L., et al. (2005). Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. BioMed Central Genomics, 6(1), 75.PubMed
8.
Zurück zum Zitat Garneau, N. L., Wilusz, J., & Wilusz, C. J. (2007). The highways and byways of mRNA decay. Nature Reviews Molecular Cell Biology, 8(2), 113–126.PubMed Garneau, N. L., Wilusz, J., & Wilusz, C. J. (2007). The highways and byways of mRNA decay. Nature Reviews Molecular Cell Biology, 8(2), 113–126.PubMed
9.
Zurück zum Zitat Fabian, M. R., Sonenberg, N., & Filipowicz, W. (2010). Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry, 79, 351–379.PubMed Fabian, M. R., Sonenberg, N., & Filipowicz, W. (2010). Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry, 79, 351–379.PubMed
10.
Zurück zum Zitat Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105.PubMed Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105.PubMed
11.
Zurück zum Zitat von Roretz, C., & Gallouzi, I. E. (2008). Decoding ARE-mediated decay: is microRNA part of the equation? The Journal of Cell Biology, 181(2), 189–194. von Roretz, C., & Gallouzi, I. E. (2008). Decoding ARE-mediated decay: is microRNA part of the equation? The Journal of Cell Biology, 181(2), 189–194.
12.
Zurück zum Zitat Park, J. Y., Pillinger, M. H., & Abramson, S. B. (2006). Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clinical Immunology, 119(3), 229–240.PubMed Park, J. Y., Pillinger, M. H., & Abramson, S. B. (2006). Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clinical Immunology, 119(3), 229–240.PubMed
13.
Zurück zum Zitat Simmons, D. L., Botting, R. M., & Hla, T. (2004). Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacology Reviews, 56(3), 387–437. Simmons, D. L., Botting, R. M., & Hla, T. (2004). Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacology Reviews, 56(3), 387–437.
14.
Zurück zum Zitat Rebecchi, M. J., & Pentyala, S. N. (2000). Structure, function, and control of phosphoinositide-specific phospholipase C. Physiological Reviews, 80(4), 1291–1335.PubMed Rebecchi, M. J., & Pentyala, S. N. (2000). Structure, function, and control of phosphoinositide-specific phospholipase C. Physiological Reviews, 80(4), 1291–1335.PubMed
15.
Zurück zum Zitat Tang, X., Edwards, E. M., Holmes, B. B., Falck, J. R., & Campbell, W. B. (2006). Role of phospholipase C and diacylglyceride lipase pathway in arachidonic acid release and acetylcholine-induced vascular relaxation in rabbit aorta. American Journal of Physiology-Heart and Circulatory Physiology, 290(1), H37–H45.PubMed Tang, X., Edwards, E. M., Holmes, B. B., Falck, J. R., & Campbell, W. B. (2006). Role of phospholipase C and diacylglyceride lipase pathway in arachidonic acid release and acetylcholine-induced vascular relaxation in rabbit aorta. American Journal of Physiology-Heart and Circulatory Physiology, 290(1), H37–H45.PubMed
16.
Zurück zum Zitat Smith, W. L., DeWitt, D. L., & Garavito, R. M. (2000). Cyclooxygenases: structural, cellular, and molecular biology. Annual Review of Biochemistry, 69, 145–182.PubMed Smith, W. L., DeWitt, D. L., & Garavito, R. M. (2000). Cyclooxygenases: structural, cellular, and molecular biology. Annual Review of Biochemistry, 69, 145–182.PubMed
17.
Zurück zum Zitat Wang, D., Wang, H., Shi, Q., Katkuri, S., Walhi, W., Desvergne, B., et al. (2004). Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell, 6(3), 285–295.PubMed Wang, D., Wang, H., Shi, Q., Katkuri, S., Walhi, W., Desvergne, B., et al. (2004). Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell, 6(3), 285–295.PubMed
18.
Zurück zum Zitat Hara, S., Kamei, D., Sasaki, Y., Tanemoto, A., Nakatani, Y., & Murakami, M. (2010). Prostaglandin E synthases: understanding their pathophysiological roles through mouse genetic models. Biochimie, 92(6), 651–659.PubMed Hara, S., Kamei, D., Sasaki, Y., Tanemoto, A., Nakatani, Y., & Murakami, M. (2010). Prostaglandin E synthases: understanding their pathophysiological roles through mouse genetic models. Biochimie, 92(6), 651–659.PubMed
19.
Zurück zum Zitat Jakobsson, P. J., Thoren, S., Morgenstern, R., & Samuelsson, B. (1999). Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proceedings of the National Academy of Sciences USA, 96(13), 7220–7225. Jakobsson, P. J., Thoren, S., Morgenstern, R., & Samuelsson, B. (1999). Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proceedings of the National Academy of Sciences USA, 96(13), 7220–7225.
20.
Zurück zum Zitat Samuelsson, B., Morgenstern, R., & Jakobsson, P. J. (2007). Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacological Reviews, 59(3), 207–224.PubMed Samuelsson, B., Morgenstern, R., & Jakobsson, P. J. (2007). Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacological Reviews, 59(3), 207–224.PubMed
21.
Zurück zum Zitat Watanabe, K., Kurihara, K., & Suzuki, T. (1999). Purification and characterization of membrane-bound prostaglandin E synthase from bovine heart. Biochimica et Biophysica Acta, 1439(3), 406–414.PubMed Watanabe, K., Kurihara, K., & Suzuki, T. (1999). Purification and characterization of membrane-bound prostaglandin E synthase from bovine heart. Biochimica et Biophysica Acta, 1439(3), 406–414.PubMed
22.
Zurück zum Zitat Tanioka, T., Nakatani, Y., Semmyo, N., Murakami, M., & Kudo, I. (2000). Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. The Journal of Biological Chemistry, 275(42), 32775–32782.PubMed Tanioka, T., Nakatani, Y., Semmyo, N., Murakami, M., & Kudo, I. (2000). Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. The Journal of Biological Chemistry, 275(42), 32775–32782.PubMed
23.
Zurück zum Zitat Tai, H. H., Ensor, C. M., Tong, M., Zhou, H., & Yan, F. (2002). Prostaglandin catabolizing enzymes. Prostaglandins & Other Lipid Mediators, 68–69, 483–493. Tai, H. H., Ensor, C. M., Tong, M., Zhou, H., & Yan, F. (2002). Prostaglandin catabolizing enzymes. Prostaglandins & Other Lipid Mediators, 68–69, 483–493.
24.
Zurück zum Zitat Coggins, K. G., Latour, A., Nguyen, M. S., Audoly, L., Coffman, T. M., & Koller, B. H. (2002). Metabolism of PGE2 by prostaglandin dehydrogenase is essential for remodeling the ductus arteriosus. Nature Medicine, 8(2), 91–92.PubMed Coggins, K. G., Latour, A., Nguyen, M. S., Audoly, L., Coffman, T. M., & Koller, B. H. (2002). Metabolism of PGE2 by prostaglandin dehydrogenase is essential for remodeling the ductus arteriosus. Nature Medicine, 8(2), 91–92.PubMed
25.
Zurück zum Zitat Yan, M., Rerko, R. M., Platzer, P., Dawson, D., Willis, J., Tong, M., et al. (2004). 15-Hydroxyprostaglandin dehydrogenase, a COX-2 oncogene antagonist, is a TGF-Beta-induced suppressor of human gastrointestinal cancers. Proceedings of the National Academy of Sciences USA, 101(50), 17468–17473. Yan, M., Rerko, R. M., Platzer, P., Dawson, D., Willis, J., Tong, M., et al. (2004). 15-Hydroxyprostaglandin dehydrogenase, a COX-2 oncogene antagonist, is a TGF-Beta-induced suppressor of human gastrointestinal cancers. Proceedings of the National Academy of Sciences USA, 101(50), 17468–17473.
26.
Zurück zum Zitat Myung, S. J., Rerko, R. M., Yan, M., Platzer, P., Guda, K., Dotson, A., et al. (2006). 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proceedings of the National Academy of Sciences USA, 103(32), 12098–12102. Myung, S. J., Rerko, R. M., Yan, M., Platzer, P., Guda, K., Dotson, A., et al. (2006). 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proceedings of the National Academy of Sciences USA, 103(32), 12098–12102.
27.
Zurück zum Zitat Ding, Y., Tong, M., Liu, S., Moscow, J. A., & Tai, H. H. (2005). Nad + −linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in lung cancer. Carcinogenesis, 26(1), 65–72.PubMed Ding, Y., Tong, M., Liu, S., Moscow, J. A., & Tai, H. H. (2005). Nad + −linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in lung cancer. Carcinogenesis, 26(1), 65–72.PubMed
28.
Zurück zum Zitat Huang, G., Eisenberg, R., Yan, M., Monti, S., Lawrence, E., Fu, P., et al. (2008). 15-Hydroxyprostaglandin dehydrogenase is a target of hepatocyte nuclear factor 3beta and a tumor suppressor in lung cancer. Cancer Research, 68(13), 5040–5048.PubMed Huang, G., Eisenberg, R., Yan, M., Monti, S., Lawrence, E., Fu, P., et al. (2008). 15-Hydroxyprostaglandin dehydrogenase is a target of hepatocyte nuclear factor 3beta and a tumor suppressor in lung cancer. Cancer Research, 68(13), 5040–5048.PubMed
29.
Zurück zum Zitat Backlund, M. G., Mann, J. R., Holla, V. R., Buchanan, F. G., Tai, H. H., Musiek, E. S., et al. (2005). 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. The Journal of Biological Chemistry, 280(5), 3217–3223.PubMed Backlund, M. G., Mann, J. R., Holla, V. R., Buchanan, F. G., Tai, H. H., Musiek, E. S., et al. (2005). 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. The Journal of Biological Chemistry, 280(5), 3217–3223.PubMed
30.
Zurück zum Zitat Wolf, I., O’Kelly, J., Rubinek, T., Tong, M., Nguyen, A., Lin, B. T., et al. (2006). 15-Hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Research, 66(15), 7818–7823.PubMed Wolf, I., O’Kelly, J., Rubinek, T., Tong, M., Nguyen, A., Lin, B. T., et al. (2006). 15-Hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Research, 66(15), 7818–7823.PubMed
31.
Zurück zum Zitat Hughes, D., Otani, T., Yang, P., Newman, R. A., Yantiss, R. K., Altorki, N. K., et al. (2008). NAD+-dependent 15-hydroxyprostaglandin dehydrogenase regulates levels of bioactive lipids in non-small cell lung cancer. Cancer Prevention Research, 1(4), 241–249.PubMed Hughes, D., Otani, T., Yang, P., Newman, R. A., Yantiss, R. K., Altorki, N. K., et al. (2008). NAD+-dependent 15-hydroxyprostaglandin dehydrogenase regulates levels of bioactive lipids in non-small cell lung cancer. Cancer Prevention Research, 1(4), 241–249.PubMed
32.
Zurück zum Zitat Thiel, A., Ganesan, A., Mrena, J., Junnila, S., Nykanen, A., Hemmes, A., et al. (2009). 15-Hydroxyprostaglandin dehydrogenase is down-regulated in gastric cancer. Clinical Cancer Research, 15(14), 4572–4580.PubMed Thiel, A., Ganesan, A., Mrena, J., Junnila, S., Nykanen, A., Hemmes, A., et al. (2009). 15-Hydroxyprostaglandin dehydrogenase is down-regulated in gastric cancer. Clinical Cancer Research, 15(14), 4572–4580.PubMed
33.
Zurück zum Zitat Backlund, M. G., Mann, J. R., Holla, V. R., Shi, Q., Daikoku, T., Dey, S. K., et al. (2008). Repression of 15-hydroxyprostaglandin dehydrogenase involves histone deacetylase 2 and snail in colorectal cancer. Cancer Research, 68(22), 9331–9337.PubMed Backlund, M. G., Mann, J. R., Holla, V. R., Shi, Q., Daikoku, T., Dey, S. K., et al. (2008). Repression of 15-hydroxyprostaglandin dehydrogenase involves histone deacetylase 2 and snail in colorectal cancer. Cancer Research, 68(22), 9331–9337.PubMed
34.
Zurück zum Zitat Tong, M., Ding, Y., & Tai, H. H. (2006). Histone deacetylase inhibitors and transforming growth factor-beta induce 15-hydroxyprostaglandin dehydrogenase expression in human lung adenocarcinoma cells. Biochemical Pharmacology, 72(6), 701–709.PubMed Tong, M., Ding, Y., & Tai, H. H. (2006). Histone deacetylase inhibitors and transforming growth factor-beta induce 15-hydroxyprostaglandin dehydrogenase expression in human lung adenocarcinoma cells. Biochemical Pharmacology, 72(6), 701–709.PubMed
35.
Zurück zum Zitat Hull, M. A., Ko, S. C., & Hawcroft, G. (2004). Prostaglandin EP receptors: targets for treatment and prevention of colorectal cancer. Molecular Cancer Therapeutics, 3(8), 1031–1039.PubMed Hull, M. A., Ko, S. C., & Hawcroft, G. (2004). Prostaglandin EP receptors: targets for treatment and prevention of colorectal cancer. Molecular Cancer Therapeutics, 3(8), 1031–1039.PubMed
36.
Zurück zum Zitat Bhattacharya, M., Peri, K. G., Almazan, G., Ribeiro-da-Silva, A., Shichi, H., Durocher, Y., et al. (1998). Nuclear localization of prostaglandin E2 receptors. Proceedings of the National Academy of Sciences USA, 95(26), 15792–15797. Bhattacharya, M., Peri, K. G., Almazan, G., Ribeiro-da-Silva, A., Shichi, H., Durocher, Y., et al. (1998). Nuclear localization of prostaglandin E2 receptors. Proceedings of the National Academy of Sciences USA, 95(26), 15792–15797.
37.
Zurück zum Zitat Breyer, M. D., & Breyer, R. M. (2000). Prostaglandin E receptors and the kidney. American Journal of Physiology. Renal Physiology, 279(1), F12–F23.PubMed Breyer, M. D., & Breyer, R. M. (2000). Prostaglandin E receptors and the kidney. American Journal of Physiology. Renal Physiology, 279(1), F12–F23.PubMed
38.
Zurück zum Zitat Breyer, R. M., Bagdassarian, C. K., Myers, S. A., & Breyer, M. D. (2001). Prostanoid receptors: subtypes and signaling. Annual Review of Pharmacology and Toxicology, 41, 661–690.PubMed Breyer, R. M., Bagdassarian, C. K., Myers, S. A., & Breyer, M. D. (2001). Prostanoid receptors: subtypes and signaling. Annual Review of Pharmacology and Toxicology, 41, 661–690.PubMed
39.
Zurück zum Zitat Sugimoto, Y., & Narumiya, S. (2007). Prostaglandin E receptors. The Journal of Biological Chemistry, 282(16), 11613–11617.PubMed Sugimoto, Y., & Narumiya, S. (2007). Prostaglandin E receptors. The Journal of Biological Chemistry, 282(16), 11613–11617.PubMed
40.
Zurück zum Zitat Katoh, H., Watabe, A., Sugimoto, Y., Ichikawa, A., & Negishi, M. (1995). Characterization of the signal transduction of prostaglandin E receptor EP1 subtype in cDNA-transfected chinese hamster ovary cells. Biochimica et Biophysica Acta, 1244(1), 41–48.PubMed Katoh, H., Watabe, A., Sugimoto, Y., Ichikawa, A., & Negishi, M. (1995). Characterization of the signal transduction of prostaglandin E receptor EP1 subtype in cDNA-transfected chinese hamster ovary cells. Biochimica et Biophysica Acta, 1244(1), 41–48.PubMed
41.
Zurück zum Zitat Fukuda, R., Kelly, B., & Semenza, G. L. (2003). Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Research, 63(9), 2330–2334.PubMed Fukuda, R., Kelly, B., & Semenza, G. L. (2003). Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Research, 63(9), 2330–2334.PubMed
42.
Zurück zum Zitat Fujino, H., West, K. A., & Regan, J. W. (2002). Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. The Journal of Biological Chemistry, 277(4), 2614–2619.PubMed Fujino, H., West, K. A., & Regan, J. W. (2002). Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. The Journal of Biological Chemistry, 277(4), 2614–2619.PubMed
43.
Zurück zum Zitat Namba, T., Sugimoto, Y., Negishi, M., Irie, A., Ushikubi, F., Kakizuka, A., et al. (1993). Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature, 365(6442), 166–170.PubMed Namba, T., Sugimoto, Y., Negishi, M., Irie, A., Ushikubi, F., Kakizuka, A., et al. (1993). Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature, 365(6442), 166–170.PubMed
44.
Zurück zum Zitat Kotani, M., Tanaka, I., Ogawa, Y., Usui, T., Tamura, N., Mori, K., et al. (1997). Structural organization of the human prostaglandin EP3 receptor subtype gene (PTGER3). Genomics, 40(3), 425–434.PubMed Kotani, M., Tanaka, I., Ogawa, Y., Usui, T., Tamura, N., Mori, K., et al. (1997). Structural organization of the human prostaglandin EP3 receptor subtype gene (PTGER3). Genomics, 40(3), 425–434.PubMed
45.
Zurück zum Zitat Kawamori, T., Uchiya, N., Nakatsugi, S., Watanabe, K., Ohuchida, S., Yamamoto, H., et al. (2001). Chemopreventive effects of ONO-8711, a selective prostaglandin E receptor EP(1) antagonist, on breast cancer development. Carcinogenesis, 22(12), 2001–2004.PubMed Kawamori, T., Uchiya, N., Nakatsugi, S., Watanabe, K., Ohuchida, S., Yamamoto, H., et al. (2001). Chemopreventive effects of ONO-8711, a selective prostaglandin E receptor EP(1) antagonist, on breast cancer development. Carcinogenesis, 22(12), 2001–2004.PubMed
46.
Zurück zum Zitat Yang, L., Huang, Y., Porta, R., Yanagisawa, K., Gonzalez, A., Segi, E., et al. (2006). Host and direct antitumor effects and profound reduction in tumor metastasis with selective EP4 receptor antagonism. Cancer Research, 66(19), 9665–9672.PubMed Yang, L., Huang, Y., Porta, R., Yanagisawa, K., Gonzalez, A., Segi, E., et al. (2006). Host and direct antitumor effects and profound reduction in tumor metastasis with selective EP4 receptor antagonism. Cancer Research, 66(19), 9665–9672.PubMed
47.
Zurück zum Zitat Keith, R. L., Geraci, M. W., Nana-Sinkam, S. P., Breyer, R. M., Hudish, T. M., Meyer, A. M., et al. (2006). Prostaglandin E2 receptor subtype 2 (EP2) null mice are protected against murine lung tumorigenesis. Anticancer Research, 26(4B), 2857–2861.PubMed Keith, R. L., Geraci, M. W., Nana-Sinkam, S. P., Breyer, R. M., Hudish, T. M., Meyer, A. M., et al. (2006). Prostaglandin E2 receptor subtype 2 (EP2) null mice are protected against murine lung tumorigenesis. Anticancer Research, 26(4B), 2857–2861.PubMed
48.
Zurück zum Zitat Guo, H., Ingolia, N. T., Weissman, J. S., & Bartel, D. P. (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 466(7308), 835–840.PubMed Guo, H., Ingolia, N. T., Weissman, J. S., & Bartel, D. P. (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 466(7308), 835–840.PubMed
49.
Zurück zum Zitat Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics, 9(2), 102–114.PubMed Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics, 9(2), 102–114.PubMed
50.
Zurück zum Zitat Brennecke, J., Stark, A., Russell, R. B., & Cohen, S. M. (2005). Principles of microRNA-target recognition. PLoS Biology, 3(3), e85.PubMed Brennecke, J., Stark, A., Russell, R. B., & Cohen, S. M. (2005). Principles of microRNA-target recognition. PLoS Biology, 3(3), e85.PubMed
51.
Zurück zum Zitat Grimson, A., Farh, K. K., Johnston, W. K., Garrett-Engele, P., Lim, L. P., & Bartel, D. P. (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Molecular Cell, 27(1), 91–105.PubMed Grimson, A., Farh, K. K., Johnston, W. K., Garrett-Engele, P., Lim, L. P., & Bartel, D. P. (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Molecular Cell, 27(1), 91–105.PubMed
52.
Zurück zum Zitat Shin, C., Nam, J. W., Farh, K. K., Chiang, H. R., Shkumatava, A., & Bartel, D. P. (2010). Expanding the microRNA targeting code: functional sites with centered pairing. Molecular Cell, 38(6), 789–802.PubMed Shin, C., Nam, J. W., Farh, K. K., Chiang, H. R., Shkumatava, A., & Bartel, D. P. (2010). Expanding the microRNA targeting code: functional sites with centered pairing. Molecular Cell, 38(6), 789–802.PubMed
53.
Zurück zum Zitat Cullen, B. R. (2004). Transcription and processing of human microRNA precursors. Molecular Cell, 16(6), 861–865.PubMed Cullen, B. R. (2004). Transcription and processing of human microRNA precursors. Molecular Cell, 16(6), 861–865.PubMed
54.
Zurück zum Zitat Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., et al. (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Research, 33(8), 2697–2706.PubMed Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., et al. (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Research, 33(8), 2697–2706.PubMed
55.
Zurück zum Zitat Yu, J., Wang, F., Yang, G. H., Wang, F. L., Ma, Y. N., Du, Z. W., et al. (2006). Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochemical and Biophysical Research Communications, 349(1), 59–68.PubMed Yu, J., Wang, F., Yang, G. H., Wang, F. L., Ma, Y. N., Du, Z. W., et al. (2006). Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochemical and Biophysical Research Communications, 349(1), 59–68.PubMed
56.
Zurück zum Zitat Griffiths-Jones, S., Saini, H. K., van Dongen, S., & Enright, A. J. (2008). MiRBase: tools for microRNA genomics. Nucleic Acids Research, 36, D154–D158. Database issue.PubMed Griffiths-Jones, S., Saini, H. K., van Dongen, S., & Enright, A. J. (2008). MiRBase: tools for microRNA genomics. Nucleic Acids Research, 36, D154–D158. Database issue.PubMed
57.
Zurück zum Zitat He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5(7), 522–531.PubMed He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5(7), 522–531.PubMed
58.
Zurück zum Zitat Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6(11), 857–866.PubMed Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6(11), 857–866.PubMed
59.
Zurück zum Zitat Croce, C. M. (2009). Causes and consequences of microRNA dysregulation in cancer. Nature Reviews Genetics, 10(10), 704–714.PubMed Croce, C. M. (2009). Causes and consequences of microRNA dysregulation in cancer. Nature Reviews Genetics, 10(10), 704–714.PubMed
60.
Zurück zum Zitat Ryan, B. M., Robles, A. I., & Harris, C. C. (2010). Genetic variation in microRNA networks: the implications for cancer research. Nature Reviews. Cancer, 10(6), 389–402.PubMed Ryan, B. M., Robles, A. I., & Harris, C. C. (2010). Genetic variation in microRNA networks: the implications for cancer research. Nature Reviews. Cancer, 10(6), 389–402.PubMed
61.
Zurück zum Zitat Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.PubMed Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.PubMed
62.
Zurück zum Zitat Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences USA, 99(24), 15524–15529. Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences USA, 99(24), 15524–15529.
63.
Zurück zum Zitat Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., et al. (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences USA, 105(13), 5166–5171. Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., et al. (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences USA, 105(13), 5166–5171.
64.
Zurück zum Zitat Chang, T. C., Yu, D., Lee, Y. S., Wentzel, E. A., Arking, D. E., West, K. M., et al. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 40(1), 43–50.PubMed Chang, T. C., Yu, D., Lee, Y. S., Wentzel, E. A., Arking, D. E., West, K. M., et al. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 40(1), 43–50.PubMed
65.
Zurück zum Zitat Suzuki, H. I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., & Miyazono, K. (2009). Modulation of microRNA processing by p53. Nature, 460(7254), 529–533.PubMed Suzuki, H. I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., & Miyazono, K. (2009). Modulation of microRNA processing by p53. Nature, 460(7254), 529–533.PubMed
66.
Zurück zum Zitat Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., & Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell, 115(7), 787–798.PubMed Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., & Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell, 115(7), 787–798.PubMed
67.
Zurück zum Zitat Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. Nature Reviews. Cancer, 6(4), 259–269.PubMed Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. Nature Reviews. Cancer, 6(4), 259–269.PubMed
68.
Zurück zum Zitat Rehmsmeier, M., Steffen, P., Hochsmann, M., & Giegerich, R. (2004). Fast and effective prediction of microRNA/target duplexes. RNA, 10(10), 1507–1517.PubMed Rehmsmeier, M., Steffen, P., Hochsmann, M., & Giegerich, R. (2004). Fast and effective prediction of microRNA/target duplexes. RNA, 10(10), 1507–1517.PubMed
69.
Zurück zum Zitat Kruger, J., & Rehmsmeier, M. (2006). RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Research, 34(suppl 2), W451–W454.PubMed Kruger, J., & Rehmsmeier, M. (2006). RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Research, 34(suppl 2), W451–W454.PubMed
70.
Zurück zum Zitat Betel, D., Wilson, M., Gabow, A., Marks, D. S., & Sander, C. (2008). The microRNA.org resource targets and expression. Nucleic Acids Research, 36, D149–D153. Database issue.PubMed Betel, D., Wilson, M., Gabow, A., Marks, D. S., & Sander, C. (2008). The microRNA.org resource targets and expression. Nucleic Acids Research, 36, D149–D153. Database issue.PubMed
71.
Zurück zum Zitat Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., & Enright, A. J. (2006). MiRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 34, D140–D144. Database issue.PubMed Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., & Enright, A. J. (2006). MiRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 34, D140–D144. Database issue.PubMed
72.
Zurück zum Zitat Mongroo, P. S., & Rustgi, A. K. (2010). The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biology & Therapy, 10(3), 219–222. Mongroo, P. S., & Rustgi, A. K. (2010). The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biology & Therapy, 10(3), 219–222.
73.
Zurück zum Zitat Sato, Y., Kobayashi, H., Suto, Y., Olney, H. J., Davis, E. M., Super, H. G., et al. (2001). Chromosomal instability in chromosome band 12p13: multiple breaks leading to complex rearrangements including cytogenetically undetectable sub-clones. Leukemia, 15(8), 1193–1202.PubMed Sato, Y., Kobayashi, H., Suto, Y., Olney, H. J., Davis, E. M., Super, H. G., et al. (2001). Chromosomal instability in chromosome band 12p13: multiple breaks leading to complex rearrangements including cytogenetically undetectable sub-clones. Leukemia, 15(8), 1193–1202.PubMed
74.
Zurück zum Zitat Bagchi, A., & Mills, A. A. (2008). The quest for the 1p36 tumor suppressor. Cancer Research, 68(8), 2551–2556.PubMed Bagchi, A., & Mills, A. A. (2008). The quest for the 1p36 tumor suppressor. Cancer Research, 68(8), 2551–2556.PubMed
75.
Zurück zum Zitat Vrba, L., Jensen, T. J., Garbe, J. C., Heimark, R. L., Cress, A. E., Dickinson, S., et al. (2010). Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PloS One, 5(1), e8697.PubMed Vrba, L., Jensen, T. J., Garbe, J. C., Heimark, R. L., Cress, A. E., Dickinson, S., et al. (2010). Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PloS One, 5(1), e8697.PubMed
76.
Zurück zum Zitat Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMed Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMed
77.
Zurück zum Zitat Pang, Y., Young, C. Y., & Yuan, H. (2010). MicroRNAs and prostate cancer. Acta Biochimica et Biophysica Sinica, 42(6), 363–369.PubMed Pang, Y., Young, C. Y., & Yuan, H. (2010). MicroRNAs and prostate cancer. Acta Biochimica et Biophysica Sinica, 42(6), 363–369.PubMed
78.
Zurück zum Zitat Gibbons, D. L., Lin, W., Creighton, C. J., Rizvi, Z. H., Gregory, P. A., Goodall, G. J., et al. (2009). Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes & Development, 23(18), 2140–2151. Gibbons, D. L., Lin, W., Creighton, C. J., Rizvi, Z. H., Gregory, P. A., Goodall, G. J., et al. (2009). Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes & Development, 23(18), 2140–2151.
79.
Zurück zum Zitat Saydam, O., Shen, Y., Wurdinger, T., Senol, O., Boke, E., James, M. F., et al. (2009). Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Molecular and Cellular Biology, 29(21), 5923–5940.PubMed Saydam, O., Shen, Y., Wurdinger, T., Senol, O., Boke, E., James, M. F., et al. (2009). Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Molecular and Cellular Biology, 29(21), 5923–5940.PubMed
80.
Zurück zum Zitat Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. The Journal of Biological Chemistry, 283(22), 14910–14914.PubMed Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. The Journal of Biological Chemistry, 283(22), 14910–14914.PubMed
81.
Zurück zum Zitat Spaderna, S., Schmalhofer, O., Wahlbuhl, M., Dimmler, A., Bauer, K., Sultan, A., et al. (2008). The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Research, 68(2), 537–544.PubMed Spaderna, S., Schmalhofer, O., Wahlbuhl, M., Dimmler, A., Bauer, K., Sultan, A., et al. (2008). The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Research, 68(2), 537–544.PubMed
82.
Zurück zum Zitat Uhlmann, S., Zhang, J. D., Schwager, A., Mannsperger, H., Riazalhosseini, Y., Burmester, S., et al. (2010). MiR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene, 29(30), 4297–4306.PubMed Uhlmann, S., Zhang, J. D., Schwager, A., Mannsperger, H., Riazalhosseini, Y., Burmester, S., et al. (2010). MiR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene, 29(30), 4297–4306.PubMed
83.
Zurück zum Zitat Buchanan, F. G., Wang, D., Bargiacchi, F., & DuBois, R. N. (2003). Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. The Journal of Biological Chemistry, 278(37), 35451–35457.PubMed Buchanan, F. G., Wang, D., Bargiacchi, F., & DuBois, R. N. (2003). Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. The Journal of Biological Chemistry, 278(37), 35451–35457.PubMed
84.
Zurück zum Zitat Adam, L., Zhong, M., Choi, W., Qi, W., Nicoloso, M., Arora, A., et al. (2009). MiR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clinical Cancer Research, 15(16), 5060–5072.PubMed Adam, L., Zhong, M., Choi, W., Qi, W., Nicoloso, M., Arora, A., et al. (2009). MiR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clinical Cancer Research, 15(16), 5060–5072.PubMed
85.
Zurück zum Zitat Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A., & Kosik, K. S. (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 137(4), 647–658.PubMed Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A., & Kosik, K. S. (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 137(4), 647–658.PubMed
86.
Zurück zum Zitat Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., et al. (2009). MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460(7256), 705–710.PubMed Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., et al. (2009). MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460(7256), 705–710.PubMed
87.
Zurück zum Zitat Zhang, X., Liu, S., Hu, T., He, Y., & Sun, S. (2009). Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology, 50(2), 490–499.PubMed Zhang, X., Liu, S., Hu, T., He, Y., & Sun, S. (2009). Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology, 50(2), 490–499.PubMed
88.
Zurück zum Zitat Wu, B. L., Xu, L. Y., Du, Z. P., Liao, L. D., Zhang, H. F., Huang, Q., et al. (2011). MiRNA profile in esophageal squamous cell carcinoma: downregulation of miR-143 and miR-145. World Journal of Gastroenterology, 17(1), 79–88.PubMed Wu, B. L., Xu, L. Y., Du, Z. P., Liao, L. D., Zhang, H. F., Huang, Q., et al. (2011). MiRNA profile in esophageal squamous cell carcinoma: downregulation of miR-143 and miR-145. World Journal of Gastroenterology, 17(1), 79–88.PubMed
89.
Zurück zum Zitat Michael, M. Z., O’Connor, S. M., van Holst Pellekaan, N. G., Young, G. P., & James, R. J. (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Molecular Cancer Research, 1(12), 882–891.PubMed Michael, M. Z., O’Connor, S. M., van Holst Pellekaan, N. G., Young, G. P., & James, R. J. (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Molecular Cancer Research, 1(12), 882–891.PubMed
90.
Zurück zum Zitat Akao, Y., Nakagawa, Y., & Naoe, T. (2006). MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncology Reports, 16(4), 845–850.PubMed Akao, Y., Nakagawa, Y., & Naoe, T. (2006). MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncology Reports, 16(4), 845–850.PubMed
91.
Zurück zum Zitat Bandres, E., Cubedo, E., Agirre, X., Malumbres, R., Zarate, R., Ramirez, N., et al. (2006). Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Molecular Cancer, 5, 29.PubMed Bandres, E., Cubedo, E., Agirre, X., Malumbres, R., Zarate, R., Ramirez, N., et al. (2006). Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Molecular Cancer, 5, 29.PubMed
92.
Zurück zum Zitat Slaby, O., Svoboda, M., Fabian, P., Smerdova, T., Knoflickova, D., Bednarikova, M., et al. (2007). Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology, 72(5–6), 397–402.PubMed Slaby, O., Svoboda, M., Fabian, P., Smerdova, T., Knoflickova, D., Bednarikova, M., et al. (2007). Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology, 72(5–6), 397–402.PubMed
93.
Zurück zum Zitat Wach, S., Nolte, E., Szczyrba, J., Stohr, R., Hartmann, A., Orntoft, T., et al. (2011). MiRNA profiles of prostate carcinoma detected by multi-platform miRNA screening. International Journal of Cancer. doi:10.1002/ijc.26064. Wach, S., Nolte, E., Szczyrba, J., Stohr, R., Hartmann, A., Orntoft, T., et al. (2011). MiRNA profiles of prostate carcinoma detected by multi-platform miRNA screening. International Journal of Cancer. doi:10.​1002/​ijc.​26064.
94.
Zurück zum Zitat Zhang, H., Cai, X., Wang, Y., Tang, H., Tong, D., & Ji, F. (2010). MicroRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncology Reports, 24(5), 1363–1369.PubMed Zhang, H., Cai, X., Wang, Y., Tang, H., Tong, D., & Ji, F. (2010). MicroRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncology Reports, 24(5), 1363–1369.PubMed
95.
Zurück zum Zitat Song, T., Xia, W., Shao, N., Zhang, X., Wang, C., Wu, Y., et al. (2010). Differential miRNA expression profiles in bladder urothelial carcinomas. Asian Pacific Journal of Cancer Prevention, 11(4), 905–911.PubMed Song, T., Xia, W., Shao, N., Zhang, X., Wang, C., Wu, Y., et al. (2010). Differential miRNA expression profiles in bladder urothelial carcinomas. Asian Pacific Journal of Cancer Prevention, 11(4), 905–911.PubMed
96.
Zurück zum Zitat Akao, Y., Nakagawa, Y., Kitade, Y., Kinoshita, T., & Naoe, T. (2007). Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Science, 98(12), 1914–1920.PubMed Akao, Y., Nakagawa, Y., Kitade, Y., Kinoshita, T., & Naoe, T. (2007). Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Science, 98(12), 1914–1920.PubMed
97.
Zurück zum Zitat Takagi, T., Iio, A., Nakagawa, Y., Naoe, T., Tanigawa, N., & Akao, Y. (2009). Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology, 77(1), 12–21.PubMed Takagi, T., Iio, A., Nakagawa, Y., Naoe, T., Tanigawa, N., & Akao, Y. (2009). Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology, 77(1), 12–21.PubMed
98.
Zurück zum Zitat Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al. (2009). P53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences USA, 106(9), 3207–3212. Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al. (2009). P53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences USA, 106(9), 3207–3212.
99.
Zurück zum Zitat Chen, X., Guo, X., Zhang, H., Xiang, Y., Chen, J., Yin, Y., et al. (2009). Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene, 28(10), 1385–1392.PubMed Chen, X., Guo, X., Zhang, H., Xiang, Y., Chen, J., Yin, Y., et al. (2009). Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene, 28(10), 1385–1392.PubMed
100.
Zurück zum Zitat Shi, B., Sepp-Lorenzino, L., Prisco, M., Linsley, P., deAngelis, T., & Baserga, R. (2007). Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. The Journal of Biological Chemistry, 282(45), 32582–32590.PubMed Shi, B., Sepp-Lorenzino, L., Prisco, M., Linsley, P., deAngelis, T., & Baserga, R. (2007). Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. The Journal of Biological Chemistry, 282(45), 32582–32590.PubMed
101.
Zurück zum Zitat Akao, Y., Nakagawa, Y., Iio, A., & Naoe, T. (2009). Role of microRNA-143 in Fas-mediated apoptosis in human T-cell leukemia Jurkat cells. Leukemia Research, 33(11), 1530–1538.PubMed Akao, Y., Nakagawa, Y., Iio, A., & Naoe, T. (2009). Role of microRNA-143 in Fas-mediated apoptosis in human T-cell leukemia Jurkat cells. Leukemia Research, 33(11), 1530–1538.PubMed
102.
Zurück zum Zitat Tai, M. H., Chang, C. C., Kiupel, M., Webster, J. D., Olson, L. K., & Trosko, J. E. (2005). Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis, 26(2), 495–502.PubMed Tai, M. H., Chang, C. C., Kiupel, M., Webster, J. D., Olson, L. K., & Trosko, J. E. (2005). Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis, 26(2), 495–502.PubMed
103.
Zurück zum Zitat Wu, Y., Liu, S., Xin, H., Jiang, J., Younglai, E., Sun, S., et al. (2011). Up-regulation of microRNA-145 promotes differentiation by repressing OCT4 in human endometrial adenocarcinoma cells. Cancer, 1(1), 1–10. Wu, Y., Liu, S., Xin, H., Jiang, J., Younglai, E., Sun, S., et al. (2011). Up-regulation of microRNA-145 promotes differentiation by repressing OCT4 in human endometrial adenocarcinoma cells. Cancer, 1(1), 1–10.
104.
Zurück zum Zitat Boultwood, J., Pellagatti, A., McKenzie, A. N., & Wainscoat, J. S. (2010). Advances in the 5q- syndrome. Blood, 116(26), 5803–5811.PubMed Boultwood, J., Pellagatti, A., McKenzie, A. N., & Wainscoat, J. S. (2010). Advances in the 5q- syndrome. Blood, 116(26), 5803–5811.PubMed
105.
Zurück zum Zitat Starczynowski, D. T., Kuchenbauer, F., Argiropoulos, B., Sung, S., Morin, R., Muranyi, A., et al. (2010). Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nature Medicine, 16(1), 49–58.PubMed Starczynowski, D. T., Kuchenbauer, F., Argiropoulos, B., Sung, S., Morin, R., Muranyi, A., et al. (2010). Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nature Medicine, 16(1), 49–58.PubMed
106.
Zurück zum Zitat Elia, L., Quintavalle, M., Zhang, J., Contu, R., Cossu, L., Latronico, M. V., et al. (2009). The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death and Differentiation, 16(12), 1590–1598.PubMed Elia, L., Quintavalle, M., Zhang, J., Contu, R., Cossu, L., Latronico, M. V., et al. (2009). The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death and Differentiation, 16(12), 1590–1598.PubMed
107.
Zurück zum Zitat Yau, L., & Zahradka, P. (2003). PGE(2) stimulates vascular smooth muscle cell proliferation via the EP2 receptor. Molecular and Cellular Endocrinology, 203(1–2), 77–90.PubMed Yau, L., & Zahradka, P. (2003). PGE(2) stimulates vascular smooth muscle cell proliferation via the EP2 receptor. Molecular and Cellular Endocrinology, 203(1–2), 77–90.PubMed
108.
Zurück zum Zitat Varambally, S., Cao, Q., Mani, R. S., Shankar, S., Wang, X., Ateeq, B., et al. (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 322(5908), 1695–1699.PubMed Varambally, S., Cao, Q., Mani, R. S., Shankar, S., Wang, X., Ateeq, B., et al. (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 322(5908), 1695–1699.PubMed
109.
Zurück zum Zitat Strillacci, A., Griffoni, C., Sansone, P., Paterini, P., Piazzi, G., Lazzarini, G., et al. (2009). MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Experimental Cell Research, 315(8), 1439–1447.PubMed Strillacci, A., Griffoni, C., Sansone, P., Paterini, P., Piazzi, G., Lazzarini, G., et al. (2009). MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Experimental Cell Research, 315(8), 1439–1447.PubMed
110.
Zurück zum Zitat Zhang, J. G., Guo, J. F., Liu, D. L., Liu, Q., & Wang, J. J. (2011). MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. Journal of Thoracic Oncology, 6(4), 671–678.PubMed Zhang, J. G., Guo, J. F., Liu, D. L., Liu, Q., & Wang, J. J. (2011). MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. Journal of Thoracic Oncology, 6(4), 671–678.PubMed
111.
Zurück zum Zitat Smits, M., Nilsson, J., Mir, S. E., van der Stoop, P. M., Hulleman, E., Niers, J. M., et al. (2010). MiR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget, 1(8), 710–720.PubMed Smits, M., Nilsson, J., Mir, S. E., van der Stoop, P. M., Hulleman, E., Niers, J. M., et al. (2010). MiR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget, 1(8), 710–720.PubMed
112.
Zurück zum Zitat Su, H., Yang, J. R., Xu, T., Huang, J., Xu, L., Yuan, Y., et al. (2009). MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Research, 69(3), 1135–1142.PubMed Su, H., Yang, J. R., Xu, T., Huang, J., Xu, L., Yuan, Y., et al. (2009). MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Research, 69(3), 1135–1142.PubMed
113.
Zurück zum Zitat Friedman, J. M., Liang, G., Liu, C. C., Wolff, E. M., Tsai, Y. C., Ye, W., et al. (2009). The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Research, 69(6), 2623–2629.PubMed Friedman, J. M., Liang, G., Liu, C. C., Wolff, E. M., Tsai, Y. C., Ye, W., et al. (2009). The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Research, 69(6), 2623–2629.PubMed
114.
Zurück zum Zitat Wang, H. J., Ruan, H. J., He, X. J., Ma, Y. Y., Jiang, X. T., Xia, Y. J., et al. (2010). MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. European Journal of Cancer, 46(12), 2295–2303.PubMed Wang, H. J., Ruan, H. J., He, X. J., Ma, Y. Y., Jiang, X. T., Xia, Y. J., et al. (2010). MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. European Journal of Cancer, 46(12), 2295–2303.PubMed
115.
Zurück zum Zitat Chakrabarty, A., Tranguch, S., Daikoku, T., Jensen, K., Furneaux, H., & Dey, S. K. (2007). MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proceedings of the National Academy of Sciences USA, 104(38), 15144–15149. Chakrabarty, A., Tranguch, S., Daikoku, T., Jensen, K., Furneaux, H., & Dey, S. K. (2007). MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proceedings of the National Academy of Sciences USA, 104(38), 15144–15149.
116.
Zurück zum Zitat Daikoku, T., Hirota, Y., Tranguch, S., Joshi, A. R., DeMayo, F. J., Lydon, J. P., et al. (2008). Conditional loss of uterine Pten unfailingly and rapidly induces endometrial cancer in mice. Cancer Research, 68(14), 5619–5627.PubMed Daikoku, T., Hirota, Y., Tranguch, S., Joshi, A. R., DeMayo, F. J., Lydon, J. P., et al. (2008). Conditional loss of uterine Pten unfailingly and rapidly induces endometrial cancer in mice. Cancer Research, 68(14), 5619–5627.PubMed
117.
Zurück zum Zitat Wang, D., & Dubois, R. N. (2010). The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 29(6), 781–788.PubMed Wang, D., & Dubois, R. N. (2010). The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 29(6), 781–788.PubMed
118.
Zurück zum Zitat Tsujii, M., Kawano, S., Tsuji, S., Sawaoka, H., Hori, M., & DuBois, R. N. (1998). Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell, 93(5), 705–716.PubMed Tsujii, M., Kawano, S., Tsuji, S., Sawaoka, H., Hori, M., & DuBois, R. N. (1998). Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell, 93(5), 705–716.PubMed
119.
Zurück zum Zitat Dohner, H., Stilgenbauer, S., Benner, A., Leupolt, E., Krober, A., Bullinger, L., et al. (2000). Genomic aberrations and survival in chronic lymphocytic leukemia. The New England Journal of Medicine, 343(26), 1910–1916.PubMed Dohner, H., Stilgenbauer, S., Benner, A., Leupolt, E., Krober, A., Bullinger, L., et al. (2000). Genomic aberrations and survival in chronic lymphocytic leukemia. The New England Journal of Medicine, 343(26), 1910–1916.PubMed
120.
Zurück zum Zitat Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., et al. (2010). The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17(1), 28–40.PubMed Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., et al. (2010). The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17(1), 28–40.PubMed
121.
Zurück zum Zitat Sanchez-Beato, M., Sanchez-Aguilera, A., & Piris, M. A. (2003). Cell cycle deregulation in B-cell lymphomas. Blood, 101(4), 1220–1235.PubMed Sanchez-Beato, M., Sanchez-Aguilera, A., & Piris, M. A. (2003). Cell cycle deregulation in B-cell lymphomas. Blood, 101(4), 1220–1235.PubMed
122.
Zurück zum Zitat Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al. (2005). MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences USA, 102(39), 13944–13949. Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al. (2005). MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences USA, 102(39), 13944–13949.
123.
Zurück zum Zitat Liu, Q., Fu, H., Sun, F., Zhang, H., Tie, Y., Zhu, J., et al. (2008). MiR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Research, 36(16), 5391–5404.PubMed Liu, Q., Fu, H., Sun, F., Zhang, H., Tie, Y., Zhu, J., et al. (2008). MiR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Research, 36(16), 5391–5404.PubMed
124.
Zurück zum Zitat Cummins, J. M., He, Y., Leary, R. J., Pagliarini, R., Diaz, L. A., Jr., Sjoblom, T., et al. (2006). The colorectal microRNAome. Proceedings of the National Academy of Sciences USA, 103(10), 3687–3692. Cummins, J. M., He, Y., Leary, R. J., Pagliarini, R., Diaz, L. A., Jr., Sjoblom, T., et al. (2006). The colorectal microRNAome. Proceedings of the National Academy of Sciences USA, 103(10), 3687–3692.
125.
Zurück zum Zitat Bottoni, A., Piccin, D., Tagliati, F., Luchin, A., Zatelli, M. C., & Degli Uberti, E. C. (2005). MiR-15a and miR-16-1 down-regulation in pituitary adenomas. Journal of Cellular Physiology, 204(1), 280–285.PubMed Bottoni, A., Piccin, D., Tagliati, F., Luchin, A., Zatelli, M. C., & Degli Uberti, E. C. (2005). MiR-15a and miR-16-1 down-regulation in pituitary adenomas. Journal of Cellular Physiology, 204(1), 280–285.PubMed
126.
Zurück zum Zitat Bonci, D., Coppola, V., Musumeci, M., Addario, A., Giuffrida, R., Memeo, L., et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nature Medicine, 14(11), 1271–1277.PubMed Bonci, D., Coppola, V., Musumeci, M., Addario, A., Giuffrida, R., Memeo, L., et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nature Medicine, 14(11), 1271–1277.PubMed
127.
Zurück zum Zitat Navarro, A., Diaz, T., Gallardo, E., Vinolas, N., Marrades, R. M., Gel, B., et al. (2011). Prognostic implications of miR-16 expression levels in resected non-small-cell lung cancer. Journal of Surgical Oncology, 103(5), 411–415.PubMed Navarro, A., Diaz, T., Gallardo, E., Vinolas, N., Marrades, R. M., Gel, B., et al. (2011). Prognostic implications of miR-16 expression levels in resected non-small-cell lung cancer. Journal of Surgical Oncology, 103(5), 411–415.PubMed
128.
Zurück zum Zitat Lopez de Silanes, I., Quesada, M. P., & Esteller, M. (2007). Aberrant regulation of messenger RNA 3′-untranslated region in human cancer. Cellular Oncology, 29(1), 1–17.PubMed Lopez de Silanes, I., Quesada, M. P., & Esteller, M. (2007). Aberrant regulation of messenger RNA 3′-untranslated region in human cancer. Cellular Oncology, 29(1), 1–17.PubMed
129.
Zurück zum Zitat Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J., et al. (2005). Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell, 120(5), 623–634.PubMed Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J., et al. (2005). Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell, 120(5), 623–634.PubMed
130.
Zurück zum Zitat Shanmugam, N., Reddy, M. A., & Natarajan, R. (2008). Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by S100b, a ligand of the receptor for advanced glycation end products. The Journal of Biological Chemistry, 283(52), 36221–36233.PubMed Shanmugam, N., Reddy, M. A., & Natarajan, R. (2008). Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by S100b, a ligand of the receptor for advanced glycation end products. The Journal of Biological Chemistry, 283(52), 36221–36233.PubMed
131.
Zurück zum Zitat Xu, F., Zhang, X., Lei, Y., Liu, X., Liu, Z., Tong, T., et al. (2010). Loss of repression of HuR translation by miR-16 may be responsible for the elevation of HuR in human breast carcinoma. Journal of Cellular Biochemistry, 111(3), 727–734.PubMed Xu, F., Zhang, X., Lei, Y., Liu, X., Liu, Z., Tong, T., et al. (2010). Loss of repression of HuR translation by miR-16 may be responsible for the elevation of HuR in human breast carcinoma. Journal of Cellular Biochemistry, 111(3), 727–734.PubMed
132.
Zurück zum Zitat Pan, X., Wang, Z. X., & Wang, R. (2011). MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biology & Therapy, 10(12), 1224–1232. Pan, X., Wang, Z. X., & Wang, R. (2011). MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biology & Therapy, 10(12), 1224–1232.
133.
Zurück zum Zitat Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences USA, 103(7), 2257–2261. Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences USA, 103(7), 2257–2261.
134.
Zurück zum Zitat Markou, A., Tsaroucha, E. G., Kaklamanis, L., Fotinou, M., Georgoulias, V., & Lianidou, E. S. (2008). Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clinical Chemistry Online, 54(10), 1696–1704. Markou, A., Tsaroucha, E. G., Kaklamanis, L., Fotinou, M., Georgoulias, V., & Lianidou, E. S. (2008). Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clinical Chemistry Online, 54(10), 1696–1704.
135.
Zurück zum Zitat Chan, S. H., Wu, C. W., Li, A. F., Chi, C. W., & Lin, W. C. (2008). MiR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Research, 28(2A), 907–911.PubMed Chan, S. H., Wu, C. W., Li, A. F., Chi, C. W., & Lin, W. C. (2008). MiR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Research, 28(2A), 907–911.PubMed
136.
Zurück zum Zitat Gao, W., Shen, H., Liu, L., Xu, J., & Shu, Y. (2011). MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. Journal of Cancer Research and Clinical Oncology, 137(4), 557–566.PubMed Gao, W., Shen, H., Liu, L., Xu, J., & Shu, Y. (2011). MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. Journal of Cancer Research and Clinical Oncology, 137(4), 557–566.PubMed
137.
Zurück zum Zitat Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 9(3), 189–198.PubMed Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 9(3), 189–198.PubMed
138.
Zurück zum Zitat Newbury, S. F., Muhlemann, O., & Stoecklin, G. (2006). Turnover in the alps: an mRNA perspective. Workshops on mechanisms and regulation of mRNA turnover. European Molecular Biology Organization Reports, 7(2), 143–148.PubMed Newbury, S. F., Muhlemann, O., & Stoecklin, G. (2006). Turnover in the alps: an mRNA perspective. Workshops on mechanisms and regulation of mRNA turnover. European Molecular Biology Organization Reports, 7(2), 143–148.PubMed
139.
Zurück zum Zitat Eulalio, A., Behm-Ansmant, I., & Izaurralde, E. (2007). P bodies: at the crossroads of post-transcriptional pathways. Nature Reviews Molecular Cell Biology, 8(1), 9–22.PubMed Eulalio, A., Behm-Ansmant, I., & Izaurralde, E. (2007). P bodies: at the crossroads of post-transcriptional pathways. Nature Reviews Molecular Cell Biology, 8(1), 9–22.PubMed
140.
Zurück zum Zitat Anderson, P., & Kedersha, N. (2008). Stress granules: the tao of RNA triage. Trends in Biochemical Sciences, 33(3), 141–150.PubMed Anderson, P., & Kedersha, N. (2008). Stress granules: the tao of RNA triage. Trends in Biochemical Sciences, 33(3), 141–150.PubMed
141.
Zurück zum Zitat Barreau, C., Paillard, L., & Osborne, H. B. (2005). AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Research, 33(22), 7138–7150.PubMed Barreau, C., Paillard, L., & Osborne, H. B. (2005). AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Research, 33(22), 7138–7150.PubMed
142.
Zurück zum Zitat Bakheet, T., Williams, B. R., & Khabar, K. S. (2006). Ared 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Research, 34, D111–D114. Database issue.PubMed Bakheet, T., Williams, B. R., & Khabar, K. S. (2006). Ared 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Research, 34, D111–D114. Database issue.PubMed
143.
Zurück zum Zitat Gruber, A. R., Fallmann, J., Kratochvill, F., Kovarik, P., & Hofacker, I. L. (2010). AREsite: a database for the comprehensive investigation of AU-rich elements. Nucleic Acids Research, 39, D66–D69. Database issue.PubMed Gruber, A. R., Fallmann, J., Kratochvill, F., Kovarik, P., & Hofacker, I. L. (2010). AREsite: a database for the comprehensive investigation of AU-rich elements. Nucleic Acids Research, 39, D66–D69. Database issue.PubMed
144.
Zurück zum Zitat Dixon, D. A. (2004). Dysregulated post-transcriptional control of COX-2 gene expression in cancer. Current Pharmaceutical Design, 10(6), 635–646.PubMed Dixon, D. A. (2004). Dysregulated post-transcriptional control of COX-2 gene expression in cancer. Current Pharmaceutical Design, 10(6), 635–646.PubMed
145.
Zurück zum Zitat Young, L. E., & Dixon, D. A. (2010). Posttranscriptional regulation of cyclooxygenase 2 expression in colorectal cancer. Current Colorectal Cancer Reports, 6(2), 60–67.PubMed Young, L. E., & Dixon, D. A. (2010). Posttranscriptional regulation of cyclooxygenase 2 expression in colorectal cancer. Current Colorectal Cancer Reports, 6(2), 60–67.PubMed
146.
Zurück zum Zitat Dixon, D. A., Kaplan, C. D., McIntyre, T. M., Zimmerman, G. A., & Prescott, S. M. (2000). Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3′-untranslated region. The Journal of Biological Chemistry, 275(16), 11750–11757.PubMed Dixon, D. A., Kaplan, C. D., McIntyre, T. M., Zimmerman, G. A., & Prescott, S. M. (2000). Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3′-untranslated region. The Journal of Biological Chemistry, 275(16), 11750–11757.PubMed
147.
Zurück zum Zitat Dixon, D. A. (2003). Regulation of COX-2 expression in human cancer. Progress in Experimental Tumor Research, 37, 52–71.PubMed Dixon, D. A. (2003). Regulation of COX-2 expression in human cancer. Progress in Experimental Tumor Research, 37, 52–71.PubMed
148.
Zurück zum Zitat Tay, A., Maxwell, P., Li, Z. G., Goldberg, H., & Skorecki, K. (1994). Cytosolic phospholipase A2 gene expression in rat mesangial cells is regulated post-transcriptionally. The Biochemical Journal, 304(2), 417–422.PubMed Tay, A., Maxwell, P., Li, Z. G., Goldberg, H., & Skorecki, K. (1994). Cytosolic phospholipase A2 gene expression in rat mesangial cells is regulated post-transcriptionally. The Biochemical Journal, 304(2), 417–422.PubMed
149.
Zurück zum Zitat Hack, N., Tay, A., Schultz, A., Muzin, N., Clayman, P., Egan, S., et al. (1996). Regulation of rat kidney mesangial cell phospholipase A2. Clinical and Experimental Pharmacology and Physiology, 23(1), 71–75.PubMed Hack, N., Tay, A., Schultz, A., Muzin, N., Clayman, P., Egan, S., et al. (1996). Regulation of rat kidney mesangial cell phospholipase A2. Clinical and Experimental Pharmacology and Physiology, 23(1), 71–75.PubMed
150.
Zurück zum Zitat Lee, Y. H., Lee, H. J., Lee, S. J., Min, D. S., Baek, S. H., Kim, Y. S., et al. (1995). Down-regulation of phospholipase C-gamma 1 during the differentiation of U937 cells. Federation of European Biochemical Societies Letters, 358(2), 105–108.PubMed Lee, Y. H., Lee, H. J., Lee, S. J., Min, D. S., Baek, S. H., Kim, Y. S., et al. (1995). Down-regulation of phospholipase C-gamma 1 during the differentiation of U937 cells. Federation of European Biochemical Societies Letters, 358(2), 105–108.PubMed
151.
Zurück zum Zitat Brennan, C. M., & Steitz, J. A. (2001). HuR and mRNA stability. Cellular and Molecular Life Sciences, 58, 266–277.PubMed Brennan, C. M., & Steitz, J. A. (2001). HuR and mRNA stability. Cellular and Molecular Life Sciences, 58, 266–277.PubMed
152.
Zurück zum Zitat Dalmau, J., Furneaux, H. M., Rosenblum, M. K., Graus, F., & Posner, J. B. (1991). Detection of the anti-Hu antibody in specific regions of the nervous system and tumor from patients with paraneoplastic encephalomyelitis/sensory neuronopathy. Neurology, 41(11), 1757–1764.PubMed Dalmau, J., Furneaux, H. M., Rosenblum, M. K., Graus, F., & Posner, J. B. (1991). Detection of the anti-Hu antibody in specific regions of the nervous system and tumor from patients with paraneoplastic encephalomyelitis/sensory neuronopathy. Neurology, 41(11), 1757–1764.PubMed
153.
Zurück zum Zitat Voltz, R. (2002). Paraneoplastic neurological syndromes: an update on diagnosis, pathogenesis, and therapy. Lancet Neurology, 1(5), 294–305.PubMed Voltz, R. (2002). Paraneoplastic neurological syndromes: an update on diagnosis, pathogenesis, and therapy. Lancet Neurology, 1(5), 294–305.PubMed
154.
Zurück zum Zitat Keene, J. (1999). Why is Hu where? Shuttling of early-response messenger RNA subsets. Proceedings of the National Academy of Sciences USA, 96(1), 5–7. Keene, J. (1999). Why is Hu where? Shuttling of early-response messenger RNA subsets. Proceedings of the National Academy of Sciences USA, 96(1), 5–7.
155.
Zurück zum Zitat Ming, X. F., Stoecklin, G., Lu, M., Looser, R., & Moroni, C. (2001). Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Molecular and Cellular Biology, 21(17), 5778–5789.PubMed Ming, X. F., Stoecklin, G., Lu, M., Looser, R., & Moroni, C. (2001). Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Molecular and Cellular Biology, 21(17), 5778–5789.PubMed
156.
Zurück zum Zitat Briata, P., Ilengo, C., Corte, G., Moroni, C., Rosenfeld, M. G., Chen, C. Y., et al. (2003). The Wnt/beta-catenin→Pitx2 pathway controls the turnover of Pitx2 and other unstable mRNAs. Molecular Cell, 12(5), 1201–1211.PubMed Briata, P., Ilengo, C., Corte, G., Moroni, C., Rosenfeld, M. G., Chen, C. Y., et al. (2003). The Wnt/beta-catenin→Pitx2 pathway controls the turnover of Pitx2 and other unstable mRNAs. Molecular Cell, 12(5), 1201–1211.PubMed
157.
Zurück zum Zitat Yang, X., Wang, W., Fan, J., Lal, A., Yang, D., Cheng, H., et al. (2004). Prostaglandin A2-mediated stabilization of p21 mRNA through an ERK-dependent pathway requiring the RNA-binding protein HuR. The Journal of Biological Chemistry, 279(47), 49298–49306.PubMed Yang, X., Wang, W., Fan, J., Lal, A., Yang, D., Cheng, H., et al. (2004). Prostaglandin A2-mediated stabilization of p21 mRNA through an ERK-dependent pathway requiring the RNA-binding protein HuR. The Journal of Biological Chemistry, 279(47), 49298–49306.PubMed
158.
Zurück zum Zitat Meisner, N. C., Hintersteiner, M., Mueller, K., Bauer, R., Seifert, J. M., Naegeli, H. U., et al. (2007). Identification and mechanistic characterization of low-molecular-weight inhibitors for HuR. Nature Chemical Biology, 3(8), 508–515.PubMed Meisner, N. C., Hintersteiner, M., Mueller, K., Bauer, R., Seifert, J. M., Naegeli, H. U., et al. (2007). Identification and mechanistic characterization of low-molecular-weight inhibitors for HuR. Nature Chemical Biology, 3(8), 508–515.PubMed
159.
Zurück zum Zitat Lopez de Silanes, I., Lal, A., & Gorospe, M. (2005). HuR: post-transcriptional paths to malignancy. RNA Biology, 2(1), 11–13.PubMed Lopez de Silanes, I., Lal, A., & Gorospe, M. (2005). HuR: post-transcriptional paths to malignancy. RNA Biology, 2(1), 11–13.PubMed
160.
Zurück zum Zitat Abdelmohsen, K., & Gorospe, M. (2010). Posttranscriptional regulation of cancer traits by HuR. Wiley Interdisciplinary Reviews: RNA, 1, 214–229.PubMed Abdelmohsen, K., & Gorospe, M. (2010). Posttranscriptional regulation of cancer traits by HuR. Wiley Interdisciplinary Reviews: RNA, 1, 214–229.PubMed
161.
Zurück zum Zitat Dixon, D. A., Tolley, N. D., King, P. H., Nabors, L. B., McIntyre, T. M., Zimmerman, G. A., et al. (2001). Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. The Journal of Clinical Investigation, 108(11), 1657–1665.PubMed Dixon, D. A., Tolley, N. D., King, P. H., Nabors, L. B., McIntyre, T. M., Zimmerman, G. A., et al. (2001). Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. The Journal of Clinical Investigation, 108(11), 1657–1665.PubMed
162.
Zurück zum Zitat Young, L. E., Sanduja, S., Bemis-Standoli, K., Pena, E. A., Price, R. L., & Dixon, D. A. (2009). The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology, 136(5), 1669–1679.PubMed Young, L. E., Sanduja, S., Bemis-Standoli, K., Pena, E. A., Price, R. L., & Dixon, D. A. (2009). The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology, 136(5), 1669–1679.PubMed
163.
Zurück zum Zitat Lopez de Silanes, I., Zhan, M., Lal, A., Yang, X., & Gorospe, M. (2004). Identification of a target RNA motif for RNA-binding protein HuR. Proceedings of the National Academy of Sciences USA, 101(9), 2987–2992. Lopez de Silanes, I., Zhan, M., Lal, A., Yang, X., & Gorospe, M. (2004). Identification of a target RNA motif for RNA-binding protein HuR. Proceedings of the National Academy of Sciences USA, 101(9), 2987–2992.
164.
Zurück zum Zitat Mukhopadhyay, D., Houchen, C. W., Kennedy, S., Dieckgraefe, B. K., & Anant, S. (2003). Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Molecular Cell, 11(1), 113–126.PubMed Mukhopadhyay, D., Houchen, C. W., Kennedy, S., Dieckgraefe, B. K., & Anant, S. (2003). Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Molecular Cell, 11(1), 113–126.PubMed
165.
Zurück zum Zitat Murmu, N., Jung, J., Mukhopadhyay, D., Houchen, C. W., Riehl, T. E., Stenson, W. F., et al. (2004). Dynamic antagonism between RNA-binding protein CUGBP2 and cyclooxygenase-2-mediated prostaglandin E2 in radiation damage. Proceedings of the National Academy of Sciences USA, 101(38), 13873–13878. Murmu, N., Jung, J., Mukhopadhyay, D., Houchen, C. W., Riehl, T. E., Stenson, W. F., et al. (2004). Dynamic antagonism between RNA-binding protein CUGBP2 and cyclooxygenase-2-mediated prostaglandin E2 in radiation damage. Proceedings of the National Academy of Sciences USA, 101(38), 13873–13878.
166.
Zurück zum Zitat Sureban, S. M., Murmu, N., Rodriguez, P., May, R., Maheshwari, R., Dieckgraefe, B. K., et al. (2007). Functional antagonism between RNA binding proteins HuR and CUGBP2 determines the fate of COX-2 mRNA translation. Gastroenterology, 132(3), 1055–1065.PubMed Sureban, S. M., Murmu, N., Rodriguez, P., May, R., Maheshwari, R., Dieckgraefe, B. K., et al. (2007). Functional antagonism between RNA binding proteins HuR and CUGBP2 determines the fate of COX-2 mRNA translation. Gastroenterology, 132(3), 1055–1065.PubMed
167.
Zurück zum Zitat Derry, J. M., Kerns, J. A., & Francke, U. (1995). RBM3, a novel human gene in Xp11.23 with a putative RNA-binding domain. Human Molecular Genetics, 4(12), 2307–2311.PubMed Derry, J. M., Kerns, J. A., & Francke, U. (1995). RBM3, a novel human gene in Xp11.23 with a putative RNA-binding domain. Human Molecular Genetics, 4(12), 2307–2311.PubMed
168.
Zurück zum Zitat Dresios, J., Aschrafi, A., Owens, G. C., Vanderklish, P. W., Edelman, G. M., & Mauro, V. P. (2005). Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proceedings of the National Academy of Sciences USA, 102(6), 1865–1870. Dresios, J., Aschrafi, A., Owens, G. C., Vanderklish, P. W., Edelman, G. M., & Mauro, V. P. (2005). Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proceedings of the National Academy of Sciences USA, 102(6), 1865–1870.
169.
Zurück zum Zitat Cok, S. J., & Morrison, A. R. (2001). The 3′-untranslated region of murine cyclooxygenase-2 contains multiple regulatory elements that alter message stability and translational efficiency. The Journal of Biological Chemistry, 276(25), 23179–23185.PubMed Cok, S. J., & Morrison, A. R. (2001). The 3′-untranslated region of murine cyclooxygenase-2 contains multiple regulatory elements that alter message stability and translational efficiency. The Journal of Biological Chemistry, 276(25), 23179–23185.PubMed
170.
Zurück zum Zitat Anant, S., Houchen, C. W., Pawar, V., & Ramalingam, S. (2010). Role of RNA-binding proteins in colorectal carcinogenesis. Current Colorectal Cancer Reports, 6(2), 68–73.PubMed Anant, S., Houchen, C. W., Pawar, V., & Ramalingam, S. (2010). Role of RNA-binding proteins in colorectal carcinogenesis. Current Colorectal Cancer Reports, 6(2), 68–73.PubMed
171.
Zurück zum Zitat Sureban, S. M., Ramalingam, S., Natarajan, G., May, R., Subramaniam, D., Bishnupuri, K. S., et al. (2008). Translation regulatory factor RBM3 is a proto-oncogene that prevents mitotic catastrophe. Oncogene, 27(33), 4544–4556.PubMed Sureban, S. M., Ramalingam, S., Natarajan, G., May, R., Subramaniam, D., Bishnupuri, K. S., et al. (2008). Translation regulatory factor RBM3 is a proto-oncogene that prevents mitotic catastrophe. Oncogene, 27(33), 4544–4556.PubMed
172.
Zurück zum Zitat Baou, M., Jewell, A., & Murphy, J. J. (2009). TIS11 family proteins and their roles in posttranscriptional gene regulation. Journal of Biomedicine and Biotechnology, 2009, 634520.PubMed Baou, M., Jewell, A., & Murphy, J. J. (2009). TIS11 family proteins and their roles in posttranscriptional gene regulation. Journal of Biomedicine and Biotechnology, 2009, 634520.PubMed
173.
Zurück zum Zitat Sanduja, S., Blanco, F. F., & Dixon, D. A. (2010). The roles of TTP and BRF proteins in regulated mRNA decay. Wiley Interdisciplinary Reviews. RNA, 2(1), 42–57. Sanduja, S., Blanco, F. F., & Dixon, D. A. (2010). The roles of TTP and BRF proteins in regulated mRNA decay. Wiley Interdisciplinary Reviews. RNA, 2(1), 42–57.
174.
Zurück zum Zitat Carballo, E., Lai, W. S., & Blackshear, P. J. (1998). Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science, 281(5379), 1001–1005.PubMed Carballo, E., Lai, W. S., & Blackshear, P. J. (1998). Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science, 281(5379), 1001–1005.PubMed
175.
Zurück zum Zitat Carballo, E., Lai, W. S., & Blackshear, P. J. (2000). Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood, 95(6), 1891–1899.PubMed Carballo, E., Lai, W. S., & Blackshear, P. J. (2000). Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood, 95(6), 1891–1899.PubMed
176.
Zurück zum Zitat Chen, C. Y., Gherzi, R., Ong, S. E., Chan, E. L., Raijmakers, R., Pruijn, G. J., et al. (2001). AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell, 107(4), 451–464.PubMed Chen, C. Y., Gherzi, R., Ong, S. E., Chan, E. L., Raijmakers, R., Pruijn, G. J., et al. (2001). AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell, 107(4), 451–464.PubMed
177.
Zurück zum Zitat Mukherjee, D., Gao, M., O’Connor, J. P., Raijmakers, R., Pruijn, G., Lutz, C. S., et al. (2002). The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO Journal, 21(1–2), 165–174.PubMed Mukherjee, D., Gao, M., O’Connor, J. P., Raijmakers, R., Pruijn, G., Lutz, C. S., et al. (2002). The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO Journal, 21(1–2), 165–174.PubMed
178.
Zurück zum Zitat Fenger-Gron, M., Fillman, C., Norrild, B., & Lykke-Andersen, J. (2005). Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Molecular Cell, 20(6), 905–915.PubMed Fenger-Gron, M., Fillman, C., Norrild, B., & Lykke-Andersen, J. (2005). Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Molecular Cell, 20(6), 905–915.PubMed
179.
Zurück zum Zitat Lykke-Andersen, J., & Wagner, E. (2005). Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes & Development, 19(3), 351–361. Lykke-Andersen, J., & Wagner, E. (2005). Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes & Development, 19(3), 351–361.
180.
Zurück zum Zitat Hau, H. H., Walsh, R. J., Ogilvie, R. L., Williams, D. A., Reilly, C. S., & Bohjanen, P. R. (2007). Tristetraprolin recruits functional mRNA decay complexes to ARE sequences. Journal of Cellular Biochemistry, 100(6), 1477–1492.PubMed Hau, H. H., Walsh, R. J., Ogilvie, R. L., Williams, D. A., Reilly, C. S., & Bohjanen, P. R. (2007). Tristetraprolin recruits functional mRNA decay complexes to ARE sequences. Journal of Cellular Biochemistry, 100(6), 1477–1492.PubMed
181.
Zurück zum Zitat Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., Fritzler, M. J., et al. (2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. The Journal of Cell Biology, 169(6), 871–884.PubMed Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., Fritzler, M. J., et al. (2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. The Journal of Cell Biology, 169(6), 871–884.PubMed
182.
Zurück zum Zitat Franks, T. M., & Lykke-Andersen, J. (2007). TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes & Development, 21(6), 719–735. Franks, T. M., & Lykke-Andersen, J. (2007). TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes & Development, 21(6), 719–735.
183.
Zurück zum Zitat Taylor, G. A., Carballo, E., Lee, D. M., Lai, W. S., Thompson, M. J., Patel, D. D., et al. (1996). A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity, 4(5), 445–454.PubMed Taylor, G. A., Carballo, E., Lee, D. M., Lai, W. S., Thompson, M. J., Patel, D. D., et al. (1996). A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity, 4(5), 445–454.PubMed
184.
Zurück zum Zitat Lai, W. S., Carballo, E., Strum, J. R., Kennington, E. A., Phillips, R. S., & Blackshear, P. J. (1999). Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Molecular and Cellular Biology, 19(6), 4311–4323.PubMed Lai, W. S., Carballo, E., Strum, J. R., Kennington, E. A., Phillips, R. S., & Blackshear, P. J. (1999). Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Molecular and Cellular Biology, 19(6), 4311–4323.PubMed
185.
Zurück zum Zitat Sawaoka, H., Dixon, D. A., Oates, J. A., & Boutaud, O. (2003). Tristetrapolin binds to the 3′ untranslated region of cyclooxygenase-2 mRNA: a polyadenylation variant in a cancer cell line lacks the binding site. The Journal of Biological Chemistry, 278(16), 13928–13935.PubMed Sawaoka, H., Dixon, D. A., Oates, J. A., & Boutaud, O. (2003). Tristetrapolin binds to the 3′ untranslated region of cyclooxygenase-2 mRNA: a polyadenylation variant in a cancer cell line lacks the binding site. The Journal of Biological Chemistry, 278(16), 13928–13935.PubMed
186.
Zurück zum Zitat Brennan, S. E., Kuwano, Y., Alkharouf, N., Blackshear, P. J., Gorospe, M., & Wilson, G. M. (2009). The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Research, 69(12), 5168–5176.PubMed Brennan, S. E., Kuwano, Y., Alkharouf, N., Blackshear, P. J., Gorospe, M., & Wilson, G. M. (2009). The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Research, 69(12), 5168–5176.PubMed
187.
Zurück zum Zitat Sanduja, S., Kaza, V., & Dixon, D. A. (2009). The mRNA decay factor tristetraprolin (TTP) induces senescence in human papillomavirus-transformed cervical cancer cells by targeting E6-AP ubiquitin ligase. Aging, 1(9), 803–817.PubMed Sanduja, S., Kaza, V., & Dixon, D. A. (2009). The mRNA decay factor tristetraprolin (TTP) induces senescence in human papillomavirus-transformed cervical cancer cells by targeting E6-AP ubiquitin ligase. Aging, 1(9), 803–817.PubMed
188.
Zurück zum Zitat Blackshear, P. J., Lai, W. S., Kennington, E. A., Brewer, G., Wilson, G. M., Guan, X., et al. (2003). Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with AU-rich element-containing RNA substrates. The Journal of Biological Chemistry, 278(22), 19947–19955.PubMed Blackshear, P. J., Lai, W. S., Kennington, E. A., Brewer, G., Wilson, G. M., Guan, X., et al. (2003). Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with AU-rich element-containing RNA substrates. The Journal of Biological Chemistry, 278(22), 19947–19955.PubMed
189.
Zurück zum Zitat Brewer, B. Y., Malicka, J., Blackshear, P. J., & Wilson, G. M. (2004). RNA sequence elements required for high affinity binding by the zinc finger domain of tristetraprolin: conformational changes coupled to the bipartite nature of AU-rich mRNA-destabilizing motifs. The Journal of Biological Chemistry, 279(27), 27870–27877.PubMed Brewer, B. Y., Malicka, J., Blackshear, P. J., & Wilson, G. M. (2004). RNA sequence elements required for high affinity binding by the zinc finger domain of tristetraprolin: conformational changes coupled to the bipartite nature of AU-rich mRNA-destabilizing motifs. The Journal of Biological Chemistry, 279(27), 27870–27877.PubMed
190.
Zurück zum Zitat Tian, Q., Streuli, M., Saito, H., Schlossman, S. F., & Anderson, P. (1991). A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell, 67(3), 629–639.PubMed Tian, Q., Streuli, M., Saito, H., Schlossman, S. F., & Anderson, P. (1991). A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell, 67(3), 629–639.PubMed
191.
Zurück zum Zitat Lopez de Silanes, I., Galban, S., Martindale, J. L., Yang, X., Mazan-Mamczarz, K., Indig, F. E., et al. (2005). Identification and functional outcome of mRNAs associated with RNA-binding protein TIA-1. Molecular and Cellular Biology, 25(21), 9520–9531.PubMed Lopez de Silanes, I., Galban, S., Martindale, J. L., Yang, X., Mazan-Mamczarz, K., Indig, F. E., et al. (2005). Identification and functional outcome of mRNAs associated with RNA-binding protein TIA-1. Molecular and Cellular Biology, 25(21), 9520–9531.PubMed
192.
Zurück zum Zitat Dixon, D. A., Balch, G. C., Kedersha, N., Anderson, P., Zimmerman, G. A., Beauchamp, R. D., et al. (2003). Regulation of cyclooxygenase-2 expression by the translational silencer TIA-1. The Journal of Experimental Medicine, 198(3), 475–481.PubMed Dixon, D. A., Balch, G. C., Kedersha, N., Anderson, P., Zimmerman, G. A., Beauchamp, R. D., et al. (2003). Regulation of cyclooxygenase-2 expression by the translational silencer TIA-1. The Journal of Experimental Medicine, 198(3), 475–481.PubMed
193.
Zurück zum Zitat Phillips, K., Kedersha, N., Shen, L., Blackshear, P. J., & Anderson, P. (2004). Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor alpha, cyclooxygenase 2, and inflammatory arthritis. Proceedings of the National Academy of Sciences USA, 101(7), 2011–2016. Phillips, K., Kedersha, N., Shen, L., Blackshear, P. J., & Anderson, P. (2004). Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor alpha, cyclooxygenase 2, and inflammatory arthritis. Proceedings of the National Academy of Sciences USA, 101(7), 2011–2016.
194.
Zurück zum Zitat Menter, D. G., Schilsky, R. L., & DuBois, R. N. (2010). Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clinical Cancer Research, 16(5), 1384–1390.PubMed Menter, D. G., Schilsky, R. L., & DuBois, R. N. (2010). Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clinical Cancer Research, 16(5), 1384–1390.PubMed
Metadaten
Titel
MicroRNA and AU-rich element regulation of prostaglandin synthesis
verfasst von
Ashleigh E. Moore
Lisa E. Young
Dan A. Dixon
Publikationsdatum
01.12.2011
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3-4/2011
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9300-5

Weitere Artikel der Ausgabe 3-4/2011

Cancer and Metastasis Reviews 3-4/2011 Zur Ausgabe

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.