Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2021

Open Access 01.12.2021 | Review

Molecular pathogenesis of the myeloproliferative neoplasms

verfasst von: Graeme Greenfield, Mary Frances McMullin, Ken Mills

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2021

Abstract

The Philadelphia negative myeloproliferative neoplasms (MPN) compromise a heterogeneous group of clonal myeloid stem cell disorders comprising polycythaemia vera, essential thrombocythaemia and primary myelofibrosis. Despite distinct clinical entities, these disorders are linked by morphological similarities and propensity to thrombotic complications and leukaemic transformation. Current therapeutic options are limited in disease-modifying activity with a focus on the prevention of thrombus formation. Constitutive activation of the JAK/STAT signalling pathway is a hallmark of pathogenesis across the disease spectrum with driving mutations in JAK2, CALR and MPL identified in the majority of patients. Co-occurring somatic mutations in genes associated with epigenetic regulation, transcriptional control and splicing of RNA are variably but recurrently identified across the MPN disease spectrum, whilst epigenetic contributors to disease are increasingly recognised. The prognostic implications of one MPN diagnosis may significantly limit life expectancy, whilst another may have limited impact depending on the disease phenotype, genotype and other external factors. The genetic and clinical similarities and differences in these disorders have provided a unique opportunity to understand the relative contributions to MPN, myeloid and cancer biology generally from specific genetic and epigenetic changes. This review provides a comprehensive overview of the molecular pathophysiology of MPN exploring the role of driver mutations, co-occurring mutations, dysregulation of intrinsic cell signalling, epigenetic regulation and genetic predisposing factors highlighting important areas for future consideration.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
MPN
Myeloproliferative neoplasm
HSC
Haematopoietic stem cell
PV
Polycythaemia vera
ET
Essential thrombocythaemia
PMF
Primary myelofibrosis
Pre-PMF
Pre-fibrotic primary myelofibrosis
MF
Myelofibrosis
JAK
Janus-associated kinase
STAT
Signal transducer and activator of transcription
WHO
World Health Organisation
CHIP
Clonal haematopoiesis of indeterminate potential
EPO
Erythropoietin
TPO
Thrombopoietin
GCSF
Granulocyte colony stimulating factor
EPOR
Erythropoietin receptor
MPL
Thrombopoietin receptor
GCSFR
Granulocyte colony stimulating factor receptor
CALR
Calreticulin
VAF
Variant allele frequency
SOCS
Suppressor of cytokine signalling
EZH2
Enhancer of Zeste 2
ERK1/2
Extracellular signal related kinase ½
PI3K
Phosphoinositide 3-kinase
MAPK
Mitogen-activated protein kinase
PDGFRα/PDGRFA
Platelet-derived growth factor receptor alpha
mTOR
Mechanistic target of rapamycin
AML
Acute myeloid leukaemia
CML
Chronic myeloid leukaemia
CBL
Cbl proto-oncogene
PTEN
Phosphatase and tension homolog deleted on chromosome 10
DUSP1
Dual-specificity phosphatase 1
NGS
Next-generation sequencing
TERT
Telomerase reverse transcriptase
PRMT5
Protein arginine methyltransferase 5
LSD1
Lysine demethylase 1A

Introduction

The classical Philadelphia chromosome negative myeloproliferative neoplasms (MPN) are rare clonal neoplastic disorders of the myeloid haematopoietic stem cells (HSC). These disorders are classified into polycythaemia vera (PV) with a predominance of excessive red cell production, essential thrombocythaemia (ET) with a predominance of excessive platelet production and primary myelofibrosis (PMF) with excessive bone marrow scarring and fibrosis. The updated WHO classification also includes pre-fibrotic myelofibrosis (Pre-PMF), distinguishing a group of patients with subtle phenotypic differences from ET and a higher rate of progression to myelofibrosis (MF) [1]. Prognosis is highly variable, but in general, MF significantly limits life expectancy in comparison to PV or ET. A small number of individuals progress to blast phase of disease presenting as acute myeloid leukaemia which is frequently refractory to conventional therapy. Figure 1 characterises the distinguishing clinical features commonly observed in each MPN manifestation.
Despite the obvious differences, similarities in bone marrow morphology, a tendency to arterial and venous thrombus formation and a tendency to secondary myelofibrotic or leukaemic phase transformation links these disorders clinically. These phenotypic similarities had been identified well in advance of the discovery of activating mutations in the JAK2, MPL and CALR genes and the demonstration of activated Janus Kinase (JAK)/signal transducer and activator (STAT) signalling pathway signalling which has helped to further define these disorders [28]. JAK2 V617F mutations are detectable in approximately 95% of PV patients with JAK2 exon 12 mutations present in virtually all remaining PV cases [35]. The JAK2 V617F mutation is present in approximately 50% of ET and PMF patients with CALR and MPL mutations present in most remaining patients [8, 9]. “Triple negative” patients make up a small percentage of ET and PMF cases. Diagnostic criteria now place a heavy emphasis on demonstrating the presence of these genetic changes to confirm a suspected diagnosis as is demonstrated in Table 1 [10].
Table 1
A summary of the 2016 World Health Organisation (WHO) diagnostic criteria
Disease
Major criteria
Minor criteria
Diagnosis
Reference
Polycythaemia vera
1. Hb > 16.5 g/dL (M) 16.0 g/dL (F) or, haematocrit > 49% (M) 48% (Female) or, increased red cell mass (> 125%)a
2. Bone marrow biopsy with characteristic morphology
3. Presence of JAK2 V617F or JAK2 exon 12 mutation
1. Serum erythropoietin level below normal
All 3 major criteria or, Top 2 major and the minor criteria
[1]
Essential Thrombocythaemia
1. Platelet count > 450 × 109/L
2. Bone marrow biopsy with characteristic morphology
3. Not meeting criteria for another MPN/myeloid neoplasm
4. Presence of JAK2, CALR, or MPL
1. Presence of another clonal marker or absence of evidence for a reactive thrombocytosis
All 4 major criteria or, Top 3 major and the minor criteria
[1]
Pre-fibrotic primary myelofibrosis
1. Bone marrow biopsy with characteristic morphology without reticulin fibrosis > grade 1
2. Not meeting criteria for another MPN/myeloid neoplasm
3. Presence of JAK2, CALR or MPL mutation, or, another clonal marker, or, no identifiable cause of reactive fibrosis
1. Anaemia not caused by a co-morbid condition
2. Leukocytosis ≥ 11 × 109/L
3. Palpable Splenomegaly
4. Lactate dehydrogenase above upper limit of normal
All 3 major criteria plus at least one minor criteria (confirmed on two separate measurements)
[1]
Myelofibrosis
1. Bone marrow biopsy with characteristic morphology with either reticulin or collagen fibrosis grades 2 or 3
2. Not meeting criteria for another MPN/myeloid neoplasm
3. Presence of JAK2, CALR or MPL mutation, or, another clonal marker, or, no identifiable cause of reactive fibrosis
1. Anaemia not caused by a co-morbid condition
2. Leukocytosis ≥ 11 × 109/L
3. Palpable Splenomegaly
4. Lactate dehydrogenase above upper limit of normal
5. Leukoerythroblastosis
All 3 major criteria plus at least one minor criteria (confirmed on two separate measurements)
[1]
Blast phase MPN
Patients with MPN and peripheral or bone marrow myeloid blast percentage > 20%
 
Major criteria met
[11]
A summary of the 2016 WHO criteria for the distinct clinical entities of PV, ET, Pre-PMF, PMF. Consensus diagnostic criteria for blast phase transformation are included. A minority of patients with a diagnosis of a MPN disorder may not meet diagnostic criteria for any of these distinct entities of any other myeloid neoplasm and may be classed as MPN unclassifiable [1]
aBritish Society of Haematology guidelines propose higher haematocrit levels of > 52% in males and > 48% in females [12]
With modern diagnostic approaches, it is increasingly clear that the desire for neat classification is often complicated by a spectrum of phenotypic presentation and genetic heterogeneity. A range of co-occurring somatic mutations are frequently detectable at significant variant allele frequencies alongside the JAK2, MPL or CALR mutations [1315]. Complex clonal hierarchies have been observed within MPN patients [16]. These frequently observed co-occurring mutations include genes encoding epigenetic modifiers, transcriptional regulators and mRNA splicing machinery. They are not exclusive to MPN but rather occur across the spectrum of myeloid malignancy [17, 18]. Further complicating the picture, many of these mutations, including JAK2 V617F, are increasingly detected in individuals as we age yet with the majority demonstrating no haematological disease phenotype [19]. This clonal haematopoiesis of indeterminate potential (CHIP) unsurprisingly pre-disposes to the development of myeloid malignancy but appears to also be sufficient to significantly increase cardiovascular risk [1921].
Current therapeutic approaches in MPN aim to limit the risk of thrombosis with antiplatelet agents, anticoagulants, therapeutic venesection and cytoreductive therapies including hydroxycarbamide and interferon-alpha all with established benefits in specific circumstances [2224]. JAK inhibitors including ruxolitinib have provided an additional targeted therapy with clear symptomatic and clinical benefits but limited disease-modifying activity [2528]. Haematopoietic stem cell transplantation offers the only opportunity for cure but is rarely suitable due to the significant toxicities and mortality risk associated. It is generally reserved for younger, fitter individuals with higher-risk myelofibrosis or blast phase disease, and outcomes remain poor in these populations [29, 30].
The clinical and genetic similarities and differences in this heterogeneous population offer the opportunity to characterise and elucidate the contributions of various genetic and epigenetic factors to disease pathogenesis. Enhanced availability of such genetic and phenotypic data has meanwhile provided the opportunity to generate individualised prognosis probabilities to MPN patients [15]. This review of current understanding of the molecular pathogenesis of MPN will focus on the role of JAK/STAT and other intracellular signalling pathways, acquired and inherited genetic contributors to disease, epigenetic dysregulation and cellular context and will highlight areas for future research considerations.

JAK/STAT signalling in MPN

The evolutionarily conserved JAK/STAT pathway exists as a critical intracellular mediator of extracellular protein–cell surface receptor interactions. Four genes for JAK proteins exist in the human genome (JAK1, JAK2, JAK3 and TYK2) interacting with seven STAT proteins to mediate differential effects on transcriptional control. JAK proteins associate with numerous cell surface receptors, and thus, JAK/STAT signalling cascades are activated in many metabolic functions, immune cell functions and control of haematopoiesis [31]. Effective control of erythropoiesis, megakaryopoiesis and granulopoiesis is essential to respond to changing physiological demands throughout life and in times of physiological stress or infection. Hormonal signalling with erythropoietin (EPO), thrombopoietin (TPO) and granulocyte-colony stimulating factor (GCSF) drive enhanced production of red cells, platelets and granulocytes through the respective receptors. Activation of the erythropoietin receptor (EPOR), thrombopoietin receptor (MPL) and granulocyte-colony stimulating factor receptor (G-CSFR) then activate JAK/STAT pathways to drive proliferation. JAK/STAT signalling is heavily interconnected with many core cancer signalling pathways and cellular functions including metabolism, cell cycle control, apoptosis, DNA damage response and direct or indirect transcriptional control [32]. Abnormal JAK/STAT signalling has been implicated across a range of myeloid, B and T lymphoid haematological malignancies and solid tumours [3336].

Driver mutations activating JAK/STAT signalling

In MPN, constitutive activation of the JAK/STAT signalling pathway is a critical mediator of the pathogenesis. A point mutation in exon 14 of the JAK2 gene results in a single amino acid (valine to phenylalanine) substitution and conformational change in the JH2 pseudo-kinase domain of JAK2. This results in constitutive tyrosine phosphorylation activity by disrupting the normal inhibitory action of the JH2 domain. This JAK2 V617F transcript therefore drives constitutive activation of the JAK/STAT pathway in the absence of EPOR, MPL or G-CSFR ligand binding. This mutation is detected in 95% of PV patients and approximately 50% of ET and PMF patients [5, 37, 38]. The resulting disease phenotype is subject to several additional variables including homo or heterozygosity of the JAK2 V617F, variant allele frequency, additional co-operating mutations and/or external influences including iron deficiency. The remaining 5% of PV patients are almost entirely accounted for by mutations in exon 12 of the JAK2 gene through predominant activation of EPOR signalling pathways driving an erythrocytosis [4]. These JAK2 exon 12 mutations have not been seen in PMF or ET.
The majority of JAK2 V617F negative ET and PMF patients have detectable mutations in MPL or CALR [7, 8, 38]. These mutations drive disease through activation of MPL receptor and subsequent downstream JAK/STAT activation. Generally, the driver mutations occur in a mutually exclusive manner. A number of activating MPL mutations have been identified in the transmembrane domain encoded by exon 10 in both familial and sporadic forms of MPN [8, 39]. These gains of function mutations including W515L and S505N constitutively activate downstream JAK/STAT signalling by removing an inhibitory element and inducing dimerization, respectively [39, 40]. Additional activating or augmenting mutations identified in MPL transmembrane domain by deep mutational scanning screens have also been previously identified in MPN patients demonstrating an inherent susceptibility in the MPL gene [41].
Calreticulin (CALR) is an endoplasmic reticulum chaperone protein which in mutant form will interact directly with the TPO receptor MPL driving TPO independent activation. Numerous mutations in the CALR gene have been described with the majority classed as type 1 resulting from a 52-bp deletion in exon 9 or type 2 with a 5-bp insertion in exon 9. The subsequent activation of MPL and downstream JAK/STAT signalling is dependent on a positively charged C terminus resulting from a frameshift in exon 9 and enabling the CALR lectin binding domain to maintain a stable interaction with MPL [42]. There is a recognised distinct clinical phenotype between patients with detectable type 1 and type 2 CALR mutations in both patients and murine models. Type 1 deletions are significantly over-represented in myelofibrosis and produce a more pronounced MPN phenotype in mice [43].
A small minority of ET and PMF patients fall into the “triple negative” category with no detectable mutation in JAK2, MPL or CALR. The incorporation of additional genetic tests into the work-up of these patients has challenged the notion of true triple negativity in MPN. Retrospective evaluations demonstrate that some of these patients may have other genetic markers of clonality detectable or subsequently test positive for a driver mutation. A few patients remain with characteristic phenotypic and morphological features and no detectable genetic abnormalities [44].
Frequently, these JAK/STAT activating driver mutations are the only detected genetic abnormality in MPN patients with one large study reporting this in 45% of patients using a targeted myeloid next-generation sequencing (NGS) panel [15]. The presence of JAK2, CALR or MPL mutations alone are sufficient to generate an MPN phenotype, albeit polyclonal in nature, in murine models [45]. One study of gene expression profiling by microarray analysis demonstrated features of activated JAK/STAT signalling in MPN patients regardless of clinical phenotype or mutational status [2]. Ruxolitinib, a JAK1/2 inhibitor, is effective across all mutant driver backgrounds [46]. It is therefore clear that constitutively activated JAK/STAT signalling is a key feature of disease pathogenesis.
The presence of the JAK2 V617F mutation is also evidently more than a simple switch for excess proliferation. There is significant heterogeneity in terms of the variant allele frequency (VAF), and therefore, clonal size measured in peripheral blood granulocytes is detectable across the MPN patient population [47]. Patients with homozygosity or high VAF tend towards a PV phenotype rather than ET [48, 49]. And yet, there are many PV patients with a low VAF and similarly ET patients with high VAF. A rare subgroup of patients presenting with splanchnic vein thrombosis (SVT) frequently exhibit normal or near normal blood counts with a small JAK2 V617F clone detectable [50]. The JAK2 V617F mutation is also detectable in individuals with CHIP who exhibit no MPN phenotype. Despite the normal blood counts, these individuals have been observed to have a significantly increased risk of cardiovascular disease [20]. Paradoxically, JAK2 V617F positive ET cases are significantly more likely to have thrombotic complications despite lower platelet counts than their CALR mutated comparators [51]. One suggestion in these cases is that the mutant JAK2 results in qualitative changes enhancing the pro-thrombotic phenotype. There is evidence to suggest enhancing endothelial–erythrocyte interactions via activation of Lu/BCAM or enhanced neutrophil extracellular trap formation [52, 53]. A recent study has demonstrated that in patients with a low VAF (< 20%) and therefore small mutant clones within the peripheral blood granulocytes, there is significant heterogeneity of clone size within the reticulocytes and platelets measured using a quantitative polymerase chain reaction established to measure JAK2 V617F RNA. In many cases, the clonal sizes in the reticulocytes and platelet populations were much higher than the granulocytes perhaps from late expansion of erythroid and platelet precursors [54]. We may not therefore have been accurately assessing clonal size in many of our “low allele” patients, and granulocyte VAF may underestimate the qualitative effect of the mutant JAK2 presence.

STAT proteins in MPN

The complexity of STAT signalling has identified roles for STAT proteins in oncogenesis and tumour suppression, occasionally with conflicting roles in the same tumour type [55]. Investigations of STAT protein recruitment, phosphorylation and ultimately dominance of transcriptional control in MPN have focused on the role of STAT5, STAT1 and STAT3. STAT5 activation was identified early as a key mediator of MPN pathogenesis with experimental work able to demonstrate a dependence on STAT5 to generate a MPN phenotype [56, 57]. STAT5 transcriptional activity is upregulated by the expression of JAK2 V617F in cell lines [37]. In analysis of ex vivo colony forming assays from ET and PV patients, transcriptional analysis demonstrated an enrichment of STAT5A targets with nuclear phosphorylation of STAT5A identified in JAK2 V617F position colonies from both ET and PV patients but not wild type colonies whilst a recent phospho-proteomics approach identified STAT5 and STAT3 as differentially phosphorylated in JAK2 V617F mouse haematopoietic cells [58, 59]. Conditional expression of a null STAT5a/b gene resulted in a failure of a JAK2 V617F mouse model to develop polycythaemia but did not abrogate the risk of myelofibrosis [60]. In an alternative JAK2 V617F mouse model STAT5 deletion resulted in loss of the PV phenotype which could be rescued by STAT5 re-expression [61]. Taken together, STAT5 signalling appears to play a key mediator role in generating the PV phenotype.
Identification of enhanced enrichment of Interferon-gamma target genes in ET in comparison to PV highlighted STAT1 signalling as a potential mediator of differential molecular response between the two disorders. In keeping with this, phosphorylated STAT1 was detectable in ET patients and not PV patients ex vivo [58]. Murine models subsequently demonstrated the loss of STAT1 producing a phenotype favouring erythropoiesis at the expense of megakaryopoiesis and with a reduction in fibrosis [62]. STAT1 phosphorylation at serine 727 may drive proliferation and restrain megakaryocyte differentiation in blast phase MPN. Blocking this serine phosphorylation resulted in different functional outcomes in comparison to blocking tyrosine phosphorylation with ruxolitinib [63]. These results have suggested that an altered balance between STAT1 and STAT5 signalling may be one possible cell intrinsic mechanism of phenotype determination. However, erythroblasts harbouring the JAK2 exon 12 mutations which drive erythrocytosis and are only associated with PV have a transcriptional profile which cannot be distinguished from JAK2 V617F positive ET erythroblasts with no differential in STAT1 activation [64].
Constitutive activation of STAT3 was identified in a number of MPN patients from granulocytes in advance of the discovery of JAK2 V617F, whilst higher levels of STAT3 tyrosine phosphorylation have been identified in JAK2 V617F positive individuals and as a result of JAK2 V617F expression in murine models [6567]. A murine model of STAT3 hyperactivity induced by deletion of suppressor of cytokine signalling (SOCS) 3 spontaneously develops myeloproliferative and lymphoproliferative pathology with serine phosphorylation of STAT3 critical [68]. STAT3 deletion results in an altered MPN phenotype in JAK2 V617F mice with reduced neutrophilia and enhanced thrombocytosis present [69].
The canonical tyrosine phosphorylation, nuclear translocation and transcription factor activity are only one role of the STAT proteins. Unphosphorylated STAT proteins appear to have important roles in the normal maintenance of the epigenome in HSC and progenitor cells [70]. As mentioned, serine phosphorylation of STATs may affect transcriptional control and the methylation of STAT3 by Enhancer of Zeste 2 (EZH2) identified as a mediator of transcriptional control in other solid tumours requires investigation in MPN to fully understand the dynamics at play between STAT proteins and final phenotypes [63, 68, 71]. Therefore, as with all aspects of molecular biology in MPN, differential STAT1/STAT3/STAT5 mobilisation is likely to tell only part of the story.

Non-JAK/STAT signalling in MPN

Outside of JAK/STAT signalling, it is increasingly evident that activation of STAT independent phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signalling pathways is important in the disease pathogenesis of JAK2 V617F positive MPN [37]. CALR mutations have also been observed to activate MAPK signalling pathways albeit with a differential expression profile evident in comparison to JAK2 V617F [72, 73]. There is evidence that either or both signalling of these pathways may remain active in the presence of the JAK inhibitor ruxolitinib. Murine MPN models with JAK2 V617F and MPL W515L drivers have demonstrated persistent activation of the MAPK mediated by platelet-derived growth factor receptor alpha (PDGFRα) in vivo in the setting of ruxolitinib exposure. Combined JAK/MEK inhibition in this model was more efficacious [74]. Persisting phosphorylation of serine residues on STAT5B has been observed in the JAK2 V617F positive SET2 cell line model dependent on PI3K/mechanistic target of rapamycin (mTOR) activation with enhanced efficacy again observed when combining JAK inhibition with either PI3K or mTOR inhibitors [75]. Early phase trials of everolimus, an mTOR inhibitor, in MF patients have previously demonstrated some clinical benefit [76]. Activated MAPK, PI3K/AKT and JAK/STAT signalling are also observed in numerous myeloid malignant phenotypes including acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML), atypical CML, chronic myelomonocytic leukaemia and juvenile myelomonocytic leukaemia [77]. Clearly, improving our understanding of the intricacies of dysregulated signalling cascade activation in MPN patients and the effect of treatment may offer some opportunity to manipulate these processes for more efficacious treatments in select individuals.

Negative regulation of intracellular signalling in MPN

In normal health, intracellular signalling cascades are closely regulated positively by ligand binding to cell surface receptors and negatively by a number of intracellular components acting predominantly as phosphatases or targeting proteins for ubiquitination and subsequent proteasome-mediated degradation. The SOCS proteins are critical negative regulators for JAK/STAT signalling. SOCS3 is a key negative regulator of EPO signalling and therefore erythropoiesis through its interaction with JAK2 and EPOR. There is conflicting evidence on the role of SOCS proteins in the regulation of mutant JAK2. One study has demonstrated that in the presence of the JAK2 V617F mutant, SOCS3 undergoes tyrosine phosphorylation, losing the ability to negatively regulate JAK2 and may in fact potentiate the effect by stabilising the mutant JAK2 [78]. A more recent investigation has demonstrated that mutant JAK2 exhibits comparable inhibition by SOCS3 in in vitro kinase assays [79]. Knockdown of SOCS3 in JAK2 V617F expressing Ba/F3 cells further enhances phosphorylation of STAT3, STAT5 and extracellular signal-regulated kinase 1/2 (ERK1/2) suggesting a tumour suppressor role for SOCS3 in the mutant state [80]. One small study has suggested aberrant regulation of SOCS3 expression in PMF with observation that SOCS3 promoter regions were methylated in 32% of PMF patients but not ET or PV patients [81]. The JAK inhibitor ruxolitinib can clearly reduce the expression of SOCS3 in a number of cellular contexts outside of MPN [82, 83] and we and others have shown that RNA sequencing data confirm reduced expression in MPN cell line models [84, 85]. Histone deacetylase inhibition may upregulate SOCS3 expression in MPN [8688].
CBL encodes the E3 ubiquitin ligase Cbl proto-oncogene (CBL) and is an important regulator of many tyrosine kinases. CBL mutations have been identified in many malignancies and at a low but significant level in MPN [15]. These mutations drive myeloproliferation and result in activated JAK/STAT and PI3K/AKT signalling in murine models [89]. In addition, loss of specific phosphatase activity of phosphatase and tension homolog deleted on chromosome 10 (PTEN), a regulator of PI3K/AKT signalling can drive an MPN phenotype [90]. Conversely, higher expression of dual-specificity phosphatase 1 (DUSP1) may be required in the JAK2 V617F context to protect the cells by moderating JNK/P38 MAPK signalling and protecting against accumulating DNA damage [91].
Figure 2 highlights active intracellular signalling cascades identified in MPN and examples of intracellular negative feedback mechanisms. Understanding the complexities of this intrinsic regulation of intracellular signalling in vivo in the heterogenous cellular contexts of MPN patients may help to improve our understanding of pathogenesis and treatment options.

Co-occurring mutations and clonal evolution in MPN

With the increasing availability of genetic sequencing in the research and now routine diagnostic setting, the genetic heterogeneity of the MPN group has become increasing clear. A number of pathological mutations are frequently and recurrently identified in MPN patients across a range of genes affecting epigenetic regulation, transcriptional control and splicing machine. These genes commonly include ASXL1, DNMT3A and TET2 at relatively high frequencies in upwards of 5% of patient samples across the MPN spectrum. Others including CBL, SF3B1, EZH2, TP53, SRSF2, USAF1 and IDH1/2 are identified in fewer than 2% of patients in large studies [15]. These mutations are regularly identified in other individuals across the range of myeloid malignancy and in the CHIP population [9294]. These mutations which have been well characterised represent only a small proportion of the overall mutational burden seen as aging progresses in MPN patients when whole genome sequencing approaches are employed [95].

Prognostic implications

As larger cohorts of individuals continue to be analysed it is clear that the presence of particular mutations is associated both with the disease phenotype and ultimate prognosis. Chronic phase PV and ET patients are significantly more likely to have no additional mutations when compared to PMF patients. The occurrence of particular genes has been significantly associated with disease phenotype. For example, NFE2 mutations correlate with a PV phenotype, spliceosome component mutants and epigenetic regulators EZH2 and ASXL1 are more frequently observed in PMF, whilst other genes including IKZF1 are almost exclusively observed in blast phase disease [15, 96, 97]. Early studies demonstrated clear prognostic implications of particular co-operating mutations. In a cohort of 483 European PMF patients with validation in an American group, ASXL1, EZH2 and SRSF2 mutations independently predicted shortened survival. IDH1/2 or SFSF2 mutations were associated with leukaemic progression in these cohorts with TP53 strongly associated in another cohort [98, 99]. The negative prognostic impact of ASXL1 appears to be evident when present with another high risk mutation but not solely on its own [100]. In a large study of 2035 patients, eight genomic subgroups were identified within the MPN spectrum, each reflecting a different proportion of PV, ET and PMF patients with variable risks of leukaemic or fibrotic transformation and overall survival. Genetic factors including TET2, SRSF2 and ASXL1 mutations contributed to over 50% of the risk factors for fibrotic transformation from PV or ET using a predictive modelling approach. Similarly, over a third of the risk of leukaemic transformation was attributable to genetic factors including TP53 mutation [15]. Figure 3 demonstrates mutated genes identified as contributors to leukaemic and fibrotic transformation from this predictive modelling approach integrated with results from multivariate analysis approaches in other large cohorts [15, 98, 101, 102]. Individualised prognostic evaluations can now be achieved at diagnosis based on the incorporation of genetic and clinical information, and molecular data are now routinely incorporated into prognostic scoring systems including MIPPS70 + and GIPSS [101, 103].

Clonal structure and evolution

The variant allele frequency reported by next-generation sequencing (NGS) myeloid panels provides a rough estimate of clonal size and dominance, reflecting both the number of affected cells and whether these cells are hetero or homozygous for the mutation of interest. Variant allele frequencies of driver and co-occurring mutations are seldom identical, reflecting a clonal hierarchy comprising dominant and sub-clones with differing genetic abnormalities and resulting competitive advantages. Application of single-cell technologies in myeloproliferative patients has demonstrated complex clonal hierarchies with dominant and sub-clones demonstrating distinctive transcriptomic signatures within individual patients [16]. The clonal complexity is greater in MPN in comparison to CHIP patients but much less than that observed in AML [104].
This complexity reflects clonal evolution over time, occurring as cells acquire additional genetic or epigenetic changes driving further divergence from the cell of origin. This can significantly alter the clonal structure of the disease with smaller sub-clones developing the competitive advantage to establish dominance. Patients progressing to myelofibrosis and AML often demonstrate greater genetic complexity within clones with increasing numbers of mutations detectable. Ultimately, this results in transcriptional and functional changes which are observed in patients cells underlying the progressive disease phenotype [105]. In chronic phase MPN, the rate of acquisition of new mutations is generally considered to be a slow process. Only two additional mutations were observed over the equivalent of greater than 130 patient years in one study [99]. However, this generalisation, like many, does not reflect the significant heterogeneity across the MPN patient spectrum with both acquisition of new clones resulting from new mutations or minor sub-clones establishing dominance observed in patients transforming from chronic phase to blast phase disease [104, 106]. Meanwhile, approximately one-third of PMF individuals receiving the JAK inhibitor ruxolitinib demonstrated clonal evolution on therapy acquiring new mutations [107]. Perhaps as our repositories of sequential pre- and post-MPN progression sequencing data increases, we may understand the genetic, epigenetic and extrinsic factors explaining the propensity for clonal evolution in a number of individuals.
Recent comprehensive genomic profiling with a whole genome sequencing approach and phylogenetic reconstruction based on the numerous somatic mutations occurring during life have provided evidence that acquisition of both driver and common co-occurring mutations may occur many decades prior to disease presentation. In a number of cases, the acquisition of JAK2 V617F or DNMT3A mutations were predicted to have occurred in utero. This approach reveals a significant variability in the rates of clonal expansion, dependent on the mutational landscape of the clone [95]. A concept of mutational compatibility can be theorised from much of the genetic data available in myeloid malignancy to date. A number of individual mutations are frequently observed together, whilst others appear strictly mutually exclusive of each other [99]. In some cases, this mutational compatibility clearly drives a competitive advantage for the cell such as that demonstrated by FLT3-ITD and NPM1 mutations in AML, rapidly establishing a clonal dominance and driving a clear phenotype [104]. In MPN, this mutational compatibility is more subtle but evident from the high frequencies of many mutations including TET2, ASXL1 and DNMT3A occurring alongside drivers observed across the MPN patient spectrum. It is interesting that many of these co-occurring mutations have been observed to be the initiating mutation prior to the acquisition of one of the classical driver mutations or may occur subsequently to it [108, 109]. This bi-directional co-occurrence suggests more than a simple random coincidence in the acquisition of these mutations.

Mutational order

Acquisition order also appears to be a critical determinant of the resulting disease phenotype. Order of acquisition can be inferred from colony assays or single-cell studies allowing genotyping of the clonal structure. In the case of TET2, it is evident that HSCs with this mutation are transcriptionally altered, driving expansion of the clone within the HSC compartment but with limited excess production of terminally differentiated megakaryocytes or erythrocytes until a second hit with the JAK2 V617F mutation occurs. In contrast, JAK2 V617F first cells behave in precisely the opposite manner [108]. Consistent with these findings, loss of TET2 has been observed to promote clonal expansion and self-renewal of HSCs in murine models [110, 111]. TET2-first individuals tend towards an ET phenotype with higher numbers of single mutant cells in the HSC compartment. In contrast, TET2-second individuals show a predominance of double mutant cells in the HSC compartment with a tendency to PV [108]. Figure 4 demonstrates this pictorially. Similarly, loss of function DNMT3A mutations appears to enhance the self-renewal of HSCs and DNMT3A null HSCs are serially transplantable to a significantly enhanced degree in comparison to normal HSCs [112, 113]. Loss of function of another epigenetic regulator EZH2 has also been observed to enhance self-renewal of the JAK2 V617F positive HSC in a murine model [114]. JAK2 V617F only clones in contrast do not promote an MPN disease phenotype on serial transplantation [111]. Early observations that JAK2 V617F positive individuals could transform to JAK2 V671F negative blast phase disease appear to highlight the ability of pre-JAK2 clone with self-renewing capacity in the stem compartment to later establish dominance over the JAK2 clone [115]. Recent advances have moved away from a traditional model of haematopoiesis in which precursors progress through a series of discrete intermediate stages with decreasing differential potential at each stage to a continuum where the boundaries between stem and progenitor cells are increasingly blurred [116]. The epigenetic regulation of transcriptional control affected by loss of normal TET2 and DNMT3A may allow HSC to access alternative transcriptional programmes, shift along this continuum and promote self-renewal. It is interesting that in CHIP individuals, TET2 and DNMT3A clonal fractions are approximately 25% and 14% smaller than ASXL1 clonal fractions suggesting a differential ability to promote clonal expansion [117]. In any instance, it is clear that the field in which the JAK2 mutation is sown is very different in the context of an earlier mutation. Whether these TET2 or DNMT3A mutant first cells are primed for JAK2 mutagenesis or the subsequent frequency of JAK2 V617F mutations simply reflects random chance and high turnover is not clear at this stage.

Cell of origin

Further cellular context is provided by the cell of origin and ultimate differentiation bias of this cell. Detection of driver mutations in multiple different mature cell compartments including erythroid, megakaryocyte, granulocyte, monocyte and in some cases lymphoid cells provide evidence of an initiating cell with multipotency implicating the HSC population [118]. In keeping with this, JAK2 and CALR mutants are detectable within CD34+, CD38- HSC and CD34+, CD38+ progenitor populations [119]. A murine model incorporating a humanised ossicle niche has demonstrated engraftment of myelofibrosis from the CD34+, CD38− HSC population only, with no engraftment in the CD34+, CD38+ progenitor population, suggesting that the initiating cell resides within this HSC population [120]. A knock-in JAK2 V617F model has also demonstrated the critical role of the HSC population in initiation and maintenance of the polycythaemia phenotype [121]. Therefore, involvement of the multi-potent HSC population appears to be important.
Yet, multipotency of these cells in experimental conditions may not reflect the true balances and equilibriums at play in a complex multi-factorial environment such as the bone marrow. In fact, some of these cells appear to have an in-built differentiation bias from a very early position in the haematopoietic hierarchy. In mouse models, platelet biased HSC populations have been identified at the apex of the hierarchy, with enhanced capability of short- and stable long-term platelet production without loss of self-renewal ability and retain the ability in a proportionally limited manner give rise to lymphoid biased HSCs [122]. It is not clear if HSC exist with other lineage bias [123]. Application of single-cell technologies has demonstrated this megakaryocyte differentiation bias in HSCs in myelofibrosis patients with the majority of megakaryocyte progenitors transcriptionally distinct from normal, with proliferative and fibrosis enhancing gene signatures evident [124]. Similarly, single-cell studies in JAK2 V617F positive ET patients have demonstrated an expanded population of megakaryocyte primed HSCs with increased sensitivity to interferon alpha signalling [125]. These findings point towards an inherent bias in phenotype, at least towards ET or PMF, depending on the bias on the initiating stem cell acquiring the first mutation.
The interaction between the malignant clone and stromal cells by means of pro-inflammatory and cytokine signalling is a key determinant in the formation of a fibrotic phenotype. Myofibroblasts responsible for the deposition of collagen are derived from multipotent mesenchymal progenitor stromal cells [126128]. These myofibroblasts evolve over time, undergoing a maldifferentiation process to lose ability to support haematopoietic tissue and contribute to marrow fibrosis. The presence of the malignant haematopoietic clone and resulting inflammatory milieu provide a continuous drive for myofibroblast differentiation and vicious cycle of fibrosis [128]. Removing Gli1+ mesenchymal stromal cells or interfering with PDGFRA signalling in these cells can ameliorate the fibrotic phenotype [126, 127].

Predisposing factors

A number of risk factors for the development of MPN have been identified. Individuals with CHIP have an enhanced risk of myeloid malignancy [19]. Although these patients are distinguished by the absence of a myeloid neoplasm phenotype, large studies have demonstrated subtle alterations in the full blood counts of these individuals with an increased red cell distribution width and modest increase in white cells and decrease in haemoglobin [117]. More than 75% of mutations in CHIP are accounted for by ASXL1, TET2 and DNMT3A, all evident in greater than 5% of MPN cases, whilst the next five most commonly affected genes JAK2, PPM1D, SRSF2, SF3B1 and TP53 are all identified at frequencies of around 2% in MPN with the exception of JAK2, an MPN driver very commonly identified as discussed [15, 117]. This highlights the similarity between these two groups. Estimates of the prevalence of individuals with detectable JAK2 V617F mutations falling into the CHIP category suggest significantly more than demonstrate an MPN phenotype [129]. Therefore, the risk of transformation to MPN even with the presence of a driver mutation is not absolute. However, as noted, similarly to the overt MPN group, these JAK2 V617F positive CHIP individuals have a significantly increased risk of cardiovascular disease [20]. Evidence to base accurate discrimination between patients with clonal haematopoiesis and a low or high risk of transformation to MPN on the basis of genetic or clinical risk factors is less clear than for those with a high risk of leukaemic transformation, and further investigation is required to understand those at risk.
Familial inheritance and germline predisposition to myeloid malignancy has become an important focus of research in the era of widespread genomic analysis [130]. In fact, the heritable risk of MPN is much more significant than evident in many other cancers and higher than for other myeloid malignancy with a ratio of almost 5 observed to expected cases of MPN in individuals with affected first degree relatives [131]. Another study has suggested prevalence of familial cases at approximately 8% [132]. The commonly observed somatic driver mutations in JAK2 and CALR and MPL W515L are not inherited. Examples of families with a high penetrance germ line mutation driving thrombocytosis including MPL S505N or MPL P106L are very rare, but these should be considered in cases with a strong familial components or paediatric patients [133, 134]. Instead, the familial risk appears to result from the presence of predisposing germline susceptibility factors. The JAK2 46/1 haplotype has been consistently observed to confer a higher risk of acquiring the JAK2 V617F. This is true both for JAK2 V617F positive MPN or CHIP [117, 135]. Similarly, polymorphisms in telomerase reverse transcriptase gene (TERT) have been repeatedly identified as independent risk factors for the development of MPN. TERT functions to ensure telomere stability. Several TERT polymorphisms have been identified as predisposing factors for MPN and are also associated with the development of other solid tumours [136, 137]. In contrast to dyskeratosis congenita, the TERT polymorphisms are associated with telomere lengthening. Increased telomere length has been associated with MPN risk [136]. This extensive genome-wide association study identified a further 15 gene loci in addition to these TERT loci increasing risk of MPN. This included loci within TET2, JAK2, GATA2, ATM, RUNX1 and CHEK2 [136].
Outside of genetic risk factors, the myeloproliferative neoplasms: an in-depth case–control (MOSAICC) study identified a number of potentially modifiable risk factors in the development of MPN. This included childhood household density, low childhood socioeconomic status and a high “pack year” smoking history. Obesity was linked with ET specifically. Alcohol intake was inversely associated with MPN risk [138]. These links may point to a role for inflammation or environmental stressors in modifying the epigenetic risk profile for MPN development. Finally, incidence of PV has traditionally been reported higher in males, whilst the incidence of ET is higher in females. Sex has been observed to be an independent variable for JAK2 V617F allele burden with significantly lower allele burdens reported in women compared to men [139].

Epigenetic dysregulation

Dysregulation of normal epigenetic mechanisms of transcription and translation is increasingly evident in MPN. Activation of the JAK/STAT pathways in response to ligand binding has rapid effect on the chromatin architecture and transcription factor binding profiles [32]. Cytokine-induced changes are different from those induced by chronic constitutive activation of STAT proteins [140]. There is evidence that the histone landscape in MPN is abnormal. These abnormalities can occur even in the absence of any epigenetic modifier mutations. MPL W515L mice demonstrate a differential landscape of H3K27 acetylation [85]. Global levels of H3K9 mono and di-methylation are significantly reduced, mediated by enhanced JMJD1C expression as a result of NFE2 overexpression [141]. The mutant JAK2 V617 protein appears able to directly influence the chromatin landscape in a differential manner and independent of STAT protein interactions. JAK2 V617F can interact and phosphorylate protein arginine methyltransferase 5 (PRMT5), impairing PRMT5 histone methylation. This appears to enhance myeloproliferation [142]. JAK2 can locate to the nucleus and mediate phosphorylation of tyrosine 41 on histone H3 (H3Y41). Enhanced levels of H3Y41 were most abundant in JAK2 V617F containing cell lines. This phosphorylation was reduced by JAK inhibitors and was directly implicated in displacing normal heterochromatin protein 1α [143]. We have recently observed a significant effect of ruxolitinib in the modification of the histone landscape in MPN cell line models and patient samples [84]. In addition, the heterogeneity of histone landscapes will be enhanced by the presence or absence of loss of function mutations in epigenetic modifiers like EZH2 and ASXL1. In JAK2 V617F mice with conditional EZH2 deletion, there is a significant downregulation of the transcriptional repressor H3K27me3 mediated by loss of normal polycomb repressive complex 2 function and upregulation of H3K27 acetylation resulting in the activation of genes associated with PMF pathogenesis [144].
DNA methylation has been observed to be abnormal in MPN. There are also differences between disease phenotypes and during progression to blast phase [145, 146]. Studies of particular genes including SOCS3 and CD18 have suggested differential methylation status in some MPN patients [81, 147]. Commonly mutated regulators of DNA methylation include TET2, DNMT3A and IDH1/2.
As previously described, components of the spliceosome including SF3B1, SRSF2 and USAF1 are observed to be mutated in small numbers of MPN patients, particularly those with myelofibrosis. SF3B1 and JAK2 mutations are commonly observed together in patients with the distinct overlap syndrome and clinical entity MDS/MPN with ringed sideroblasts and thrombocytosis [148]. Mutant JAK2 V617F has been observed to directly phosphorylate a number of components of the splicing machinery differentially from wild type JAK2 in mouse haematopoietic cells. This results in an alteration in JAK2-ERK signalling to maintain the JAK2 V617F clones. JAK2 mutant cells are sensitised to the JAK inhibitor ruxolitinib after inactivation of YBX1, a splicing enzyme [59].

Targeted therapy

As discussed throughout this review, JAK inhibitors, and in particular ruxolitinib, have become a key therapeutic agent in the MPN clinic. They are clearly beneficial in a range of specific MPN patient scenarios with good evidence for spleen volume reduction, haematocrit control and symptom control and some evidence to support a survival benefit in myelofibrosis and with combined hypomethylating agents in blast phase disease [2527, 149]. Initial hopes of a disease modifying effect similar to tyrosine kinase therapy in CML have not materialised with limited reduction in mutant VAF, limited change in marrow fibrosis and often a limited duration of efficacy prior to loss of response. Exploring the nature of this developed resistance to JAK inhibition in detail is a complex and extensive topic beyond the scope of this article. It is interesting to note that further acquired mutations in JAK2 do not appear to be a significant contributor to resistance in patients. There is evidence to support alternative heterodimer formation between JAK2 and JAK1 or TYK1 in MPN cell line models persistently exposed to ruxolitinib and evidence to support recruitment of alternative MAPK signalling bypassing the JAK/STAT pathway as mechanistic explanations of this resistance [150]. The complexity of the genetic changes within the MPN clone may also determine the responsiveness of the cell to ruxolitinib, whilst new somatic mutations driving clonal evolution on therapy and subsequent expansion of new clones has been clearly documented [151, 152].
There is presently significant interest in targeted combination therapies to augment the beneficial effects of JAK inhibition, particularly in myelofibrosis and blast phase disease. Given the complex features of disease pathogenesis, it is not surprising that a range of therapies targeting intracellular signalling cascades, cytokines and epigenetic regulators have been shown to demonstrate some efficacious features in the management of MPN.
Interferon alpha therapy is increasing recognised as a potential disease modifying agent in MPN and therefore should be classed within the targeted therapeutic approaches. There is clear evidence of reductions in the clonal size and longer term “remissions” of disease are possible [153]. Recent single-cell work demonstrated an enhanced sensitivity to interferon treatment in JAK2 V617F positive HSCs from ET patients. Treatment appeared to result in the apoptosis of heterozygous cells whilst establishing quiescence in the homozygous cells [125]. In a murine JAK2 V617F positive model, interferon alpha treatment promoted a shift towards CD41hi expressing HSC population with a megakaryocyte bias and active cell cycling in the JAK2 V617F positive HSCs, ultimately exhausting the mutant clone [154].
The options for novel therapies in MPN have been recently extensively summarised [155]. Table 2 summarises classes of targeted drugs currently under evaluation in MPN divided into categories based on the sections of this review article.
Table 2
Targeted Therapies in MPN
 
Drug class
Drug
Approved/trial
JAK-STAT signalling
JAK inhibition
Ruxolitinib
Approved
Fedratinib
Approved
Momelotinib
Phase III trial (NCT04173494)
Pacritinib
Phase III trials (NCT03165734)
Non-JAK/STAT intracellular signalling
PI3K inhibition
Parsaclisib
Phase III (NCT04551066)
PIM inhibition
PIM447
Phase I (NCT02370706)
Targeted inhibition of mutated proteins
IDH2 inhibition
Enasidenib
Phase II (NCT04281498)
Cell of origin
Interferon-α
Peginterferon-alpha-2A
Approved
Ropeginterferon-alpha-2B
Approveda
Predisposing factors
Telomerase inhibition
Imetelstat
Phase III (NCT04576156)
Epigenetic dysregulation
Hypomethylating agents
Azacitidine
Phase II (NCT01787487)
Decitabine
Phase II (NCT0428187)
Histone deacetylase (HDAc) inhibitor
Panobinostat
Phase I/II (NCT01693601)
Givinostat
Phase II (NCT01761968)
BET inhibitors
CPI-0610
Phase I/II (NCT02158858)
LSD1 inhibitors
IMG-7289 (bomedemstat)
Phase II (NCT03136185)
Other
IMiDs
Thalidomide
Phase II (NCT03069326)
BCL2/BCL-Xl inhibitors
Navitoclax
Phase II (NCT03222609)
MDM2 inhibition
KRT-232
Phase II (NCT03662126)
Aurora kinase inhibition
Alisertib
Phase N/A (NCT02530619)
PD-1 inhibition
Pembrolizumab
Phase II (NCT03065400)
TGF-beta signalling interference
Luspatercept
Phase II (NCT04717414)
Sotatercept
Phase II (NCT01712308)
Anti-CD123
Tagraxofusp
Phase II (NCT02268253)
aEuropean Medicines Agency approval only. FDA approval pending
This table summarises the diversity of targeted therapies approved or undergoing clinical trials investigation in MPN either as single agent or combination therapies separated on the basis of sections of this review. The list is not exhaustive and an example of an active or recently completed clinical trial listed on clinicaltrials.gov platform has been provided for each drug. Other trials may be available

Conclusion

The study of disease provides more than simply a means to alleviating suffering. The insights gained from understanding the molecular pathogenesis of disorders like MPN provide an insight into the phenomenal complexity and simultaneous simplicity with which our cells function. Perhaps most intriguing is the apparent simplicity with which the balance of myeloproliferation is upset and, the relative ease that single mutations in the right cellular context can generate neoplastic clones with an enhanced proliferative drive.
And yet, from the initial discovery of the JAK2 V617F mutation as a key driver in the majority of MPN patients, it is increasing clear that many more subtleties determine the overall disease phenotype, prognosis and whether “disease” develops at all. The presence of additional pathogenic mutations, the order of acquisition, cellular context, germline predisposition factors, the balance of STAT protein signalling alongside PI3K and MAPK signalling, epigenetic dysregulation and extrinsic influences may all affect the ultimate clonal structure, proliferative drive and differentiation capacity of the neoplastic cells. Genetic complexity and heterogeneity across the population and within single individuals provides a significant diagnostic and therapeutic challenge in MPN. As the medical community transitions into an era in which each stage of work-up and treatment of an individual patient can generate large volumes of information on a scale beyond the analytic capacity of single individuals, we will move further away from discrete classification and categorisation of disease towards individualised clinical, genomic and pathological characterisation. The challenge is how we successfully unleash this potential to understand individualised molecular pathogenesis with translation into effective individualised treatments.

Acknowledgements

All figures in the manuscript were created at biorender.com

Declarations

Not applicable.
Not applicable.

Competing interests

GG and KM have no competing interests to declare. MFM has undertaken advisory board work and received speaker fees from Novartis and undertaken advisory board work for Celgene, Incyte and AbbVie.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.CrossRefPubMed Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.CrossRefPubMed
2.
Zurück zum Zitat Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel JP, Brunel JP, Mermel CH, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123(22):e123–33.PubMedPubMedCentralCrossRef Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel JP, Brunel JP, Mermel CH, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123(22):e123–33.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.PubMedCrossRef Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.PubMedCrossRef
4.
Zurück zum Zitat Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68.PubMedPubMedCentralCrossRef Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61.CrossRefPubMed Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61.CrossRefPubMed
6.
Zurück zum Zitat Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.PubMedCrossRef Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.PubMedCrossRef
7.
Zurück zum Zitat Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405.PubMedPubMedCentralCrossRef Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270.PubMedPubMedCentralCrossRef Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. Blood. 2017;130(23):2475–83.PubMedCrossRef Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. Blood. 2017;130(23):2475–83.PubMedCrossRef
10.
Zurück zum Zitat Barbui T, Thiele J, Gisslinger H, Kvasnicka HM, Vannucchi AM, Guglielmelli P, et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J. 2018;8(2):15.PubMedPubMedCentralCrossRef Barbui T, Thiele J, Gisslinger H, Kvasnicka HM, Vannucchi AM, Guglielmelli P, et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J. 2018;8(2):15.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Mascarenhas J, Heaney ML, Najfeld V, Hexner E, Abdel-Wahab O, Rampal R, et al. Proposed criteria for response assessment in patients treated in clinical trials for myeloproliferative neoplasms in blast phase (MPN-BP): formal recommendations from the post-myeloproliferative neoplasm acute myeloid leukemia consortium. Leuk Res. 2012;36(12):1500–4.PubMedPubMedCentralCrossRef Mascarenhas J, Heaney ML, Najfeld V, Hexner E, Abdel-Wahab O, Rampal R, et al. Proposed criteria for response assessment in patients treated in clinical trials for myeloproliferative neoplasms in blast phase (MPN-BP): formal recommendations from the post-myeloproliferative neoplasm acute myeloid leukemia consortium. Leuk Res. 2012;36(12):1500–4.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat McMullin MF, Harrison CN, Ali S, Cargo C, Chen F, Ewing J, et al. A guideline for the diagnosis and management of polycythaemia vera. A British Society for Haematology Guideline. Br J Haematol. 2019;184(2):176–91.PubMedCrossRef McMullin MF, Harrison CN, Ali S, Cargo C, Chen F, Ewing J, et al. A guideline for the diagnosis and management of polycythaemia vera. A British Society for Haematology Guideline. Br J Haematol. 2019;184(2):176–91.PubMedCrossRef
13.
Zurück zum Zitat Tefferi A, Lasho TL, Finke CM, Elala Y, Hanson CA, Ketterling RP, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1(2):105–11.PubMedPubMedCentralCrossRef Tefferi A, Lasho TL, Finke CM, Elala Y, Hanson CA, Ketterling RP, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1(2):105–11.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Tefferi A, Lasho TL, Guglielmelli P, Finke CM, Rotunno G, Elala Y, et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016;1(1):21–30.PubMedPubMedCentralCrossRef Tefferi A, Lasho TL, Guglielmelli P, Finke CM, Rotunno G, Elala Y, et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016;1(1):21–30.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379(15):1416–30.PubMedPubMedCentralCrossRef Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379(15):1416–30.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Rodriguez-Meira A, Buck G, Clark SA, Povinelli BJ, Alcolea V, Louka E, et al. Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing. Mol Cell. 2019;73(6):1292-305.e8.PubMedPubMedCentralCrossRef Rodriguez-Meira A, Buck G, Clark SA, Povinelli BJ, Alcolea V, Louka E, et al. Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing. Mol Cell. 2019;73(6):1292-305.e8.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21.PubMedPubMedCentralCrossRef Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Zoi K, Cross NC. Molecular pathogenesis of atypical CML, CMML and MDS/MPN-unclassifiable. Int J Hematol. 2015;101(3):229–42.PubMedCrossRef Zoi K, Cross NC. Molecular pathogenesis of atypical CML, CMML and MDS/MPN-unclassifiable. Int J Hematol. 2015;101(3):229–42.PubMedCrossRef
19.
Zurück zum Zitat Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.PubMedPubMedCentralCrossRef Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377(2):111–21.PubMedPubMedCentralCrossRef Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377(2):111–21.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Jaiswal S, Libby P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat Rev Cardiol. 2020;17(3):137–44.PubMedCrossRef Jaiswal S, Libby P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat Rev Cardiol. 2020;17(3):137–44.PubMedCrossRef
22.
Zurück zum Zitat Landolfi R, Marchioli R, Kutti J, Gisslinger H, Tognoni G, Patrono C, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350(2):114–24.PubMedCrossRef Landolfi R, Marchioli R, Kutti J, Gisslinger H, Tognoni G, Patrono C, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350(2):114–24.PubMedCrossRef
23.
Zurück zum Zitat Marchioli R, Finazzi G, Specchia G, Masciulli A, Mennitto MR, Barbui T. The CYTO-PV: a large-scale trial testing the intensity of CYTOreductive therapy to prevent cardiovascular events in patients with polycythemia vera. Thrombosis. 2011;2011:794240.PubMedPubMedCentralCrossRef Marchioli R, Finazzi G, Specchia G, Masciulli A, Mennitto MR, Barbui T. The CYTO-PV: a large-scale trial testing the intensity of CYTOreductive therapy to prevent cardiovascular events in patients with polycythemia vera. Thrombosis. 2011;2011:794240.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7(3):e196–208.PubMedCrossRef Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7(3):e196–208.PubMedCrossRef
25.
Zurück zum Zitat Harrison CN, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016;30(8):1701–7.PubMedPubMedCentralCrossRef Harrison CN, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016;30(8):1701–7.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Griesshammer M, Saydam G, Palandri F, Benevolo G, Egyed M, Callum J, et al. Ruxolitinib for the treatment of inadequately controlled polycythemia vera without splenomegaly: 80-week follow-up from the RESPONSE-2 trial. Ann Hematol. 2018;97:1591–600. PubMedPubMedCentralCrossRef Griesshammer M, Saydam G, Palandri F, Benevolo G, Egyed M, Callum J, et al. Ruxolitinib for the treatment of inadequately controlled polycythemia vera without splenomegaly: 80-week follow-up from the RESPONSE-2 trial. Ann Hematol. 2018;97:1591–600. PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366(9):799–807.PubMedPubMedCentralCrossRef Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366(9):799–807.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372(5):426–35.PubMedPubMedCentralCrossRef Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372(5):426–35.PubMedPubMedCentralCrossRef
29.
30.
Zurück zum Zitat Gupta V, Kennedy JA, Capo-Chichi JM, Kim S, Hu ZH, Alyea EP, et al. Genetic factors rather than blast reduction determine outcomes of allogeneic HCT in BCR-ABL-negative MPN in blast phase. Blood Adv. 2020;4(21):5562–73.PubMedPubMedCentralCrossRef Gupta V, Kennedy JA, Capo-Chichi JM, Kim S, Hu ZH, Alyea EP, et al. Genetic factors rather than blast reduction determine outcomes of allogeneic HCT in BCR-ABL-negative MPN in blast phase. Blood Adv. 2020;4(21):5562–73.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: rationale, progress, and caution. Pharmacol Rev. 2020;72(2):486–526.PubMedPubMedCentralCrossRef Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: rationale, progress, and caution. Pharmacol Rev. 2020;72(2):486–526.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Wingelhofer B, Neubauer HA, Valent P, Han X, Constantinescu SN, Gunning PT, et al. Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia. 2018;32(8):1713–26.PubMedPubMedCentralCrossRef Wingelhofer B, Neubauer HA, Valent P, Han X, Constantinescu SN, Gunning PT, et al. Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia. 2018;32(8):1713–26.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Tiacci E, Ladewig E, Schiavoni G, Penson A, Fortini E, Pettirossi V, et al. Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood. 2018;131(22):2454–65.PubMedPubMedCentralCrossRef Tiacci E, Ladewig E, Schiavoni G, Penson A, Fortini E, Pettirossi V, et al. Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood. 2018;131(22):2454–65.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49(8):1211–8.PubMedPubMedCentralCrossRef Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49(8):1211–8.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Venugopal S, Bar-Natan M, Mascarenhas JO. JAKs to STATs: a tantalizing therapeutic target in acute myeloid leukemia. Blood Rev. 2020;40:100634.PubMedCrossRef Venugopal S, Bar-Natan M, Mascarenhas JO. JAKs to STATs: a tantalizing therapeutic target in acute myeloid leukemia. Blood Rev. 2020;40:100634.PubMedCrossRef
36.
Zurück zum Zitat Yu H, Jove R. The STATs of cancer—new molecular targets come of age. Nat Rev Cancer. 2004;4(2):97–105.PubMedCrossRef Yu H, Jove R. The STATs of cancer—new molecular targets come of age. Nat Rev Cancer. 2004;4(2):97–105.PubMedCrossRef
37.
Zurück zum Zitat James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.PubMedCrossRef James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.PubMedCrossRef
38.
Zurück zum Zitat Mejia-Ochoa M, Acevedo Toro PA, Cardona-Arias JA. Systematization of analytical studies of polycythemia vera, essential thrombocythemia and primary myelofibrosis, and a meta-analysis of the frequency of JAK2, CALR and MPL mutations: 2000–2018. BMC Cancer. 2019;19(1):590.PubMedPubMedCentralCrossRef Mejia-Ochoa M, Acevedo Toro PA, Cardona-Arias JA. Systematization of analytical studies of polycythemia vera, essential thrombocythemia and primary myelofibrosis, and a meta-analysis of the frequency of JAK2, CALR and MPL mutations: 2000–2018. BMC Cancer. 2019;19(1):590.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Ding J, Komatsu H, Iida S, Yano H, Kusumoto S, Inagaki A, et al. The Asn505 mutation of the c-MPL gene, which causes familial essential thrombocythemia, induces autonomous homodimerization of the c-Mpl protein due to strong amino acid polarity. Blood. 2009;114(15):3325–8.PubMedCrossRef Ding J, Komatsu H, Iida S, Yano H, Kusumoto S, Inagaki A, et al. The Asn505 mutation of the c-MPL gene, which causes familial essential thrombocythemia, induces autonomous homodimerization of the c-Mpl protein due to strong amino acid polarity. Blood. 2009;114(15):3325–8.PubMedCrossRef
40.
Zurück zum Zitat Defour JP, Chachoua I, Pecquet C, Constantinescu SN. Oncogenic activation of MPL/thrombopoietin receptor by 17 mutations at W515: implications for myeloproliferative neoplasms. Leukemia. 2016;30(5):1214–6.PubMedCrossRef Defour JP, Chachoua I, Pecquet C, Constantinescu SN. Oncogenic activation of MPL/thrombopoietin receptor by 17 mutations at W515: implications for myeloproliferative neoplasms. Leukemia. 2016;30(5):1214–6.PubMedCrossRef
41.
Zurück zum Zitat Bridgford JL, Lee SM, Lee CMM, Guglielmelli P, Rumi E, Pietra D, et al. Novel drivers and modifiers of MPL-dependent oncogenic transformation identified by deep mutational scanning. Blood. 2020;135(4):287–92.PubMedCrossRef Bridgford JL, Lee SM, Lee CMM, Guglielmelli P, Rumi E, Pietra D, et al. Novel drivers and modifiers of MPL-dependent oncogenic transformation identified by deep mutational scanning. Blood. 2020;135(4):287–92.PubMedCrossRef
43.
Zurück zum Zitat Benlabiod C, Cacemiro MDC, Nedelec A, Edmond V, Muller D, Rameau P, et al. Calreticulin del52 and ins5 knock-in mice recapitulate different myeloproliferative phenotypes observed in patients with MPN. Nat Commun. 2020;11(1):4886.PubMedPubMedCentralCrossRef Benlabiod C, Cacemiro MDC, Nedelec A, Edmond V, Muller D, Rameau P, et al. Calreticulin del52 and ins5 knock-in mice recapitulate different myeloproliferative phenotypes observed in patients with MPN. Nat Commun. 2020;11(1):4886.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Michail O, McCallion P, McGimpsey J, Hindley A, Greenfield G, Feerick J, et al. Mutational profiling in suspected triple-negative essential thrombocythaemia using targeted next-generation sequencing in a real-world cohort. J Clin Pathol. 2020;jclinpath-2020-206570. Michail O, McCallion P, McGimpsey J, Hindley A, Greenfield G, Feerick J, et al. Mutational profiling in suspected triple-negative essential thrombocythaemia using targeted next-generation sequencing in a real-world cohort. J Clin Pathol. 2020;jclinpath-2020-206570.
45.
Zurück zum Zitat Mullally A, Lane SW, Brumme K, Ebert BL. Myeloproliferative neoplasm animal models. Hematol Oncol Clin N Am. 2012;26(5):1065–81.CrossRef Mullally A, Lane SW, Brumme K, Ebert BL. Myeloproliferative neoplasm animal models. Hematol Oncol Clin N Am. 2012;26(5):1065–81.CrossRef
46.
Zurück zum Zitat Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, Phase III study in patients with myelofibrosis. Br J Haematol. 2013;161(4):508–16.PubMedPubMedCentralCrossRef Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, Phase III study in patients with myelofibrosis. Br J Haematol. 2013;161(4):508–16.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Antonioli E, Guglielmelli P, Poli G, Bogani C, Pancrazzi A, Longo G, et al. Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica. 2008;93(1):41–8.PubMedCrossRef Antonioli E, Guglielmelli P, Poli G, Bogani C, Pancrazzi A, Longo G, et al. Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica. 2008;93(1):41–8.PubMedCrossRef
48.
Zurück zum Zitat Godfrey AL, Chen E, Pagano F, Silber Y, Campbell PJ, Green AR. Clonal analyses reveal associations of JAK2V617F homozygosity with hematologic features, age and gender in polycythemia vera and essential thrombocythemia. Haematologica. 2013;98(5):718–21.PubMedPubMedCentralCrossRef Godfrey AL, Chen E, Pagano F, Silber Y, Campbell PJ, Green AR. Clonal analyses reveal associations of JAK2V617F homozygosity with hematologic features, age and gender in polycythemia vera and essential thrombocythemia. Haematologica. 2013;98(5):718–21.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L, et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 2010;24(9):1574–9.PubMedCrossRef Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L, et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 2010;24(9):1574–9.PubMedCrossRef
50.
Zurück zum Zitat How J, Trinkaus KM, Oh ST. Distinct clinical, laboratory and molecular features of myeloproliferative neoplasm patients with splanchnic vein thrombosis. Br J Haematol. 2018;183(2):310–3.PubMedCrossRef How J, Trinkaus KM, Oh ST. Distinct clinical, laboratory and molecular features of myeloproliferative neoplasm patients with splanchnic vein thrombosis. Br J Haematol. 2018;183(2):310–3.PubMedCrossRef
51.
Zurück zum Zitat Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123(10):1544–51.PubMedPubMedCentralCrossRef Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123(10):1544–51.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat De Grandis M, Cambot M, Wautier MP, Cassinat B, Chomienne C, Colin Y, et al. JAK2V617F activates Lu/BCAM-mediated red cell adhesion in polycythemia vera through an EpoR-independent Rap1/Akt pathway. Blood. 2013;121(4):658–65.PubMedCrossRef De Grandis M, Cambot M, Wautier MP, Cassinat B, Chomienne C, Colin Y, et al. JAK2V617F activates Lu/BCAM-mediated red cell adhesion in polycythemia vera through an EpoR-independent Rap1/Akt pathway. Blood. 2013;121(4):658–65.PubMedCrossRef
53.
Zurück zum Zitat Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M, Chappell RJ, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10(436):eaan8292. PubMedPubMedCentralCrossRef Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M, Chappell RJ, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10(436):eaan8292. PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Nienhold R, Ashcroft P, Zmajkovic J, Rai S, Rao TN, Drexler B, et al. MPN patients with low mutant JAK2 allele burden show late expansion restricted to erythroid and megakaryocytic lineages. Blood. 2020;136(22):2591–5.PubMedCrossRef Nienhold R, Ashcroft P, Zmajkovic J, Rai S, Rao TN, Drexler B, et al. MPN patients with low mutant JAK2 allele burden show late expansion restricted to erythroid and megakaryocytic lineages. Blood. 2020;136(22):2591–5.PubMedCrossRef
55.
Zurück zum Zitat Zhang HF, Lai R. STAT3 in cancer-friend or foe? Cancers (Basel). 2014;6(3):1408–40.CrossRef Zhang HF, Lai R. STAT3 in cancer-friend or foe? Cancers (Basel). 2014;6(3):1408–40.CrossRef
56.
Zurück zum Zitat Funakoshi-Tago M, Tago K, Abe M, Sonoda Y, Kasahara T. STAT5 activation is critical for the transformation mediated by myeloproliferative disorder-associated JAK2 V617F mutant. J Biol Chem. 2010;285(8):5296–307.PubMedCrossRef Funakoshi-Tago M, Tago K, Abe M, Sonoda Y, Kasahara T. STAT5 activation is critical for the transformation mediated by myeloproliferative disorder-associated JAK2 V617F mutant. J Biol Chem. 2010;285(8):5296–307.PubMedCrossRef
57.
Zurück zum Zitat Garcon L, Rivat C, James C, Lacout C, Camara-Clayette V, Ugo V, et al. Constitutive activation of STAT5 and Bcl-xL overexpression can induce endogenous erythroid colony formation in human primary cells. Blood. 2006;108(5):1551–4.PubMedCrossRef Garcon L, Rivat C, James C, Lacout C, Camara-Clayette V, Ugo V, et al. Constitutive activation of STAT5 and Bcl-xL overexpression can induce endogenous erythroid colony formation in human primary cells. Blood. 2006;108(5):1551–4.PubMedCrossRef
58.
Zurück zum Zitat Chen E, Beer PA, Godfrey AL, Ortmann CA, Li J, Costa-Pereira AP, et al. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell. 2010;18(5):524–35.PubMedPubMedCentralCrossRef Chen E, Beer PA, Godfrey AL, Ortmann CA, Li J, Costa-Pereira AP, et al. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell. 2010;18(5):524–35.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Jayavelu AK, Schnoder TM, Perner F, Herzog C, Meiler A, Krishnamoorthy G, et al. Splicing factor YBX1 mediates persistence of JAK2-mutated neoplasms. Nature. 2020;588(7836):157–63.PubMedCrossRef Jayavelu AK, Schnoder TM, Perner F, Herzog C, Meiler A, Krishnamoorthy G, et al. Splicing factor YBX1 mediates persistence of JAK2-mutated neoplasms. Nature. 2020;588(7836):157–63.PubMedCrossRef
60.
Zurück zum Zitat Walz C, Ahmed W, Lazarides K, Betancur M, Patel N, Hennighausen L, et al. Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2(V617F) in mice. Blood. 2012;119(15):3550–60.PubMedPubMedCentralCrossRef Walz C, Ahmed W, Lazarides K, Betancur M, Patel N, Hennighausen L, et al. Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2(V617F) in mice. Blood. 2012;119(15):3550–60.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Duek A, Lundberg P, Shimizu T, Grisouard J, Karow A, Kubovcakova L, et al. Loss of Stat1 decreases megakaryopoiesis and favors erythropoiesis in a JAK2-V617F-driven mouse model of MPNs. Blood. 2014;123(25):3943–50.PubMedCrossRef Duek A, Lundberg P, Shimizu T, Grisouard J, Karow A, Kubovcakova L, et al. Loss of Stat1 decreases megakaryopoiesis and favors erythropoiesis in a JAK2-V617F-driven mouse model of MPNs. Blood. 2014;123(25):3943–50.PubMedCrossRef
63.
Zurück zum Zitat Nitulescu II, Meyer SC, Wen QJ, Crispino JD, Lemieux ME, Levine RL, et al. Mediator kinase phosphorylation of STAT1 S727 promotes growth of neoplasms with JAK-STAT activation. EBioMedicine. 2017;26:112–25.PubMedPubMedCentralCrossRef Nitulescu II, Meyer SC, Wen QJ, Crispino JD, Lemieux ME, Levine RL, et al. Mediator kinase phosphorylation of STAT1 S727 promotes growth of neoplasms with JAK-STAT activation. EBioMedicine. 2017;26:112–25.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Godfrey AL, Chen E, Massie CE, Silber Y, Pagano F, Bellosillo B, et al. STAT1 activation in association with JAK2 exon 12 mutations. Haematologica. 2016;101(1):e15–9.PubMedPubMedCentralCrossRef Godfrey AL, Chen E, Massie CE, Silber Y, Pagano F, Bellosillo B, et al. STAT1 activation in association with JAK2 exon 12 mutations. Haematologica. 2016;101(1):e15–9.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Roder S, Steimle C, Meinhardt G, Pahl HL. STAT3 is constitutively active in some patients with Polycythemia rubra vera. Exp Hematol. 2001;29(6):694–702.PubMedCrossRef Roder S, Steimle C, Meinhardt G, Pahl HL. STAT3 is constitutively active in some patients with Polycythemia rubra vera. Exp Hematol. 2001;29(6):694–702.PubMedCrossRef
66.
Zurück zum Zitat Risum M, Madelung A, Bondo H, Bzorek M, Kristensen MH, Stamp IM, et al. The JAK2V617F allele burden and STAT3- and STAT5 phosphorylation in myeloproliferative neoplasms: early prefibrotic myelofibrosis compared with essential thrombocythemia, polycythemia vera and myelofibrosis. APMIS. 2011;119(8):498–504.PubMedCrossRef Risum M, Madelung A, Bondo H, Bzorek M, Kristensen MH, Stamp IM, et al. The JAK2V617F allele burden and STAT3- and STAT5 phosphorylation in myeloproliferative neoplasms: early prefibrotic myelofibrosis compared with essential thrombocythemia, polycythemia vera and myelofibrosis. APMIS. 2011;119(8):498–504.PubMedCrossRef
67.
Zurück zum Zitat Prestipino A, Emhardt AJ, Aumann K, O’Sullivan D, Gorantla SP, Duquesne S, et al. Oncogenic JAK2(V617F) causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Transl Med. 2018;10(429):eaam7729.PubMedPubMedCentralCrossRef Prestipino A, Emhardt AJ, Aumann K, O’Sullivan D, Gorantla SP, Duquesne S, et al. Oncogenic JAK2(V617F) causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Transl Med. 2018;10(429):eaam7729.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Balic JJ, White CL, Dawson R, Gough D, McCormack MP, Jenkins BJ. STAT3-driven hematopoiesis and lymphopoiesis abnormalities are dependent on serine phosphorylation. Cytokine. 2020;130:155059.PubMedCrossRef Balic JJ, White CL, Dawson R, Gough D, McCormack MP, Jenkins BJ. STAT3-driven hematopoiesis and lymphopoiesis abnormalities are dependent on serine phosphorylation. Cytokine. 2020;130:155059.PubMedCrossRef
69.
Zurück zum Zitat Grisouard J, Shimizu T, Duek A, Kubovcakova L, Hao-Shen H, Dirnhofer S, et al. Deletion of Stat3 in hematopoietic cells enhances thrombocytosis and shortens survival in a JAK2-V617F mouse model of MPN. Blood. 2015;125(13):2131–40.PubMedCrossRef Grisouard J, Shimizu T, Duek A, Kubovcakova L, Hao-Shen H, Dirnhofer S, et al. Deletion of Stat3 in hematopoietic cells enhances thrombocytosis and shortens survival in a JAK2-V617F mouse model of MPN. Blood. 2015;125(13):2131–40.PubMedCrossRef
70.
Zurück zum Zitat Comoglio F, Park HJ, Schoenfelder S, Barozzi I, Bode D, Fraser P, et al. Thrombopoietin signaling to chromatin elicits rapid and pervasive epigenome remodeling within poised chromatin architectures. Genome Res. 2018;7:227. Comoglio F, Park HJ, Schoenfelder S, Barozzi I, Bode D, Fraser P, et al. Thrombopoietin signaling to chromatin elicits rapid and pervasive epigenome remodeling within poised chromatin architectures. Genome Res. 2018;7:227.
71.
Zurück zum Zitat Dasgupta M, Dermawan JK, Willard B, Stark GR. STAT3-driven transcription depends upon the dimethylation of K49 by EZH2. Proc Natl Acad Sci USA. 2015;112(13):3985–90.PubMedPubMedCentralCrossRef Dasgupta M, Dermawan JK, Willard B, Stark GR. STAT3-driven transcription depends upon the dimethylation of K49 by EZH2. Proc Natl Acad Sci USA. 2015;112(13):3985–90.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Kollmann K, Warsch W, Gonzalez-Arias C, Nice FL, Avezov E, Milburn J, et al. A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation. Leukemia. 2017;31(4):934–44.PubMedCrossRef Kollmann K, Warsch W, Gonzalez-Arias C, Nice FL, Avezov E, Milburn J, et al. A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation. Leukemia. 2017;31(4):934–44.PubMedCrossRef
73.
Zurück zum Zitat Zini R, Guglielmelli P, Pietra D, Rumi E, Rossi C, Rontauroli S, et al. CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles. Blood Cancer J. 2017;7(12):638.PubMedPubMedCentralCrossRef Zini R, Guglielmelli P, Pietra D, Rumi E, Rossi C, Rontauroli S, et al. CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles. Blood Cancer J. 2017;7(12):638.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Stivala S, Codilupi T, Brkic S, Baerenwaldt A, Ghosh N, Hao-Shen H, et al. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest. 2019;129(4):1596–611.PubMedPubMedCentralCrossRef Stivala S, Codilupi T, Brkic S, Baerenwaldt A, Ghosh N, Hao-Shen H, et al. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest. 2019;129(4):1596–611.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Bartalucci N, Calabresi L, Balliu M, Martinelli S, Rossi MC, Villeval JL, et al. Inhibitors of the PI3K/mTOR pathway prevent STAT5 phosphorylation in. Oncotarget. 2017;8(57):96710–24.PubMedPubMedCentralCrossRef Bartalucci N, Calabresi L, Balliu M, Martinelli S, Rossi MC, Villeval JL, et al. Inhibitors of the PI3K/mTOR pathway prevent STAT5 phosphorylation in. Oncotarget. 2017;8(57):96710–24.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Guglielmelli P, Barosi G, Rambaldi A, Marchioli R, Masciulli A, Tozzi L, et al. Safety and efficacy of everolimus, a mTOR inhibitor, as single agent in a phase 1/2 study in patients with myelofibrosis. Blood. 2011;118(8):2069–76.PubMedPubMedCentralCrossRef Guglielmelli P, Barosi G, Rambaldi A, Marchioli R, Masciulli A, Tozzi L, et al. Safety and efficacy of everolimus, a mTOR inhibitor, as single agent in a phase 1/2 study in patients with myelofibrosis. Blood. 2011;118(8):2069–76.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Rocca S, Carra G, Poggio P, Morotti A, Brancaccio M. Targeting few to help hundreds: JAK, MAPK and ROCK pathways as druggable targets in atypical chronic myeloid leukemia. Mol Cancer. 2018;17(1):40.PubMedPubMedCentralCrossRef Rocca S, Carra G, Poggio P, Morotti A, Brancaccio M. Targeting few to help hundreds: JAK, MAPK and ROCK pathways as druggable targets in atypical chronic myeloid leukemia. Mol Cancer. 2018;17(1):40.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Hookham MB, Elliott J, Suessmuth Y, Staerk J, Ward AC, Vainchenker W, et al. The myeloproliferative disorder-associated JAK2 V617F mutant escapes negative regulation by suppressor of cytokine signaling 3. Blood. 2007;109(11):4924–9.PubMedCrossRef Hookham MB, Elliott J, Suessmuth Y, Staerk J, Ward AC, Vainchenker W, et al. The myeloproliferative disorder-associated JAK2 V617F mutant escapes negative regulation by suppressor of cytokine signaling 3. Blood. 2007;109(11):4924–9.PubMedCrossRef
79.
Zurück zum Zitat Varghese LN, Ungureanu D, Liau NP, Young SN, Laktyushin A, Hammaren H, et al. Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses. Biochem J. 2014;458(2):395–405.PubMedCrossRef Varghese LN, Ungureanu D, Liau NP, Young SN, Laktyushin A, Hammaren H, et al. Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses. Biochem J. 2014;458(2):395–405.PubMedCrossRef
80.
Zurück zum Zitat Funakoshi-Tago M, Tsuruya R, Ueda F, Ishihara A, Kasahara T, Tamura H, et al. Tyrosine-phosphorylated SOCS3 negatively regulates cellular transformation mediated by the myeloproliferative neoplasm-associated JAK2 V617F mutant. Cytokine. 2019;123:154753.PubMedCrossRef Funakoshi-Tago M, Tsuruya R, Ueda F, Ishihara A, Kasahara T, Tamura H, et al. Tyrosine-phosphorylated SOCS3 negatively regulates cellular transformation mediated by the myeloproliferative neoplasm-associated JAK2 V617F mutant. Cytokine. 2019;123:154753.PubMedCrossRef
81.
Zurück zum Zitat Fourouclas N, Li J, Gilby DC, Campbell PJ, Beer PA, Boyd EM, et al. Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in myeloproliferative disorders. Haematologica. 2008;93(11):1635–44.PubMedCrossRef Fourouclas N, Li J, Gilby DC, Campbell PJ, Beer PA, Boyd EM, et al. Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in myeloproliferative disorders. Haematologica. 2008;93(11):1635–44.PubMedCrossRef
82.
Zurück zum Zitat Stover DG, Gil Del Alcazar CR, Brock J, Guo H, Overmoyer B, Balko J, et al. Phase II study of ruxolitinib, a selective JAK1/2 inhibitor, in patients with metastatic triple-negative breast cancer. NPJ Breast Cancer. 2018;4:10.PubMedPubMedCentralCrossRef Stover DG, Gil Del Alcazar CR, Brock J, Guo H, Overmoyer B, Balko J, et al. Phase II study of ruxolitinib, a selective JAK1/2 inhibitor, in patients with metastatic triple-negative breast cancer. NPJ Breast Cancer. 2018;4:10.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Yang X, Jia J, Yu Z, Duanmu Z, He H, Chen S, et al. Inhibition of JAK2/STAT3/SOCS3 signaling attenuates atherosclerosis in rabbit. BMC Cardiovasc Disord. 2020;20(1):133.PubMedPubMedCentralCrossRef Yang X, Jia J, Yu Z, Duanmu Z, He H, Chen S, et al. Inhibition of JAK2/STAT3/SOCS3 signaling attenuates atherosclerosis in rabbit. BMC Cardiovasc Disord. 2020;20(1):133.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Greenfield G, McPherson S, Smith J, Mead A, Harrison C, Mills K, et al. Modification of the histone landscape with JAK inhibition in myeloproliferative neoplasms. Cancers (Basel). 2020;12(9):2669.PubMedCentralCrossRef Greenfield G, McPherson S, Smith J, Mead A, Harrison C, Mills K, et al. Modification of the histone landscape with JAK inhibition in myeloproliferative neoplasms. Cancers (Basel). 2020;12(9):2669.PubMedCentralCrossRef
85.
Zurück zum Zitat Kleppe M, Koche R, Zou L, van Galen P, Hill CE, Dong L, et al. Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms. Cancer Cell. 2018;33(1):29-43.e7.PubMedCrossRef Kleppe M, Koche R, Zou L, van Galen P, Hill CE, Dong L, et al. Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms. Cancer Cell. 2018;33(1):29-43.e7.PubMedCrossRef
86.
Zurück zum Zitat Chen CQ, Yu K, Yan QX, Xing CY, Chen Y, Yan Z, et al. Pure curcumin increases the expression of SOCS1 and SOCS3 in myeloproliferative neoplasms through suppressing class I histone deacetylases. Carcinogenesis. 2013;34(7):1442–9.PubMedCrossRef Chen CQ, Yu K, Yan QX, Xing CY, Chen Y, Yan Z, et al. Pure curcumin increases the expression of SOCS1 and SOCS3 in myeloproliferative neoplasms through suppressing class I histone deacetylases. Carcinogenesis. 2013;34(7):1442–9.PubMedCrossRef
87.
Zurück zum Zitat Gao SM, Chen CQ, Wang LY, Hong LL, Wu JB, Dong PH, et al. Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms. Exp Hematol. 2013;41(3):261-70 e4.PubMedCrossRef Gao SM, Chen CQ, Wang LY, Hong LL, Wu JB, Dong PH, et al. Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms. Exp Hematol. 2013;41(3):261-70 e4.PubMedCrossRef
88.
Zurück zum Zitat Akada H, Akada S, Gajra A, Bair A, Graziano S, Hutchison RE, et al. Efficacy of vorinostat in a murine model of polycythemia vera. Blood. 2012;119(16):3779–89.PubMedPubMedCentralCrossRef Akada H, Akada S, Gajra A, Bair A, Graziano S, Hutchison RE, et al. Efficacy of vorinostat in a murine model of polycythemia vera. Blood. 2012;119(16):3779–89.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Nakata Y, Ueda T, Nagamachi A, Yamasaki N, Ikeda KI, Sera Y, et al. Acquired expression of Cbl(Q367P) in mice induces dysplastic myelopoiesis mimicking chronic myelomonocytic leukemia. Blood. 2017;129(15):2148–60.PubMedPubMedCentralCrossRef Nakata Y, Ueda T, Nagamachi A, Yamasaki N, Ikeda KI, Sera Y, et al. Acquired expression of Cbl(Q367P) in mice induces dysplastic myelopoiesis mimicking chronic myelomonocytic leukemia. Blood. 2017;129(15):2148–60.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Zhu HH, Luo X, Zhang K, Cui J, Zhao H, Ji Z, et al. Shp2 and Pten have antagonistic roles in myeloproliferation but cooperate to promote erythropoiesis in mammals. Proc Natl Acad Sci USA. 2015;112(43):13342–7.PubMedPubMedCentralCrossRef Zhu HH, Luo X, Zhang K, Cui J, Zhao H, Ji Z, et al. Shp2 and Pten have antagonistic roles in myeloproliferation but cooperate to promote erythropoiesis in mammals. Proc Natl Acad Sci USA. 2015;112(43):13342–7.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Stetka J, Vyhlidalova P, Lanikova L, Koralkova P, Gursky J, Hlusi A, et al. Addiction to DUSP1 protects JAK2V617F-driven polycythemia vera progenitors against inflammatory stress and DNA damage, allowing chronic proliferation. Oncogene. 2019;38(28):5627–42.PubMedPubMedCentralCrossRef Stetka J, Vyhlidalova P, Lanikova L, Koralkova P, Gursky J, Hlusi A, et al. Addiction to DUSP1 protects JAK2V617F-driven polycythemia vera progenitors against inflammatory stress and DNA damage, allowing chronic proliferation. Oncogene. 2019;38(28):5627–42.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562(7728):526–31.PubMedPubMedCentralCrossRef Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562(7728):526–31.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Zink F, Stacey SN, Norddahl GL, Frigge ML, Magnusson OT, Jonsdottir I, et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood. 2017;130(6):742–52.PubMedPubMedCentralCrossRef Zink F, Stacey SN, Norddahl GL, Frigge ML, Magnusson OT, Jonsdottir I, et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood. 2017;130(6):742–52.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7.PubMedCrossRef Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7.PubMedCrossRef
95.
Zurück zum Zitat Williams N, Lee J, Moore L, Baxter EJ, Hewinson J, Dawson KJ, et al. Phylogenetic reconstruction of myeloproliferative neoplasm reveals very early origins and lifelong evolution. bioRxiv. 2020:2020.11.09.374710. Williams N, Lee J, Moore L, Baxter EJ, Hewinson J, Dawson KJ, et al. Phylogenetic reconstruction of myeloproliferative neoplasm reveals very early origins and lifelong evolution. bioRxiv. 2020:2020.11.09.374710.
96.
Zurück zum Zitat Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24(6):1128–38.PubMedPubMedCentralCrossRef Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24(6):1128–38.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Triviai I, Zeschke S, Rentel J, Spanakis M, Scherer T, Gabdoulline R, et al. ASXL1/EZH2 mutations promote clonal expansion of neoplastic HSC and impair erythropoiesis in PMF. Leukemia. 2018;33:99–109.PubMedCrossRef Triviai I, Zeschke S, Rentel J, Spanakis M, Scherer T, Gabdoulline R, et al. ASXL1/EZH2 mutations promote clonal expansion of neoplastic HSC and impair erythropoiesis in PMF. Leukemia. 2018;33:99–109.PubMedCrossRef
98.
Zurück zum Zitat Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27(9):1861–9.PubMedCrossRef Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27(9):1861–9.PubMedCrossRef
99.
Zurück zum Zitat Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–8.PubMedCrossRef Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–8.PubMedCrossRef
100.
Zurück zum Zitat Luque Paz D, Riou J, Verger E, Cassinat B, Chauveau A, Ianotto JC, et al. Genomic analysis of primary and secondary myelofibrosis redefines the prognostic impact of ASXL1 mutations: a FIM study. Blood Adv. 2021;5(5):1442–51.PubMedPubMedCentralCrossRef Luque Paz D, Riou J, Verger E, Cassinat B, Chauveau A, Ianotto JC, et al. Genomic analysis of primary and secondary myelofibrosis redefines the prognostic impact of ASXL1 mutations: a FIM study. Blood Adv. 2021;5(5):1442–51.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Tefferi A, Guglielmelli P, Nicolosi M, Mannelli F, Mudireddy M, Bartalucci N, et al. GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis. Leukemia. 2018;32(7):1631–42.PubMedPubMedCentralCrossRef Tefferi A, Guglielmelli P, Nicolosi M, Mannelli F, Mudireddy M, Bartalucci N, et al. GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis. Leukemia. 2018;32(7):1631–42.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Guglielmelli P, Lasho TL, Rotunno G, Score J, Mannarelli C, Pancrazzi A, et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia. 2014;28(9):1804–10.PubMedCrossRef Guglielmelli P, Lasho TL, Rotunno G, Score J, Mannarelli C, Pancrazzi A, et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia. 2014;28(9):1804–10.PubMedCrossRef
103.
Zurück zum Zitat Tefferi A, Guglielmelli P, Lasho TL, Gangat N, Ketterling RP, Pardanani A, et al. MIPSS70+ version 2.0: mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis. J Clin Oncol. 2018;36(17):1769–70.PubMedCrossRef Tefferi A, Guglielmelli P, Lasho TL, Gangat N, Ketterling RP, Pardanani A, et al. MIPSS70+ version 2.0: mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis. J Clin Oncol. 2018;36(17):1769–70.PubMedCrossRef
104.
Zurück zum Zitat Miles LA, Bowman RL, Merlinsky TR, Csete IS, Ooi AT, Durruthy-Durruthy R, et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature. 2020;587(7834):477–82.PubMedPubMedCentralCrossRef Miles LA, Bowman RL, Merlinsky TR, Csete IS, Ooi AT, Durruthy-Durruthy R, et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature. 2020;587(7834):477–82.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Geissler K, Gisslinger B, Jager E, Jager R, Schiefer AI, Bogner E, et al. Myelomonocytic skewing in vitro discriminates subgroups of patients with myelofibrosis with a different phenotype, a different mutational profile and different prognosis. Cancers (Basel). 2020;12(8):2291.CrossRef Geissler K, Gisslinger B, Jager E, Jager R, Schiefer AI, Bogner E, et al. Myelomonocytic skewing in vitro discriminates subgroups of patients with myelofibrosis with a different phenotype, a different mutational profile and different prognosis. Cancers (Basel). 2020;12(8):2291.CrossRef
106.
Zurück zum Zitat Engle EK, Fisher DA, Miller CA, McLellan MD, Fulton RS, Moore DM, et al. Clonal evolution revealed by whole genome sequencing in a case of primary myelofibrosis transformed to secondary acute myeloid leukemia. Leukemia. 2015;29(4):869–76.PubMedCrossRef Engle EK, Fisher DA, Miller CA, McLellan MD, Fulton RS, Moore DM, et al. Clonal evolution revealed by whole genome sequencing in a case of primary myelofibrosis transformed to secondary acute myeloid leukemia. Leukemia. 2015;29(4):869–76.PubMedCrossRef
107.
Zurück zum Zitat Newberry KJ, Patel K, Masarova L, Luthra R, Manshouri T, Jabbour E, et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood. 2017;130(9):1125–31.PubMedPubMedCentralCrossRef Newberry KJ, Patel K, Masarova L, Luthra R, Manshouri T, Jabbour E, et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood. 2017;130(9):1125–31.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372(7):601–12.PubMedPubMedCentralCrossRef Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372(7):601–12.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Nangalia J, Nice FL, Wedge DC, Godfrey AL, Grinfeld J, Thakker C, et al. DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype. Haematologica. 2015;100(11):e438–42.PubMedPubMedCentralCrossRef Nangalia J, Nice FL, Wedge DC, Godfrey AL, Grinfeld J, Thakker C, et al. DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype. Haematologica. 2015;100(11):e438–42.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20(1):11–24.PubMedPubMedCentralCrossRef Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20(1):11–24.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Kameda T, Shide K, Yamaji T, Kamiunten A, Sekine M, Taniguchi Y, et al. Loss of TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator. Blood. 2015;125(2):304–15.PubMedCrossRef Kameda T, Shide K, Yamaji T, Kamiunten A, Sekine M, Taniguchi Y, et al. Loss of TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator. Blood. 2015;125(2):304–15.PubMedCrossRef
112.
Zurück zum Zitat Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet. 2011;44(1):23–31.PubMedPubMedCentralCrossRef Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet. 2011;44(1):23–31.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Jeong M, Park HJ, Celik H, Ostrander EL, Reyes JM, Guzman A, et al. Loss of Dnmt3a immortalizes hematopoietic stem cells in vivo. Cell Rep. 2018;23(1):1–10.PubMedPubMedCentralCrossRef Jeong M, Park HJ, Celik H, Ostrander EL, Reyes JM, Guzman A, et al. Loss of Dnmt3a immortalizes hematopoietic stem cells in vivo. Cell Rep. 2018;23(1):1–10.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Shimizu T, Kubovcakova L, Nienhold R, Zmajkovic J, Meyer SC, Hao-Shen H, et al. Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis. J Exp Med. 2016;213(8):1479–96.PubMedPubMedCentralCrossRef Shimizu T, Kubovcakova L, Nienhold R, Zmajkovic J, Meyer SC, Hao-Shen H, et al. Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis. J Exp Med. 2016;213(8):1479–96.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Theocharides A, Boissinot M, Girodon F, Garand R, Teo SS, Lippert E, et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood. 2007;110(1):375–9.PubMedCrossRef Theocharides A, Boissinot M, Girodon F, Garand R, Teo SS, Lippert E, et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood. 2007;110(1):375–9.PubMedCrossRef
117.
Zurück zum Zitat Bick AG, Weinstock JS, Nandakumar SK, Fulco CP, Bao EL, Zekavat SM, et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature. 2020;586(7831):763–8.PubMedPubMedCentralCrossRef Bick AG, Weinstock JS, Nandakumar SK, Fulco CP, Bao EL, Zekavat SM, et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature. 2020;586(7831):763–8.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Ishii T, Bruno E, Hoffman R, Xu M. Involvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera. Blood. 2006;108(9):3128–34.PubMedCrossRef Ishii T, Bruno E, Hoffman R, Xu M. Involvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera. Blood. 2006;108(9):3128–34.PubMedCrossRef
119.
Zurück zum Zitat Angona A, Alvarez-Larran A, Bellosillo B, Longaron R, Camacho L, Fernandez-Rodriguez MC, et al. Characterization of CD34+ hematopoietic progenitor cells in JAK2V617F and CALR-mutated myeloproliferative neoplasms. Leuk Res. 2016;48:11–5.PubMedCrossRef Angona A, Alvarez-Larran A, Bellosillo B, Longaron R, Camacho L, Fernandez-Rodriguez MC, et al. Characterization of CD34+ hematopoietic progenitor cells in JAK2V617F and CALR-mutated myeloproliferative neoplasms. Leuk Res. 2016;48:11–5.PubMedCrossRef
120.
Zurück zum Zitat Reinisch A, Thomas D, Corces MR, Zhang X, Gratzinger D, Hong WJ, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22(7):812–21.PubMedPubMedCentralCrossRef Reinisch A, Thomas D, Corces MR, Zhang X, Gratzinger D, Hong WJ, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22(7):812–21.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Mullally A, Poveromo L, Schneider RK, Al-Shahrour F, Lane SW, Ebert BL. Distinct roles for long-term hematopoietic stem cells and erythroid precursor cells in a murine model of Jak2V617F-mediated polycythemia vera. Blood. 2012;120(1):166–72.PubMedPubMedCentralCrossRef Mullally A, Poveromo L, Schneider RK, Al-Shahrour F, Lane SW, Ebert BL. Distinct roles for long-term hematopoietic stem cells and erythroid precursor cells in a murine model of Jak2V617F-mediated polycythemia vera. Blood. 2012;120(1):166–72.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A, et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature. 2013;502(7470):232–6.PubMedCrossRef Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A, et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature. 2013;502(7470):232–6.PubMedCrossRef
123.
Zurück zum Zitat Carrelha J, Meng Y, Kettyle LM, Luis TC, Norfo R, Alcolea V, et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature. 2018;554(7690):106–11.PubMedCrossRef Carrelha J, Meng Y, Kettyle LM, Luis TC, Norfo R, Alcolea V, et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature. 2018;554(7690):106–11.PubMedCrossRef
124.
Zurück zum Zitat Psaila B, Wang G, Rodriguez-Meira A, Li R, Heuston EF, Murphy L, et al. Single-cell analyses reveal megakaryocyte-biased hematopoiesis in myelofibrosis and identify mutant clone-specific targets. Mol Cell. 2020;78(3):477-92 e8.PubMedPubMedCentralCrossRef Psaila B, Wang G, Rodriguez-Meira A, Li R, Heuston EF, Murphy L, et al. Single-cell analyses reveal megakaryocyte-biased hematopoiesis in myelofibrosis and identify mutant clone-specific targets. Mol Cell. 2020;78(3):477-92 e8.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Tong J, Sun T, Ma S, Zhao Y, Ju M, Gao Y, et al. Hematopoietic stem cell heterogeneity is linked to the initiation and therapeutic response of myeloproliferative neoplasms. Cell Stem Cell. 2021;28(3):502-13 e6.PubMedCrossRef Tong J, Sun T, Ma S, Zhao Y, Ju M, Gao Y, et al. Hematopoietic stem cell heterogeneity is linked to the initiation and therapeutic response of myeloproliferative neoplasms. Cell Stem Cell. 2021;28(3):502-13 e6.PubMedCrossRef
126.
Zurück zum Zitat Schneider RK, Mullally A, Dugourd A, Peisker F, Hoogenboezem R, Van Strien PMH, et al. Gli1(+) mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell. 2017;20(6):785-800 e8.PubMedPubMedCentralCrossRef Schneider RK, Mullally A, Dugourd A, Peisker F, Hoogenboezem R, Van Strien PMH, et al. Gli1(+) mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell. 2017;20(6):785-800 e8.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Decker M, Martinez-Morentin L, Wang G, Lee Y, Liu Q, Leslie J, et al. Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nat Cell Biol. 2017;19(6):677–88.PubMedPubMedCentralCrossRef Decker M, Martinez-Morentin L, Wang G, Lee Y, Liu Q, Leslie J, et al. Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nat Cell Biol. 2017;19(6):677–88.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Leimkuhler NB, Gleitz HFE, Ronghui L, Snoeren IAM, Fuchs SNR, Nagai JS, et al. Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis. Cell Stem Cell. 2021;28(4):637-52 e8.PubMedPubMedCentralCrossRef Leimkuhler NB, Gleitz HFE, Ronghui L, Snoeren IAM, Fuchs SNR, Nagai JS, et al. Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis. Cell Stem Cell. 2021;28(4):637-52 e8.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Acuna-Hidalgo R, Sengul H, Steehouwer M, van de Vorst M, Vermeulen SH, Kiemeney LALM, et al. Ultra-sensitive sequencing identifies high prevalence of clonal hematopoiesis-associated mutations throughout adult life. Am J Hum Genet. 2017;101(1):50–64.PubMedPubMedCentralCrossRef Acuna-Hidalgo R, Sengul H, Steehouwer M, van de Vorst M, Vermeulen SH, Kiemeney LALM, et al. Ultra-sensitive sequencing identifies high prevalence of clonal hematopoiesis-associated mutations throughout adult life. Am J Hum Genet. 2017;101(1):50–64.PubMedPubMedCentralCrossRef
130.
131.
Zurück zum Zitat Sud A, Chattopadhyay S, Thomsen H, Sundquist K, Sundquist J, Houlston RS, et al. Familial risks of acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms. Blood. 2018;132(9):973–6.PubMedPubMedCentralCrossRef Sud A, Chattopadhyay S, Thomsen H, Sundquist K, Sundquist J, Houlston RS, et al. Familial risks of acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms. Blood. 2018;132(9):973–6.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Rumi E, Passamonti F, Della Porta MG, Elena C, Arcaini L, Vanelli L, et al. Familial chronic myeloproliferative disorders: clinical phenotype and evidence of disease anticipation. J Clin Oncol. 2007;25(35):5630–5.PubMedCrossRef Rumi E, Passamonti F, Della Porta MG, Elena C, Arcaini L, Vanelli L, et al. Familial chronic myeloproliferative disorders: clinical phenotype and evidence of disease anticipation. J Clin Oncol. 2007;25(35):5630–5.PubMedCrossRef
133.
Zurück zum Zitat el El-Harith HA, Roesl C, Ballmaier M, Germeshausen M, Frye-Boukhriss H, von Neuhoff N, et al. Familial thrombocytosis caused by the novel germ-line mutation p.Pro106Leu in the MPL gene. Br J Haematol. 2009;144(2):185–94.CrossRef el El-Harith HA, Roesl C, Ballmaier M, Germeshausen M, Frye-Boukhriss H, von Neuhoff N, et al. Familial thrombocytosis caused by the novel germ-line mutation p.Pro106Leu in the MPL gene. Br J Haematol. 2009;144(2):185–94.CrossRef
134.
Zurück zum Zitat Ding J, Komatsu H, Wakita A, Kato-Uranishi M, Ito M, Satoh A, et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood. 2004;103(11):4198–200.PubMedCrossRef Ding J, Komatsu H, Wakita A, Kato-Uranishi M, Ito M, Satoh A, et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood. 2004;103(11):4198–200.PubMedCrossRef
135.
Zurück zum Zitat Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet. 2009;41(4):446–9.PubMedPubMedCentralCrossRef Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet. 2009;41(4):446–9.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Bao EL, Nandakumar SK, Liao X, Bick AG, Karjalainen J, Tabaka M, et al. Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature. 2020;586(7831):769–75.PubMedPubMedCentralCrossRef Bao EL, Nandakumar SK, Liao X, Bick AG, Karjalainen J, Tabaka M, et al. Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature. 2020;586(7831):769–75.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Li H, Xu Y, Mei H, Peng L, Li X, Tang J. The TERT rs2736100 polymorphism increases cancer risk: a meta-analysis. Oncotarget. 2017;8(24):38693–705.PubMedPubMedCentralCrossRef Li H, Xu Y, Mei H, Peng L, Li X, Tang J. The TERT rs2736100 polymorphism increases cancer risk: a meta-analysis. Oncotarget. 2017;8(24):38693–705.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Duncombe AS, Anderson LA, James G, de Vocht F, Fritschi L, Mesa R, et al. Modifiable lifestyle and medical risk factors associated with myeloproliferative neoplasms. Hemasphere. 2020;4(1):e327.PubMedPubMedCentralCrossRef Duncombe AS, Anderson LA, James G, de Vocht F, Fritschi L, Mesa R, et al. Modifiable lifestyle and medical risk factors associated with myeloproliferative neoplasms. Hemasphere. 2020;4(1):e327.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Stein BL, Williams DM, Wang NY, Rogers O, Isaacs MA, Pemmaraju N, et al. Sex differences in the JAK2 V617F allele burden in chronic myeloproliferative disorders. Haematologica. 2010;95(7):1090–7.PubMedPubMedCentralCrossRef Stein BL, Williams DM, Wang NY, Rogers O, Isaacs MA, Pemmaraju N, et al. Sex differences in the JAK2 V617F allele burden in chronic myeloproliferative disorders. Haematologica. 2010;95(7):1090–7.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Moucadel V, Constantinescu SN. Differential STAT5 signaling by ligand-dependent and constitutively active cytokine receptors. J Biol Chem. 2005;280(14):13364–73.PubMedCrossRef Moucadel V, Constantinescu SN. Differential STAT5 signaling by ligand-dependent and constitutively active cytokine receptors. J Biol Chem. 2005;280(14):13364–73.PubMedCrossRef
141.
Zurück zum Zitat Peeken JC, Jutzi JS, Wehrle J, Koellerer C, Staehle HF, Becker H, et al. Epigenetic regulation of NFE2 overexpression in myeloproliferative neoplasms. Blood. 2018;131(18):2065–73.PubMedPubMedCentralCrossRef Peeken JC, Jutzi JS, Wehrle J, Koellerer C, Staehle HF, Becker H, et al. Epigenetic regulation of NFE2 overexpression in myeloproliferative neoplasms. Blood. 2018;131(18):2065–73.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Liu F, Zhao X, Perna F, Wang L, Koppikar P, Abdel-Wahab O, et al. JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell. 2011;19(2):283–94.PubMedPubMedCentralCrossRef Liu F, Zhao X, Perna F, Wang L, Koppikar P, Abdel-Wahab O, et al. JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell. 2011;19(2):283–94.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Dawson MA, Bannister AJ, Göttgens B, Foster SD, Bartke T, Green AR, et al. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature. 2009;461(7265):819–22.PubMedPubMedCentralCrossRef Dawson MA, Bannister AJ, Göttgens B, Foster SD, Bartke T, Green AR, et al. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature. 2009;461(7265):819–22.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Sashida G, Wang C, Tomioka T, Oshima M, Aoyama K, Kanai A, et al. The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition. J Exp Med. 2016;213(8):1459–77.PubMedPubMedCentralCrossRef Sashida G, Wang C, Tomioka T, Oshima M, Aoyama K, Kanai A, et al. The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition. J Exp Med. 2016;213(8):1459–77.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Pérez C, Pascual M, Martín-Subero JI, Bellosillo B, Segura V, Delabesse E, et al. Aberrant DNA methylation profile of chronic and transformed classic Philadelphia-negative myeloproliferative neoplasms. Haematologica. 2013;98(9):1414–20.PubMedPubMedCentralCrossRef Pérez C, Pascual M, Martín-Subero JI, Bellosillo B, Segura V, Delabesse E, et al. Aberrant DNA methylation profile of chronic and transformed classic Philadelphia-negative myeloproliferative neoplasms. Haematologica. 2013;98(9):1414–20.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat McPherson S, Greenfield G, Andersen C, Grinfeld J, Hasselbalch H, Nangalia J, et al. Methylation age as a correlate for allele burden, disease status and clinical response in myeloproliferative neoplasm patients treated with Vorinostat. Exp Hematol. 2019;79:26–34.PubMedCrossRef McPherson S, Greenfield G, Andersen C, Grinfeld J, Hasselbalch H, Nangalia J, et al. Methylation age as a correlate for allele burden, disease status and clinical response in myeloproliferative neoplasm patients treated with Vorinostat. Exp Hematol. 2019;79:26–34.PubMedCrossRef
147.
Zurück zum Zitat Augello C, Cattaneo D, Bucelli C, Terrasi A, Fermo E, Martinelli I, et al. CD18 promoter methylation is associated with a higher risk of thrombotic complications in primary myelofibrosis. Ann Hematol. 2016;95(12):1965–9.PubMedCrossRef Augello C, Cattaneo D, Bucelli C, Terrasi A, Fermo E, Martinelli I, et al. CD18 promoter methylation is associated with a higher risk of thrombotic complications in primary myelofibrosis. Ann Hematol. 2016;95(12):1965–9.PubMedCrossRef
148.
Zurück zum Zitat Broseus J, Alpermann T, Wulfert M, Florensa Brichs L, Jeromin S, Lippert E, et al. Age, JAK2(V617F) and SF3B1 mutations are the main predicting factors for survival in refractory anaemia with ring sideroblasts and marked thrombocytosis. Leukemia. 2013;27(9):1826–31.PubMedCrossRef Broseus J, Alpermann T, Wulfert M, Florensa Brichs L, Jeromin S, Lippert E, et al. Age, JAK2(V617F) and SF3B1 mutations are the main predicting factors for survival in refractory anaemia with ring sideroblasts and marked thrombocytosis. Leukemia. 2013;27(9):1826–31.PubMedCrossRef
149.
Zurück zum Zitat Mascarenhas JO, Rampal RK, Kosiorek HE, Bhave R, Hexner E, Wang ES, et al. Phase 2 study of ruxolitinib and decitabine in patients with myeloproliferative neoplasm in accelerated and blast phase. Blood Adv. 2020;4(20):5246–56.PubMedPubMedCentralCrossRef Mascarenhas JO, Rampal RK, Kosiorek HE, Bhave R, Hexner E, Wang ES, et al. Phase 2 study of ruxolitinib and decitabine in patients with myeloproliferative neoplasm in accelerated and blast phase. Blood Adv. 2020;4(20):5246–56.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Brkic S, Meyer SC. Challenges and perspectives for therapeutic targeting of myeloproliferative neoplasms. Hemasphere. 2021;5(1):e516.PubMedCrossRef Brkic S, Meyer SC. Challenges and perspectives for therapeutic targeting of myeloproliferative neoplasms. Hemasphere. 2021;5(1):e516.PubMedCrossRef
151.
Zurück zum Zitat Coltro G, Rotunno G, Mannelli L, Mannarelli C, Fiaccabrino S, Romagnoli S, et al. RAS/CBL mutations predict resistance to JAK inhibitors in myelofibrosis and are associated with poor prognostic features. Blood Adv. 2020;4(15):3677–87.PubMedPubMedCentralCrossRef Coltro G, Rotunno G, Mannelli L, Mannarelli C, Fiaccabrino S, Romagnoli S, et al. RAS/CBL mutations predict resistance to JAK inhibitors in myelofibrosis and are associated with poor prognostic features. Blood Adv. 2020;4(15):3677–87.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Mylonas E, Yoshida K, Frick M, Hoyer K, Christen F, Kaeda J, et al. Single-cell analysis based dissection of clonality in myelofibrosis. Nat Commun. 2020;11(1):73.PubMedPubMedCentralCrossRef Mylonas E, Yoshida K, Frick M, Hoyer K, Christen F, Kaeda J, et al. Single-cell analysis based dissection of clonality in myelofibrosis. Nat Commun. 2020;11(1):73.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Masarova L, Patel KP, Newberry KJ, Cortes J, Borthakur G, Konopleva M, et al. Pegylated interferon alfa-2a in patients with essential thrombocythaemia or polycythaemia vera: a post-hoc, median 83 month follow-up of an open-label, phase 2 trial. Lancet Haematol. 2017;4(4):e165–75.PubMedPubMedCentralCrossRef Masarova L, Patel KP, Newberry KJ, Cortes J, Borthakur G, Konopleva M, et al. Pegylated interferon alfa-2a in patients with essential thrombocythaemia or polycythaemia vera: a post-hoc, median 83 month follow-up of an open-label, phase 2 trial. Lancet Haematol. 2017;4(4):e165–75.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Rao TN, Hansen N, Stetka J, Luque Paz D, Kalmer M, Hilfiker J, et al. JAK2-V617F and interferon-alpha induce megakaryocyte-biased stem cells characterized by decreased long-term functionality. Blood. 2021;137(16):2139–51.PubMedPubMedCentralCrossRef Rao TN, Hansen N, Stetka J, Luque Paz D, Kalmer M, Hilfiker J, et al. JAK2-V617F and interferon-alpha induce megakaryocyte-biased stem cells characterized by decreased long-term functionality. Blood. 2021;137(16):2139–51.PubMedPubMedCentralCrossRef
Metadaten
Titel
Molecular pathogenesis of the myeloproliferative neoplasms
verfasst von
Graeme Greenfield
Mary Frances McMullin
Ken Mills
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2021
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-021-01116-z

Weitere Artikel der Ausgabe 1/2021

Journal of Hematology & Oncology 1/2021 Zur Ausgabe

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Viel pflanzliche Nahrung, seltener Prostata-Ca.-Progression

12.05.2024 Prostatakarzinom Nachrichten

Ein hoher Anteil pflanzlicher Nahrung trägt möglicherweise dazu bei, das Progressionsrisiko von Männern mit Prostatakarzinomen zu senken. In einer US-Studie war das Risiko bei ausgeprägter pflanzlicher Ernährung in etwa halbiert.

Alter verschlechtert Prognose bei Endometriumkarzinom

11.05.2024 Endometriumkarzinom Nachrichten

Ein höheres Alter bei der Diagnose eines Endometriumkarzinoms ist mit aggressiveren Tumorcharakteristika assoziiert, scheint aber auch unabhängig von bekannten Risikofaktoren die Prognose der Erkrankung zu verschlimmern.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.