Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 4/2012

01.08.2012

MicroRNAs and Diabetic Complications

verfasst von: Rama Natarajan, Sumanth Putta, Mitsuo Kato

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Abstract

Both Type 1 and Type 2 diabetes can lead to debilitating microvascular complications such as retinopathy, nephropathy and neuropathy, as well as macrovascular complications such as cardiovascular diseases including atherosclerosis and hypertension. Diabetic complications have been attributed to several contributing factors such as hyperglycemia, hyperlipidemia, advanced glycation end products, growth factors, and inflammatory cytokines/chemokines. However, current therapies are not fully efficacious and hence there is an imperative need for a better understanding of the molecular mechanisms underlying diabetic complications in order to identify newer therapeutic targets. microRNAs (miRNAs) are short non-coding RNAs that repress target gene expression via post-transcriptional mechanisms. Emerging evidence shows that they have diverse cellular and biological functions and play key roles in several diseases. In this review, we explore the role of miRNAs in the pathology of diabetic complications and also discuss the potential use of miRNAs as novel diagnostic and therapeutic targets for diabetic complications.
Literatur
1.
Zurück zum Zitat He, Z., & King, G. L. (2004). Microvascular complications of diabetes. Endocrinology and Metabolism Clinics of North America, 33, 215–238. xi-xii.PubMedCrossRef He, Z., & King, G. L. (2004). Microvascular complications of diabetes. Endocrinology and Metabolism Clinics of North America, 33, 215–238. xi-xii.PubMedCrossRef
2.
Zurück zum Zitat Beckman, J. A., Creager, M. A., & Libby, P. (2002). Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA, 287, 2570–2581.PubMedCrossRef Beckman, J. A., Creager, M. A., & Libby, P. (2002). Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA, 287, 2570–2581.PubMedCrossRef
3.
Zurück zum Zitat Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54, 1615–1625.PubMedCrossRef Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54, 1615–1625.PubMedCrossRef
4.
Zurück zum Zitat King, G. L., Kunisaki, M., Nishio, Y., Inoguchi, T., Shiba, T., & Xia, P. (1996). Biochemical and molecular mechanisms in the development of diabetic vascular complications. Diabetes, 45(Suppl 3), S105–S108.PubMed King, G. L., Kunisaki, M., Nishio, Y., Inoguchi, T., Shiba, T., & Xia, P. (1996). Biochemical and molecular mechanisms in the development of diabetic vascular complications. Diabetes, 45(Suppl 3), S105–S108.PubMed
5.
Zurück zum Zitat Villeneuve, L. M., Reddy, M. A., & Natarajan, R. (2011). Epigenetics: deciphering its role in diabetes and its chronic complications. Clinical and Experimental Pharmacology and Physiology, 38, 401–409.PubMedCrossRef Villeneuve, L. M., Reddy, M. A., & Natarajan, R. (2011). Epigenetics: deciphering its role in diabetes and its chronic complications. Clinical and Experimental Pharmacology and Physiology, 38, 401–409.PubMedCrossRef
6.
Zurück zum Zitat Cooper, M. E., & El-Osta, A. (2010). Epigenetics: mechanisms and implications for diabetic complications. Circulation Research, 107, 1403–1413.PubMedCrossRef Cooper, M. E., & El-Osta, A. (2010). Epigenetics: mechanisms and implications for diabetic complications. Circulation Research, 107, 1403–1413.PubMedCrossRef
8.
Zurück zum Zitat Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.PubMedCrossRef Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.PubMedCrossRef
9.
Zurück zum Zitat Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233.PubMedCrossRef Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233.PubMedCrossRef
10.
Zurück zum Zitat Croce, C. M. (2009). Causes and consequences of microRNA dysregulation in cancer. Nature Reviews Genetics, 10, 704–714.PubMedCrossRef Croce, C. M. (2009). Causes and consequences of microRNA dysregulation in cancer. Nature Reviews Genetics, 10, 704–714.PubMedCrossRef
11.
Zurück zum Zitat He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5, 522–531.PubMedCrossRef He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5, 522–531.PubMedCrossRef
12.
Zurück zum Zitat Zamore, P. D., & Haley, B. (2005). Ribo-gnome: the big world of small RNAs. Science, 309, 1519–1524.PubMedCrossRef Zamore, P. D., & Haley, B. (2005). Ribo-gnome: the big world of small RNAs. Science, 309, 1519–1524.PubMedCrossRef
13.
Zurück zum Zitat Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.PubMedCrossRef Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.PubMedCrossRef
14.
Zurück zum Zitat Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75, 855–862.PubMedCrossRef Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75, 855–862.PubMedCrossRef
15.
Zurück zum Zitat Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics, 9, 102–114.PubMedCrossRef Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics, 9, 102–114.PubMedCrossRef
16.
Zurück zum Zitat Stefani, G., & Slack, F. J. (2008). Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology, 9, 219–230.PubMedCrossRef Stefani, G., & Slack, F. J. (2008). Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology, 9, 219–230.PubMedCrossRef
17.
Zurück zum Zitat Kim, V. N. (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 6, 376–385.PubMedCrossRef Kim, V. N. (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 6, 376–385.PubMedCrossRef
18.
Zurück zum Zitat Small, E. M., & Olson, E. N. (2011). Pervasive roles of microRNAs in cardiovascular biology. Nature, 469, 336–342.PubMedCrossRef Small, E. M., & Olson, E. N. (2011). Pervasive roles of microRNAs in cardiovascular biology. Nature, 469, 336–342.PubMedCrossRef
19.
Zurück zum Zitat Bhatt, K., Mi, Q. S., & Dong, Z. (2011). microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. American Journal of Physiology. Renal Physiology, 300, F602–F610.PubMedCrossRef Bhatt, K., Mi, Q. S., & Dong, Z. (2011). microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. American Journal of Physiology. Renal Physiology, 300, F602–F610.PubMedCrossRef
20.
Zurück zum Zitat Fernandez-Valverde, S. L., Taft, R. J., & Mattick, J. S. (2011). MicroRNAs in beta-cell biology, insulin resistance, diabetes and its complications. Diabetes, 60, 1825–1831.PubMedCrossRef Fernandez-Valverde, S. L., Taft, R. J., & Mattick, J. S. (2011). MicroRNAs in beta-cell biology, insulin resistance, diabetes and its complications. Diabetes, 60, 1825–1831.PubMedCrossRef
21.
Zurück zum Zitat Kato, M., Arce, L., & Natarajan, R. (2009). MicroRNAs and their role in progressive kidney diseases. Clinical Journal of the American Society of Nephrology, 4, 1255–1266.PubMedCrossRef Kato, M., Arce, L., & Natarajan, R. (2009). MicroRNAs and their role in progressive kidney diseases. Clinical Journal of the American Society of Nephrology, 4, 1255–1266.PubMedCrossRef
22.
Zurück zum Zitat Zhang, C. (2010). MicroRNAs in vascular biology and vascular disease. Journal of Cardiovascular Translational Research, 3, 235–240.PubMedCrossRef Zhang, C. (2010). MicroRNAs in vascular biology and vascular disease. Journal of Cardiovascular Translational Research, 3, 235–240.PubMedCrossRef
23.
Zurück zum Zitat Kempen, J. H., O’Colmain, B. J., Leske, M. C., Haffner, S. M., Klein, R., Moss, S. E., et al. (2004). The prevalence of diabetic retinopathy among adults in the United States. Archives of Ophthalmology, 122, 552–563.PubMedCrossRef Kempen, J. H., O’Colmain, B. J., Leske, M. C., Haffner, S. M., Klein, R., Moss, S. E., et al. (2004). The prevalence of diabetic retinopathy among adults in the United States. Archives of Ophthalmology, 122, 552–563.PubMedCrossRef
24.
Zurück zum Zitat Saaddine, J. B., Honeycutt, A. A., Narayan, K. M., Zhang, X., Klein, R., & Boyle, J. P. (2008). Projection of diabetic retinopathy and other major eye diseases among people with diabetes mellitus: United States, 2005–2050. Archives of Ophthalmology, 126, 1740–1747.PubMedCrossRef Saaddine, J. B., Honeycutt, A. A., Narayan, K. M., Zhang, X., Klein, R., & Boyle, J. P. (2008). Projection of diabetic retinopathy and other major eye diseases among people with diabetes mellitus: United States, 2005–2050. Archives of Ophthalmology, 126, 1740–1747.PubMedCrossRef
25.
Zurück zum Zitat Kovacs, B., Lumayag, S., Cowan, C., & Xu, S. (2011). MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Investigative Ophthalmology & Visual Science, 52, 4402–4409.CrossRef Kovacs, B., Lumayag, S., Cowan, C., & Xu, S. (2011). MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Investigative Ophthalmology & Visual Science, 52, 4402–4409.CrossRef
26.
Zurück zum Zitat Feng, B., Chen, S., McArthur, K., Wu, Y., Sen, S., Ding, Q., et al. (2011). miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes, 60, 2975–2984.PubMedCrossRef Feng, B., Chen, S., McArthur, K., Wu, Y., Sen, S., Ding, Q., et al. (2011). miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes, 60, 2975–2984.PubMedCrossRef
27.
Zurück zum Zitat McArthur, K., Feng, B., Wu, Y., Chen, S., & Chakrabarti, S. (2011). MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes, 60, 1314–1323.PubMedCrossRef McArthur, K., Feng, B., Wu, Y., Chen, S., & Chakrabarti, S. (2011). MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes, 60, 1314–1323.PubMedCrossRef
28.
Zurück zum Zitat Silva, V. A., Polesskaya, A., Sousa, T. A., Correa, V. M., Andre, N. D., Reis, R. I., et al. (2011). Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Molecular Vision, 17, 2228–2240.PubMed Silva, V. A., Polesskaya, A., Sousa, T. A., Correa, V. M., Andre, N. D., Reis, R. I., et al. (2011). Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Molecular Vision, 17, 2228–2240.PubMed
29.
Zurück zum Zitat Kato, M., Park, J. T., & Natarajan, R. (2012) MicroRNAs and the glomerulus. Experimental Cell Research, 318, 993–1000. Kato, M., Park, J. T., & Natarajan, R. (2012) MicroRNAs and the glomerulus. Experimental Cell Research, 318, 993–1000.
30.
Zurück zum Zitat Ziyadeh, F. N., & Sharma, K. (2003). Overview: combating diabetic nephropathy. Journal of the American Society of Nephrology, 14, 1355–1357.PubMedCrossRef Ziyadeh, F. N., & Sharma, K. (2003). Overview: combating diabetic nephropathy. Journal of the American Society of Nephrology, 14, 1355–1357.PubMedCrossRef
31.
Zurück zum Zitat Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J. J., et al. (2007). MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proceedings of the National Academy of Sciences of the United States of America, 104, 3432–3437.PubMedCrossRef Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J. J., et al. (2007). MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proceedings of the National Academy of Sciences of the United States of America, 104, 3432–3437.PubMedCrossRef
32.
Zurück zum Zitat Sharma, K., & Ziyadeh, F. N. (1995). Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes, 44, 1139–1146.PubMedCrossRef Sharma, K., & Ziyadeh, F. N. (1995). Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes, 44, 1139–1146.PubMedCrossRef
33.
Zurück zum Zitat Yamamoto, T., Nakamura, T., Noble, N. A., Ruoslahti, E., & Border, W. A. (1993). Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proceedings of the National Academy of Sciences of the United States of America, 90, 1814–1818.PubMedCrossRef Yamamoto, T., Nakamura, T., Noble, N. A., Ruoslahti, E., & Border, W. A. (1993). Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proceedings of the National Academy of Sciences of the United States of America, 90, 1814–1818.PubMedCrossRef
34.
Zurück zum Zitat Kato, M., Wang, L., Putta, S., Wang, M., Yuan, H., Sun, G., et al. (2010). Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells. Journal of Biological Chemistry, 285, 34004–34015.PubMedCrossRef Kato, M., Wang, L., Putta, S., Wang, M., Yuan, H., Sun, G., et al. (2010). Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells. Journal of Biological Chemistry, 285, 34004–34015.PubMedCrossRef
35.
Zurück zum Zitat Kato, M., Arce, L., Wang, M., Putta, S., Lanting, L., & Natarajan, R. (2011). A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells. Kidney International, 80, 358–368.PubMedCrossRef Kato, M., Arce, L., Wang, M., Putta, S., Lanting, L., & Natarajan, R. (2011). A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells. Kidney International, 80, 358–368.PubMedCrossRef
36.
Zurück zum Zitat Kato, M., Putta, S., Wang, M., Yuan, H., Lanting, L., Nair, I., et al. (2009). TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nature Cell Biology, 11, 881–889.PubMedCrossRef Kato, M., Putta, S., Wang, M., Yuan, H., Lanting, L., Nair, I., et al. (2009). TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nature Cell Biology, 11, 881–889.PubMedCrossRef
37.
Zurück zum Zitat Kato, M., & Natarajan, R. (2009). microRNA cascade in diabetic kidney disease: big impact initiated by a small RNA. Cell Cycle, 8, 3613–3614.PubMedCrossRef Kato, M., & Natarajan, R. (2009). microRNA cascade in diabetic kidney disease: big impact initiated by a small RNA. Cell Cycle, 8, 3613–3614.PubMedCrossRef
38.
Zurück zum Zitat Wang, Q., Wang, Y., Minto, A. W., Wang, J., Shi, Q., Li, X., et al. (2008). MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. The FASEB Journal, 22, 4126–4135.CrossRef Wang, Q., Wang, Y., Minto, A. W., Wang, J., Shi, Q., Li, X., et al. (2008). MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. The FASEB Journal, 22, 4126–4135.CrossRef
39.
Zurück zum Zitat Wang, X. X., Jiang, T., Shen, Y., Caldas, Y., Miyazaki-Anzai, S., Santamaria, H., et al. (2010). Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes, 59, 2916–2927.PubMedCrossRef Wang, X. X., Jiang, T., Shen, Y., Caldas, Y., Miyazaki-Anzai, S., Santamaria, H., et al. (2010). Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes, 59, 2916–2927.PubMedCrossRef
40.
Zurück zum Zitat Long, J., Wang, Y., Wang, W., Chang, B. H., & Danesh, F. R. (2010). Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. Journal of Biological Chemistry, 285, 23457–23465.PubMedCrossRef Long, J., Wang, Y., Wang, W., Chang, B. H., & Danesh, F. R. (2010). Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. Journal of Biological Chemistry, 285, 23457–23465.PubMedCrossRef
41.
Zurück zum Zitat Long, J., Wang, Y., Wang, W., Chang, B. H., & Danesh, F. R. (2011). MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. Journal of Biological Chemistry, 286, 11837–11848.PubMedCrossRef Long, J., Wang, Y., Wang, W., Chang, B. H., & Danesh, F. R. (2011). MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. Journal of Biological Chemistry, 286, 11837–11848.PubMedCrossRef
42.
Zurück zum Zitat Wang, B., Komers, R., Carew, R., Winbanks, C. E., Xu, B., Herman-Edelstein, M., et al. (2012). Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. Journal of the American Society of Nephrology, 23, 252–265.PubMedCrossRef Wang, B., Komers, R., Carew, R., Winbanks, C. E., Xu, B., Herman-Edelstein, M., et al. (2012). Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. Journal of the American Society of Nephrology, 23, 252–265.PubMedCrossRef
43.
Zurück zum Zitat Krupa, A., Jenkins, R., Luo, D. D., Lewis, A., Phillips, A., & Fraser, D. (2010). Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. Journal of the American Society of Nephrology, 21, 438–447.PubMedCrossRef Krupa, A., Jenkins, R., Luo, D. D., Lewis, A., Phillips, A., & Fraser, D. (2010). Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. Journal of the American Society of Nephrology, 21, 438–447.PubMedCrossRef
44.
Zurück zum Zitat Wang, B., Herman-Edelstein, M., Koh, P., Burns, W., Jandeleit-Dahm, K., Watson, A., et al. (2010). E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes, 59, 1794–1802.PubMedCrossRef Wang, B., Herman-Edelstein, M., Koh, P., Burns, W., Jandeleit-Dahm, K., Watson, A., et al. (2010). E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes, 59, 1794–1802.PubMedCrossRef
45.
Zurück zum Zitat Wang, B., Koh, P., Winbanks, C., Coughlan, M. T., McClelland, A., Watson, A., et al. (2011). miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes, 60, 280–287.PubMedCrossRef Wang, B., Koh, P., Winbanks, C., Coughlan, M. T., McClelland, A., Watson, A., et al. (2011). miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes, 60, 280–287.PubMedCrossRef
46.
Zurück zum Zitat Dey, N., Das, F., Mariappan, M. M., Mandal, C. C., Ghosh-Choudhury, N., Kasinath, B. S., et al. (2011). MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. Journal of Biological Chemistry, 286, 25586–25603.PubMedCrossRef Dey, N., Das, F., Mariappan, M. M., Mandal, C. C., Ghosh-Choudhury, N., Kasinath, B. S., et al. (2011). MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. Journal of Biological Chemistry, 286, 25586–25603.PubMedCrossRef
47.
Zurück zum Zitat Zhang, Z., Peng, H., Chen, J., Chen, X., Han, F., Xu, X., et al. (2009). MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Letters, 583, 2009–2014.PubMedCrossRef Zhang, Z., Peng, H., Chen, J., Chen, X., Han, F., Xu, X., et al. (2009). MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Letters, 583, 2009–2014.PubMedCrossRef
48.
Zurück zum Zitat Fu, Y., Zhang, Y., Wang, Z., Wang, L., Wei, X., Zhang, B., et al. (2010). Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. American Journal of Nephrology, 32, 581–589.PubMedCrossRef Fu, Y., Zhang, Y., Wang, Z., Wang, L., Wei, X., Zhang, B., et al. (2010). Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. American Journal of Nephrology, 32, 581–589.PubMedCrossRef
49.
Zurück zum Zitat Caporali, A., Meloni, M., Vollenkle, C., Bonci, D., Sala-Newby, G. B., Addis, R., et al. (2010). Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation, 123, 282–291.CrossRef Caporali, A., Meloni, M., Vollenkle, C., Bonci, D., Sala-Newby, G. B., Addis, R., et al. (2010). Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation, 123, 282–291.CrossRef
50.
Zurück zum Zitat Natarajan, R., & Nadler, J. L. (2004). Lipid inflammatory mediators in diabetic vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1542–1548.PubMedCrossRef Natarajan, R., & Nadler, J. L. (2004). Lipid inflammatory mediators in diabetic vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1542–1548.PubMedCrossRef
51.
Zurück zum Zitat Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414, 813–820.PubMedCrossRef Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414, 813–820.PubMedCrossRef
52.
Zurück zum Zitat Devaraj, S., Dasu, M. R., & Jialal, I. (2010). Diabetes is a proinflammatory state: a translational perspective. Expert Review of Endocrinology and Metabolism, 5, 19–28.PubMed Devaraj, S., Dasu, M. R., & Jialal, I. (2010). Diabetes is a proinflammatory state: a translational perspective. Expert Review of Endocrinology and Metabolism, 5, 19–28.PubMed
53.
Zurück zum Zitat Libby, P., Ridker, P. M., & Maseri, A. (2002). Inflammation and atherosclerosis. Circulation, 105, 1135–1143.PubMedCrossRef Libby, P., Ridker, P. M., & Maseri, A. (2002). Inflammation and atherosclerosis. Circulation, 105, 1135–1143.PubMedCrossRef
54.
Zurück zum Zitat Shan, Z. X., Lin, Q. X., Deng, C. Y., Zhu, J. N., Mai, L. P., Liu, J. L., et al. (2010). miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Letters, 584, 3592–3600.PubMedCrossRef Shan, Z. X., Lin, Q. X., Deng, C. Y., Zhu, J. N., Mai, L. P., Liu, J. L., et al. (2010). miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Letters, 584, 3592–3600.PubMedCrossRef
55.
Zurück zum Zitat Katare, R., Caporali, A., Zentilin, L., Avolio, E., Sala-Newby, G., Oikawa, A., et al. (2011). Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circulation Research, 108, 1238–1251.PubMedCrossRef Katare, R., Caporali, A., Zentilin, L., Avolio, E., Sala-Newby, G., Oikawa, A., et al. (2011). Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circulation Research, 108, 1238–1251.PubMedCrossRef
56.
Zurück zum Zitat Wang, X. H., Qian, R. Z., Zhang, W., Chen, S. F., Jin, H. M., & Hu, R. M. (2009). MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clinical and Experimental Pharmacology and Physiology, 36, 181–188.PubMedCrossRef Wang, X. H., Qian, R. Z., Zhang, W., Chen, S. F., Jin, H. M., & Hu, R. M. (2009). MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clinical and Experimental Pharmacology and Physiology, 36, 181–188.PubMedCrossRef
57.
Zurück zum Zitat Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618.PubMedCrossRef Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618.PubMedCrossRef
58.
Zurück zum Zitat Feng, B., Chen, S., George, B., Feng, Q., & Chakrabarti, S. (2010). miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes/Metabolism Research and Reviews, 26, 40–49.PubMedCrossRef Feng, B., Chen, S., George, B., Feng, Q., & Chakrabarti, S. (2010). miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes/Metabolism Research and Reviews, 26, 40–49.PubMedCrossRef
59.
Zurück zum Zitat Shen, E., Diao, X., Wang, X., Chen, R., & Hu, B. (2011). MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. American Journal of Pathology, 179, 639–650.PubMedCrossRef Shen, E., Diao, X., Wang, X., Chen, R., & Hu, B. (2011). MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. American Journal of Pathology, 179, 639–650.PubMedCrossRef
60.
Zurück zum Zitat Greco, S., Fasanaro, P., Castelvecchio, S., D’Alessandra, Y., Arcelli, D., Di Donato, M., et al. (2012). MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes (in press). Greco, S., Fasanaro, P., Castelvecchio, S., D’Alessandra, Y., Arcelli, D., Di Donato, M., et al. (2012). MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes (in press).
61.
Zurück zum Zitat van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103, 18255–18260.PubMedCrossRef van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103, 18255–18260.PubMedCrossRef
62.
Zurück zum Zitat Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., van der Made, I., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104, 170–178. 176p following 178.PubMedCrossRef Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., van der Made, I., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104, 170–178. 176p following 178.PubMedCrossRef
63.
Zurück zum Zitat Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456, 980–984.PubMedCrossRef Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456, 980–984.PubMedCrossRef
64.
Zurück zum Zitat Reddy, M. A., & Natarajan, R. (2011). Epigenetic mechanisms in diabetic vascular complications. Cardiovascular Research, 90, 421–429.PubMedCrossRef Reddy, M. A., & Natarajan, R. (2011). Epigenetic mechanisms in diabetic vascular complications. Cardiovascular Research, 90, 421–429.PubMedCrossRef
65.
Zurück zum Zitat Shanmugam, N., Reddy, M. A., & Natarajan, R. (2008). Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by S100b, a ligand of the receptor for advanced glycation end products. Journal of Biological Chemistry, 283, 36221–36233.PubMedCrossRef Shanmugam, N., Reddy, M. A., & Natarajan, R. (2008). Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by S100b, a ligand of the receptor for advanced glycation end products. Journal of Biological Chemistry, 283, 36221–36233.PubMedCrossRef
66.
Zurück zum Zitat Villeneuve, L. M., Reddy, M. A., Lanting, L. L., Wang, M., Meng, L., & Natarajan, R. (2008). Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proceedings of the National Academy of Sciences of the United States of America, 105, 9047–9052.PubMedCrossRef Villeneuve, L. M., Reddy, M. A., Lanting, L. L., Wang, M., Meng, L., & Natarajan, R. (2008). Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proceedings of the National Academy of Sciences of the United States of America, 105, 9047–9052.PubMedCrossRef
67.
Zurück zum Zitat Villeneuve, L. M., Kato, M., Reddy, M. A., Wang, M., Lanting, L., & Natarajan, R. (2010). Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes, 59, 2904–2915.PubMedCrossRef Villeneuve, L. M., Kato, M., Reddy, M. A., Wang, M., Lanting, L., & Natarajan, R. (2010). Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes, 59, 2904–2915.PubMedCrossRef
68.
Zurück zum Zitat Reddy, M. A., Jin, W., Villeneuve, L., Wang, M., Lanting, L., Todorov, I., et al. (2012). Pro-inflammatory role of MicroRNA-200 in vascular smooth muscle cells from diabetic mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 721–729.PubMedCrossRef Reddy, M. A., Jin, W., Villeneuve, L., Wang, M., Lanting, L., Todorov, I., et al. (2012). Pro-inflammatory role of MicroRNA-200 in vascular smooth muscle cells from diabetic mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 721–729.PubMedCrossRef
69.
Zurück zum Zitat Jin, W., Reddy, M. A., Chen, Z., Putta, S., Lanting, L., Kato, M., et al. (2012). Small RNA sequencing reveals microRNAs that modulate angiotensin II effects in vascular smooth muscle cells. Journal of Biological Chemistry (in press). Jin, W., Reddy, M. A., Chen, Z., Putta, S., Lanting, L., Kato, M., et al. (2012). Small RNA sequencing reveals microRNAs that modulate angiotensin II effects in vascular smooth muscle cells. Journal of Biological Chemistry (in press).
70.
Zurück zum Zitat Thomas, M. C., Groop, P. H., & Tryggvason, K. (2012). Towards understanding the inherited susceptibility for nephropathy in diabetes. Current Opinion in Nephrology and Hypertension, 21, 195–202.PubMedCrossRef Thomas, M. C., Groop, P. H., & Tryggvason, K. (2012). Towards understanding the inherited susceptibility for nephropathy in diabetes. Current Opinion in Nephrology and Hypertension, 21, 195–202.PubMedCrossRef
71.
Zurück zum Zitat Bruno, A. E., Li, L., Kalabus, J. L., Pan, Y., Yu, A., & Hu, Z. (2012). miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3′UTRs of human genes. BMC Genomics, 13, 44.PubMedCrossRef Bruno, A. E., Li, L., Kalabus, J. L., Pan, Y., Yu, A., & Hu, Z. (2012). miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3′UTRs of human genes. BMC Genomics, 13, 44.PubMedCrossRef
72.
Zurück zum Zitat Sun, G., Yan, J., Noltner, K., Feng, J., Li, H., Sarkis, D. A., et al. (2009). SNPs in human miRNA genes affect biogenesis and function. RNA, 15, 1640–1651.PubMedCrossRef Sun, G., Yan, J., Noltner, K., Feng, J., Li, H., Sarkis, D. A., et al. (2009). SNPs in human miRNA genes affect biogenesis and function. RNA, 15, 1640–1651.PubMedCrossRef
73.
Zurück zum Zitat Miao, F., Chen, Z., Zhang, L., Liu, Z., Wu, X., Yuan, Y. C. et al. (2012). Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. Journal of Biological Chemistry (in press). Miao, F., Chen, Z., Zhang, L., Liu, Z., Wu, X., Yuan, Y. C. et al. (2012). Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. Journal of Biological Chemistry (in press).
74.
Zurück zum Zitat Sapienza, C., Lee, J., Powell, J., Erinle, O., Yafai, F., Reichert, J., et al. (2011). DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics, 6, 20–28.PubMedCrossRef Sapienza, C., Lee, J., Powell, J., Erinle, O., Yafai, F., Reichert, J., et al. (2011). DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics, 6, 20–28.PubMedCrossRef
75.
Zurück zum Zitat Farazi, T. A., Spitzer, J. I., Morozov, P., & Tuschl, T. (2011). miRNAs in human cancer. The Journal of Pathology, 223, 102–115.PubMedCrossRef Farazi, T. A., Spitzer, J. I., Morozov, P., & Tuschl, T. (2011). miRNAs in human cancer. The Journal of Pathology, 223, 102–115.PubMedCrossRef
76.
Zurück zum Zitat Fabbri, M. (2010). miRNAs as molecular biomarkers of cancer. Expert Review of Molecular Diagnostics, 10, 435–444.PubMedCrossRef Fabbri, M. (2010). miRNAs as molecular biomarkers of cancer. Expert Review of Molecular Diagnostics, 10, 435–444.PubMedCrossRef
77.
Zurück zum Zitat Wang, K., Zhang, S., Marzolf, B., Troisch, P., Brightman, A., Hu, Z., et al. (2009). Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proceedings of the National Academy of Sciences of the United States of America, 106, 4402–4407.PubMedCrossRef Wang, K., Zhang, S., Marzolf, B., Troisch, P., Brightman, A., Hu, Z., et al. (2009). Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proceedings of the National Academy of Sciences of the United States of America, 106, 4402–4407.PubMedCrossRef
78.
Zurück zum Zitat Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.PubMedCrossRef Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.PubMedCrossRef
79.
Zurück zum Zitat Tijsen, A. J., Creemers, E. E., Moerland, P. D., de Windt, L. J., van der Wal, A. C., Kok, W. E., et al. (2010). MiR423-5p as a circulating biomarker for heart failure. Circulation Research, 106, 1035–1039.PubMedCrossRef Tijsen, A. J., Creemers, E. E., Moerland, P. D., de Windt, L. J., van der Wal, A. C., Kok, W. E., et al. (2010). MiR423-5p as a circulating biomarker for heart failure. Circulation Research, 106, 1035–1039.PubMedCrossRef
80.
Zurück zum Zitat Wang, G., Kwan, B. C., Lai, F. M., Chow, K. M., Kam-Tao Li, P., & Szeto, C. C. (2010). Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Disease Markers, 28, 79–86.PubMed Wang, G., Kwan, B. C., Lai, F. M., Chow, K. M., Kam-Tao Li, P., & Szeto, C. C. (2010). Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Disease Markers, 28, 79–86.PubMed
81.
Zurück zum Zitat Neal, C. S., Michael, M. Z., Pimlott, L. K., Yong, T. Y., Li, J. Y., & Gleadle, J. M. (2011). Circulating microRNA expression is reduced in chronic kidney disease. Nephrology, Dialysis, Transplantation, 26, 3794–3802.PubMedCrossRef Neal, C. S., Michael, M. Z., Pimlott, L. K., Yong, T. Y., Li, J. Y., & Gleadle, J. M. (2011). Circulating microRNA expression is reduced in chronic kidney disease. Nephrology, Dialysis, Transplantation, 26, 3794–3802.PubMedCrossRef
82.
Zurück zum Zitat Starkey Lewis, P. J., Dear, J., Platt, V., Simpson, K. J., Craig, D. G., Antoine, D. J., et al. (2011). Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology, 54, 1767–1776.PubMedCrossRef Starkey Lewis, P. J., Dear, J., Platt, V., Simpson, K. J., Craig, D. G., Antoine, D. J., et al. (2011). Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology, 54, 1767–1776.PubMedCrossRef
83.
Zurück zum Zitat Elmen, J., Lindow, M., Schutz, S., Lawrence, M., Petri, A., Obad, S., et al. (2008). LNA-mediated microRNA silencing in non-human primates. Nature, 452, 896–899.PubMedCrossRef Elmen, J., Lindow, M., Schutz, S., Lawrence, M., Petri, A., Obad, S., et al. (2008). LNA-mediated microRNA silencing in non-human primates. Nature, 452, 896–899.PubMedCrossRef
84.
Zurück zum Zitat Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438, 685–689.PubMedCrossRef Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438, 685–689.PubMedCrossRef
85.
Zurück zum Zitat Putta, S., Lanting, L., Sun, G., Lawson, G., Kato, M., & Natarajan, R. (2012). Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. Journal of the American Society of Nephrology, 23, 458–469.PubMedCrossRef Putta, S., Lanting, L., Sun, G., Lawson, G., Kato, M., & Natarajan, R. (2012). Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. Journal of the American Society of Nephrology, 23, 458–469.PubMedCrossRef
86.
Zurück zum Zitat Sun, L., Zhang, D., Liu, F., Xiang, X., Ling, G., Xiao, L., et al. (2011). Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192. The Journal of Pathology, 225, 364–377.PubMedCrossRef Sun, L., Zhang, D., Liu, F., Xiang, X., Ling, G., Xiao, L., et al. (2011). Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192. The Journal of Pathology, 225, 364–377.PubMedCrossRef
87.
Zurück zum Zitat Snove, O., Jr., & Rossi, J. J. (2006). Expressing short hairpin RNAs in vivo. Nature Methods, 3, 689–695.PubMedCrossRef Snove, O., Jr., & Rossi, J. J. (2006). Expressing short hairpin RNAs in vivo. Nature Methods, 3, 689–695.PubMedCrossRef
88.
Zurück zum Zitat Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 4, 721–726.PubMedCrossRef Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 4, 721–726.PubMedCrossRef
89.
Zurück zum Zitat Chung, A. C., Huang, X. R., Meng, X., & Lan, H. Y. (2010). miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. Journal of the American Society of Nephrology, 21, 1317–1325.PubMedCrossRef Chung, A. C., Huang, X. R., Meng, X., & Lan, H. Y. (2010). miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. Journal of the American Society of Nephrology, 21, 1317–1325.PubMedCrossRef
Metadaten
Titel
MicroRNAs and Diabetic Complications
verfasst von
Rama Natarajan
Sumanth Putta
Mitsuo Kato
Publikationsdatum
01.08.2012
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 4/2012
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-012-9368-5

Weitere Artikel der Ausgabe 4/2012

Journal of Cardiovascular Translational Research 4/2012 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.