Skip to main content
Erschienen in: Experimental Brain Research 1/2010

01.05.2010 | Research Article

Motion-onset auditory-evoked potentials critically depend on history

verfasst von: Ramona Grzeschik, Martin Böckmann-Barthel, Roland Mühler, Michael B. Hoffmann

Erschienen in: Experimental Brain Research | Ausgabe 1/2010

Einloggen, um Zugang zu erhalten

Abstract

The aim of the present study was to determine whether motion history affects motion-onset auditory-evoked potentials (motion-onset AEPs). AEPs were recorded from 33 EEG channels in 16 subjects to the motion onset of a sound (white noise) virtually moving in the horizontal plane at a speed of 60 deg/s from straight ahead to the left (−30°). AEPs for baseline and adaptation were compared. A stimulus trial comprised three consecutive phases: 2,000 ms adaptation phase, 1,000 ms stationary phase, and 500 ms test phase. During the adaptation phase of the adaptation condition, a sound source moved twice from +30° to −30° to top up preceding adaptation. In the baseline condition, neither top-up nor pre-adaptation were exerted. For both conditions, a stationary sound was presented centrally in the stationary phase, moving leftwards in the test phase. Typical motion-onset AEPs were obtained for the baseline condition, namely a fronto-central response complex dominated by a negative and a positive component, the so-called change-N1 and change-P2 after around 180 and 250 ms, respectively. For the adaptation condition, this complex was shifted significantly into the positive range, indicating that adaptation abolished a negativity within a time window of approximately 160 to 270 ms. A respective shift into the negative range was evident at occipito-parietal sites. In conclusion, while adaptation has to be taken into account as a potential confound in the design of motion-AEP studies, it might also be of benefit in order to isolate AEP correlates of motion processing.
Literatur
Zurück zum Zitat Ahissar M, Ahissar E, Bergman H, Vaadia E (1992) Encoding of sound-source location and movement: activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex. J Neurophysiol 67:203–215PubMed Ahissar M, Ahissar E, Bergman H, Vaadia E (1992) Encoding of sound-source location and movement: activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex. J Neurophysiol 67:203–215PubMed
Zurück zum Zitat American Encephalographic Society (2006) Guideline 5: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 23:107–110CrossRef American Encephalographic Society (2006) Guideline 5: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 23:107–110CrossRef
Zurück zum Zitat Bach M, Hoffmann MB (2000) Visual motion detection in man is governed by non-retinal mechanisms. Vis Res 40:2379–2385CrossRefPubMed Bach M, Hoffmann MB (2000) Visual motion detection in man is governed by non-retinal mechanisms. Vis Res 40:2379–2385CrossRefPubMed
Zurück zum Zitat Bach M, Ullrich D (1994) Motion adaptation governs the shape of motion-evoked cortical potentials (motion VEP). Vis Res 34:1541–1547CrossRefPubMed Bach M, Ullrich D (1994) Motion adaptation governs the shape of motion-evoked cortical potentials (motion VEP). Vis Res 34:1541–1547CrossRefPubMed
Zurück zum Zitat Bach M, Ullrich D (1997) Contrast dependency of motion-onset and pattern-reversal VEPs: interaction of stimulus type, recording site and response component. Vis Res 37:1845–1849CrossRefPubMed Bach M, Ullrich D (1997) Contrast dependency of motion-onset and pattern-reversal VEPs: interaction of stimulus type, recording site and response component. Vis Res 37:1845–1849CrossRefPubMed
Zurück zum Zitat Baumann O, Greenlee MW (2007) Neural correlates of coherent audiovisual motion perception. Cereb Cortex 17:1433–1443CrossRefPubMed Baumann O, Greenlee MW (2007) Neural correlates of coherent audiovisual motion perception. Cereb Cortex 17:1433–1443CrossRefPubMed
Zurück zum Zitat Baumgart F, Gaschler-Markefski B, Woldorff MG, Heinze HJ, Scheich H (1999) A movement-sensitive area in auditory cortex. Nature 400:724–726CrossRefPubMed Baumgart F, Gaschler-Markefski B, Woldorff MG, Heinze HJ, Scheich H (1999) A movement-sensitive area in auditory cortex. Nature 400:724–726CrossRefPubMed
Zurück zum Zitat Beer AL, Röder B (2004) Attention to motion enhances processing of both visual and auditory stimuli: an event-related potential study. Brain Res Cogn Brain Res 18:205–225CrossRefPubMed Beer AL, Röder B (2004) Attention to motion enhances processing of both visual and auditory stimuli: an event-related potential study. Brain Res Cogn Brain Res 18:205–225CrossRefPubMed
Zurück zum Zitat Beer AL, Röder B (2005) Attending to visual or auditory motion affects perception within and across modalities: an event-related potential study. Eur J Neurosci 21:1116–1130CrossRefPubMed Beer AL, Röder B (2005) Attending to visual or auditory motion affects perception within and across modalities: an event-related potential study. Eur J Neurosci 21:1116–1130CrossRefPubMed
Zurück zum Zitat Bex PJ, Metha AB, Makous W (1999) Enhanced motion aftereffect for complex motions. Vis Res 39:2229–2238CrossRefPubMed Bex PJ, Metha AB, Makous W (1999) Enhanced motion aftereffect for complex motions. Vis Res 39:2229–2238CrossRefPubMed
Zurück zum Zitat Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296CrossRefPubMed Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296CrossRefPubMed
Zurück zum Zitat Clarke S, Bellmann Thiran A, Maeder P, Adriani M, Vernet O, Regli L, Cuisenaire O, Thiran JP (2002) What and where in human audition: selective deficits following focal hemispheric lesions. Exp Brain Res 147:8–15CrossRefPubMed Clarke S, Bellmann Thiran A, Maeder P, Adriani M, Vernet O, Regli L, Cuisenaire O, Thiran JP (2002) What and where in human audition: selective deficits following focal hemispheric lesions. Exp Brain Res 147:8–15CrossRefPubMed
Zurück zum Zitat Desmedt JE, Tomberg C (1990) Topographic analysis in brain mapping can be compromised by the average reference. Brain Topogr 3:35–42CrossRefPubMed Desmedt JE, Tomberg C (1990) Topographic analysis in brain mapping can be compromised by the average reference. Brain Topogr 3:35–42CrossRefPubMed
Zurück zum Zitat Desmedt JE, Tomberg C, Raspe G, Ducarme D (1993) Inadequacy of the average reference for identifying focal changes in EEG and evoked potential studies [3]. Electroencephalogr Clin Neurophysiol Evoked Potentials 88:534–536CrossRef Desmedt JE, Tomberg C, Raspe G, Ducarme D (1993) Inadequacy of the average reference for identifying focal changes in EEG and evoked potential studies [3]. Electroencephalogr Clin Neurophysiol Evoked Potentials 88:534–536CrossRef
Zurück zum Zitat Dong CJ, Swindale NV, Zakarauskas P, Hayward V (2000) The auditory motion aftereffect: its tuning and specificity in the spatial and frequency domains. Percept Psychophys 62:1099–1111PubMed Dong CJ, Swindale NV, Zakarauskas P, Hayward V (2000) The auditory motion aftereffect: its tuning and specificity in the spatial and frequency domains. Percept Psychophys 62:1099–1111PubMed
Zurück zum Zitat Ducommun CY, Michel CM, Clarke S, Adriani M, Seeck M, Landis T, Blanke O (2004) Cortical motion deafness. Neuron 43:765–777CrossRefPubMed Ducommun CY, Michel CM, Clarke S, Adriani M, Seeck M, Landis T, Blanke O (2004) Cortical motion deafness. Neuron 43:765–777CrossRefPubMed
Zurück zum Zitat Getzmann S (2008) Effects of velocity and motion-onset delay on detection and discrimination of sound motion. Hear Res 246:44–51CrossRefPubMed Getzmann S (2008) Effects of velocity and motion-onset delay on detection and discrimination of sound motion. Hear Res 246:44–51CrossRefPubMed
Zurück zum Zitat Getzmann S (2009) Effect of auditory motion velocity on reaction time and cortical processes. Neuropsychologia 47:2625–2633CrossRefPubMed Getzmann S (2009) Effect of auditory motion velocity on reaction time and cortical processes. Neuropsychologia 47:2625–2633CrossRefPubMed
Zurück zum Zitat Getzmann S, Lewald J (2010) Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion. Hear Res 259:44–54CrossRefPubMed Getzmann S, Lewald J (2010) Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion. Hear Res 259:44–54CrossRefPubMed
Zurück zum Zitat Getzmann S, Lewald J (in press) Shared cortical systems for processing of horizontal and vertical sound motion. J Neurophysiol Getzmann S, Lewald J (in press) Shared cortical systems for processing of horizontal and vertical sound motion. J Neurophysiol
Zurück zum Zitat Grantham DW (1986) Detection and discrimination of simulated motion of auditory targets in the horizontal plane. J Acoust Soc Am 79:1939–1949CrossRefPubMed Grantham DW (1986) Detection and discrimination of simulated motion of auditory targets in the horizontal plane. J Acoust Soc Am 79:1939–1949CrossRefPubMed
Zurück zum Zitat Grantham DW (1997) Auditory motion perception: snapshots revisited. In: Gilkey RHAA, Timothy R (eds) Binaural and spatial hearing in real and virtual environments. Lawrence Erlbaum Associates, Mahwah, pp 295–314 Grantham DW (1997) Auditory motion perception: snapshots revisited. In: Gilkey RHAA, Timothy R (eds) Binaural and spatial hearing in real and virtual environments. Lawrence Erlbaum Associates, Mahwah, pp 295–314
Zurück zum Zitat Grantham DW (1998) Auditory motion aftereffects in the horizontal plane: the effects of spectral region, spatial sector, and spatial richness. Acustica 84:337–347 Grantham DW (1998) Auditory motion aftereffects in the horizontal plane: the effects of spectral region, spatial sector, and spatial richness. Acustica 84:337–347
Zurück zum Zitat Griffiths TD, Rees A, Witton C, Shakir RA, Henning GB, Green GG (1996) Evidence for a sound movement area in the human cerebral cortex. Nature 383:425–427CrossRefPubMed Griffiths TD, Rees A, Witton C, Shakir RA, Henning GB, Green GG (1996) Evidence for a sound movement area in the human cerebral cortex. Nature 383:425–427CrossRefPubMed
Zurück zum Zitat Griffiths TD, Rees G, Rees A, Green GG, Witton C, Rowe D, Buchel C, Turner R, Frackowiak RS (1998) Right parietal cortex is involved in the perception of sound movement in humans. Nat Neurosci 1:74–79CrossRefPubMed Griffiths TD, Rees G, Rees A, Green GG, Witton C, Rowe D, Buchel C, Turner R, Frackowiak RS (1998) Right parietal cortex is involved in the perception of sound movement in humans. Nat Neurosci 1:74–79CrossRefPubMed
Zurück zum Zitat Heinrich SP, van der Smagt MJ, Bach M, Hoffmann MB (2004) Electrophysiological evidence for independent speed channels in human motion processing. J Vis 4:469–475CrossRefPubMed Heinrich SP, van der Smagt MJ, Bach M, Hoffmann MB (2004) Electrophysiological evidence for independent speed channels in human motion processing. J Vis 4:469–475CrossRefPubMed
Zurück zum Zitat Hoffmann MB, Bach M (2002) The distinction between eye and object motion is reflected by the motion-onset visual evoked potential. Exp Brain Res 144:141–151CrossRefPubMed Hoffmann MB, Bach M (2002) The distinction between eye and object motion is reflected by the motion-onset visual evoked potential. Exp Brain Res 144:141–151CrossRefPubMed
Zurück zum Zitat Hoffmann M, Dorn TJ, Bach M (1999) Time course of motion adaptation: motion-onset visual evoked potentials and subjective estimates. Vis Res 39:437–444CrossRefPubMed Hoffmann M, Dorn TJ, Bach M (1999) Time course of motion adaptation: motion-onset visual evoked potentials and subjective estimates. Vis Res 39:437–444CrossRefPubMed
Zurück zum Zitat Hoffmann MB, Unsöld AS, Bach M (2001) Directional tuning of human motion adaptation as reflected by the motion VEP. Vis Res 41:2187–2194CrossRefPubMed Hoffmann MB, Unsöld AS, Bach M (2001) Directional tuning of human motion adaptation as reflected by the motion VEP. Vis Res 41:2187–2194CrossRefPubMed
Zurück zum Zitat Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70 Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70
Zurück zum Zitat Krumbholz K, Hewson-Stoate N, Schonwiesner M (2007) Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices. J Neurophysiol 97:1649–1655CrossRefPubMed Krumbholz K, Hewson-Stoate N, Schonwiesner M (2007) Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices. J Neurophysiol 97:1649–1655CrossRefPubMed
Zurück zum Zitat Lewis JW, Beauchamp MS, DeYoe EA (2000) A comparison of visual and auditory motion processing in human cerebral cortex. Cereb Cortex 10:873–888CrossRefPubMed Lewis JW, Beauchamp MS, DeYoe EA (2000) A comparison of visual and auditory motion processing in human cerebral cortex. Cereb Cortex 10:873–888CrossRefPubMed
Zurück zum Zitat Lorteije JA, Kenemans JL, Jellema T, van der Lubbe RH, Lommers MW, van Wezel RJ (2007) Adaptation to real motion reveals direction-selective interactions between real and implied motion processing. J Cogn Neurosci 19:1231–1240CrossRefPubMed Lorteije JA, Kenemans JL, Jellema T, van der Lubbe RH, Lommers MW, van Wezel RJ (2007) Adaptation to real motion reveals direction-selective interactions between real and implied motion processing. J Cogn Neurosci 19:1231–1240CrossRefPubMed
Zurück zum Zitat Lorteije JA, van Wezel RJ, van der Smagt MJ (2008) Disentangling neural structures for processing of high- and low-speed visual motion. Eur J Neurosci 27:2341–2353CrossRefPubMed Lorteije JA, van Wezel RJ, van der Smagt MJ (2008) Disentangling neural structures for processing of high- and low-speed visual motion. Eur J Neurosci 27:2341–2353CrossRefPubMed
Zurück zum Zitat Mather G, Verstraten FAJ, Anstis SM (1998) The motion aftereffect. A modern perspective. MIT Press, Cambridge Mather G, Verstraten FAJ, Anstis SM (1998) The motion aftereffect. A modern perspective. MIT Press, Cambridge
Zurück zum Zitat Maurer JP, Bach M (2003) Isolating motion responses in visual evoked potentials by pre-adapting flicker-sensitive mechanisms. Exp Brain Res 151:536–541CrossRefPubMed Maurer JP, Bach M (2003) Isolating motion responses in visual evoked potentials by pre-adapting flicker-sensitive mechanisms. Exp Brain Res 151:536–541CrossRefPubMed
Zurück zum Zitat Moiseff A, Haresign T (1992) Response of auditory units in the barn owl’s inferior colliculus to continuously varying interaural phase differences. J Neurophysiol 67:1428–1436PubMed Moiseff A, Haresign T (1992) Response of auditory units in the barn owl’s inferior colliculus to continuously varying interaural phase differences. J Neurophysiol 67:1428–1436PubMed
Zurück zum Zitat Neelon MF, Jenison RL (2003) The effect of trajectory on the auditory motion aftereffect. Hear Res 180:57–66CrossRefPubMed Neelon MF, Jenison RL (2003) The effect of trajectory on the auditory motion aftereffect. Hear Res 180:57–66CrossRefPubMed
Zurück zum Zitat Neelon MF, Jenison RL (2004) The temporal growth and decay of the auditory motion aftereffect. J Acoust Soc Am 115:3112–3123CrossRefPubMed Neelon MF, Jenison RL (2004) The temporal growth and decay of the auditory motion aftereffect. J Acoust Soc Am 115:3112–3123CrossRefPubMed
Zurück zum Zitat Spitzer MW, Semple MN (1991) Interaural phase coding in auditory midbrain: influence of dynamic stimulus features. Science 254:721–724CrossRefPubMed Spitzer MW, Semple MN (1991) Interaural phase coding in auditory midbrain: influence of dynamic stimulus features. Science 254:721–724CrossRefPubMed
Zurück zum Zitat Toronchuk JM, Stumpf E, Cynader MS (1992) Auditory cortex neurons sensitive to correlates of auditory motion: underlying mechanisms. Exp Brain Res 88:169–180CrossRefPubMed Toronchuk JM, Stumpf E, Cynader MS (1992) Auditory cortex neurons sensitive to correlates of auditory motion: underlying mechanisms. Exp Brain Res 88:169–180CrossRefPubMed
Zurück zum Zitat Wagner H, Kautz D, Poganiatz I (1997) Principles of acoustic motion detection in animals and man. Trends Neurosci 20:583–588CrossRefPubMed Wagner H, Kautz D, Poganiatz I (1997) Principles of acoustic motion detection in animals and man. Trends Neurosci 20:583–588CrossRefPubMed
Zurück zum Zitat Warren JD, Zielinski BA, Green GG, Rauschecker JP, Griffiths TD (2002) Perception of sound-source motion by the human brain. Neuron 34:139–148CrossRefPubMed Warren JD, Zielinski BA, Green GG, Rauschecker JP, Griffiths TD (2002) Perception of sound-source motion by the human brain. Neuron 34:139–148CrossRefPubMed
Zurück zum Zitat World Medical Association (2000) Declaration of helsinki: ethical principles for medical research involving human subjects. JAMA 284:3043–3045CrossRef World Medical Association (2000) Declaration of helsinki: ethical principles for medical research involving human subjects. JAMA 284:3043–3045CrossRef
Zurück zum Zitat Xiang J, Holowka S, Ishii R, Wilson D, Chuang S (2004) Dynamic neuromagnetic responses to auditory motion: a novel index for evaluation of attention. Neurol Clin Neurophysiol 2004:106PubMed Xiang J, Holowka S, Ishii R, Wilson D, Chuang S (2004) Dynamic neuromagnetic responses to auditory motion: a novel index for evaluation of attention. Neurol Clin Neurophysiol 2004:106PubMed
Metadaten
Titel
Motion-onset auditory-evoked potentials critically depend on history
verfasst von
Ramona Grzeschik
Martin Böckmann-Barthel
Roland Mühler
Michael B. Hoffmann
Publikationsdatum
01.05.2010
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 1/2010
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-010-2221-7

Weitere Artikel der Ausgabe 1/2010

Experimental Brain Research 1/2010 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.