Skip to main content
Erschienen in: Diabetologia 7/2008

01.07.2008 | Article

Mouse vanin-1 is cytoprotective for islet beta cells and regulates the development of type 1 diabetes

verfasst von: C. Roisin-Bouffay, R. Castellano, R. Valéro, L. Chasson, F. Galland, P. Naquet

Erschienen in: Diabetologia | Ausgabe 7/2008

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Islet cell death is a key initiating and perpetuating event in type 1 diabetes and involves both immune-mediated and endogenous mechanisms. The epithelial pantetheinase vanin-1 is proinflammatory and cytoprotective via cysteamine release in some tissues. We investigated the impact of a vanin-1 deficiency on islet death and type 1 diabetes incidence.

Methods

Vanin-1-deficient mice were produced and tested in drug-induced and autoimmune diabetes models. The contribution of vanin-1 to islet survival versus immune responses was evaluated using lymphocyte transfer and islet culture experiments.

Results

The vanin-1/cysteamine pathway contributes to the protection of islet beta cells from streptozotocin-induced death in vitro and in vivo. Furthermore, vanin-1-deficient NOD mice showed a significant aggravation of diabetes, which depended upon loss of vanin-1 expression by host tissues. This increased islet fragility was accompanied by greater CD4+ insulitis without impairment of regulatory cells. Addition of cystamine, the product of pantetheinase activity, protected islets in vitro and compensated for vanin-1 deficiency in vivo.

Conclusions/interpretation

This study unravels a major cytoprotective role of cysteamine for islet cells and suggests that modulation of pantetheinase activity may offer alternative strategies to maintain islet cell homeostasis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat You S, Belghith M, Cobbold S et al (2005) Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T cells. Diabetes 54:1415–1422PubMedCrossRef You S, Belghith M, Cobbold S et al (2005) Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T cells. Diabetes 54:1415–1422PubMedCrossRef
2.
Zurück zum Zitat Taubert R, Schwendemann J, Kyewski B (2007) Highly variable expression of tissue-restricted self-antigens in human thymus: implications for self-tolerance and autoimmunity. Eur J Immunol 37:838–848PubMedCrossRef Taubert R, Schwendemann J, Kyewski B (2007) Highly variable expression of tissue-restricted self-antigens in human thymus: implications for self-tolerance and autoimmunity. Eur J Immunol 37:838–848PubMedCrossRef
3.
Zurück zum Zitat Vafiadis P, Bennett ST, Todd JA et al (1997) Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 15:289–292PubMedCrossRef Vafiadis P, Bennett ST, Todd JA et al (1997) Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 15:289–292PubMedCrossRef
4.
Zurück zum Zitat Kishimoto H, Sprent J (2001) A defect in central tolerance in NOD mice. Nat Immunol 2:1025–1031PubMedCrossRef Kishimoto H, Sprent J (2001) A defect in central tolerance in NOD mice. Nat Immunol 2:1025–1031PubMedCrossRef
5.
Zurück zum Zitat Yoon JW, Jun HS (2006) Viruses cause type 1 diabetes in animals. Ann N Y Acad Sci 1079:138–146PubMedCrossRef Yoon JW, Jun HS (2006) Viruses cause type 1 diabetes in animals. Ann N Y Acad Sci 1079:138–146PubMedCrossRef
6.
Zurück zum Zitat Fujinami RS, von Herrath MG, Christen U, Whitton JL (2006) Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev 19:80–94PubMedCrossRef Fujinami RS, von Herrath MG, Christen U, Whitton JL (2006) Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev 19:80–94PubMedCrossRef
7.
Zurück zum Zitat Andre I, Gonzalez A, Wang B, Katz J, Benoist C, Mathis D (1996) Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc Natl Acad Sci USA 93:2260–2263PubMedCrossRef Andre I, Gonzalez A, Wang B, Katz J, Benoist C, Mathis D (1996) Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc Natl Acad Sci USA 93:2260–2263PubMedCrossRef
8.
Zurück zum Zitat Lee MS, Chang I, Kim S (2004) Death effectors of beta-cell apoptosis in type 1 diabetes. Mol Genet Metab 83:82–92PubMedCrossRef Lee MS, Chang I, Kim S (2004) Death effectors of beta-cell apoptosis in type 1 diabetes. Mol Genet Metab 83:82–92PubMedCrossRef
9.
Zurück zum Zitat Mathis D, Vence L, Benoist C (2001) Beta-cell death during progression to diabetes. Nature 414:792–798PubMedCrossRef Mathis D, Vence L, Benoist C (2001) Beta-cell death during progression to diabetes. Nature 414:792–798PubMedCrossRef
10.
Zurück zum Zitat Nitta Y, Kawamoto S, Tashiro F et al (2001) IL-12 plays a pathologic role at the inflammatory loci in the development of diabetes in NOD mice. J Autoimmun 16:97–104PubMedCrossRef Nitta Y, Kawamoto S, Tashiro F et al (2001) IL-12 plays a pathologic role at the inflammatory loci in the development of diabetes in NOD mice. J Autoimmun 16:97–104PubMedCrossRef
11.
Zurück zum Zitat Steer SA, Scarim AL, Chambers KT, Corbett JA (2006) Interleukin-1 stimulates beta-cell necrosis and release of the immunological adjuvant HMGB1. PLoS Med 3:e17PubMedCrossRef Steer SA, Scarim AL, Chambers KT, Corbett JA (2006) Interleukin-1 stimulates beta-cell necrosis and release of the immunological adjuvant HMGB1. PLoS Med 3:e17PubMedCrossRef
12.
Zurück zum Zitat Chervonsky AV, Wang Y, Wong FS et al (1997) The role of Fas in autoimmune diabetes. Cell 89:17–24PubMedCrossRef Chervonsky AV, Wang Y, Wong FS et al (1997) The role of Fas in autoimmune diabetes. Cell 89:17–24PubMedCrossRef
13.
Zurück zum Zitat Amrani A, Verdaguer J, Thiessen S, Bou S, Santamaria P (2000) IL-1alpha, IL-1beta, and IFN-gamma mark beta cells for Fas-dependent destruction by diabetogenic CD4(+) T lymphocytes. J Clin Invest 105:459–468PubMedCrossRef Amrani A, Verdaguer J, Thiessen S, Bou S, Santamaria P (2000) IL-1alpha, IL-1beta, and IFN-gamma mark beta cells for Fas-dependent destruction by diabetogenic CD4(+) T lymphocytes. J Clin Invest 105:459–468PubMedCrossRef
14.
Zurück zum Zitat Apostolou I, Hao Z, Rajewsky K, von Boehmer H (2003) Effective destruction of Fas-deficient insulin-producing beta cells in type 1 diabetes. J Exp Med 198:1103–1106PubMedCrossRef Apostolou I, Hao Z, Rajewsky K, von Boehmer H (2003) Effective destruction of Fas-deficient insulin-producing beta cells in type 1 diabetes. J Exp Med 198:1103–1106PubMedCrossRef
15.
Zurück zum Zitat Trembleau S, Penna G, Gregori S et al (1999) Pancreas-infiltrating Th1 cells and diabetes develop in IL-12-deficient nonobese diabetic mice. J Immunol 163:2960–2968PubMed Trembleau S, Penna G, Gregori S et al (1999) Pancreas-infiltrating Th1 cells and diabetes develop in IL-12-deficient nonobese diabetic mice. J Immunol 163:2960–2968PubMed
16.
Zurück zum Zitat Nikolic T, Geutskens SB, van Rooijen N, Drexhage HA, Leenen PJ (2005) Dendritic cells and macrophages are essential for the retention of lymphocytes in (peri)-insulitis of the nonobese diabetic mouse: a phagocyte depletion study. Lab Invest 85:487–501PubMedCrossRef Nikolic T, Geutskens SB, van Rooijen N, Drexhage HA, Leenen PJ (2005) Dendritic cells and macrophages are essential for the retention of lymphocytes in (peri)-insulitis of the nonobese diabetic mouse: a phagocyte depletion study. Lab Invest 85:487–501PubMedCrossRef
17.
Zurück zum Zitat Martin AP, Alexander-Brett JM, Canasto-Chibuque C et al (2007) The chemokine binding protein m3 prevents diabetes induced by multiple low doses of streptozotocin. J Immunol 178:4623–4631PubMed Martin AP, Alexander-Brett JM, Canasto-Chibuque C et al (2007) The chemokine binding protein m3 prevents diabetes induced by multiple low doses of streptozotocin. J Immunol 178:4623–4631PubMed
18.
Zurück zum Zitat Haskins K, Bradley B, Powers K et al (2003) Oxidative stress in type 1 diabetes. Ann N Y Acad Sci 1005:43–54PubMedCrossRef Haskins K, Bradley B, Powers K et al (2003) Oxidative stress in type 1 diabetes. Ann N Y Acad Sci 1005:43–54PubMedCrossRef
19.
Zurück zum Zitat Li X, Chen H, Epstein PN (2006) Metallothionein and catalase sensitize to diabetes in nonobese diabetic mice: reactive oxygen species may have a protective role in pancreatic β-cells. Diabetes 55:1592–1604PubMedCrossRef Li X, Chen H, Epstein PN (2006) Metallothionein and catalase sensitize to diabetes in nonobese diabetic mice: reactive oxygen species may have a protective role in pancreatic β-cells. Diabetes 55:1592–1604PubMedCrossRef
20.
Zurück zum Zitat Bertera S, Crawford ML, Alexander AM et al (2003) Gene transfer of manganese superoxide dismutase extends islet graft function in a mouse model of autoimmune diabetes. Diabetes 52:387–393PubMedCrossRef Bertera S, Crawford ML, Alexander AM et al (2003) Gene transfer of manganese superoxide dismutase extends islet graft function in a mouse model of autoimmune diabetes. Diabetes 52:387–393PubMedCrossRef
21.
Zurück zum Zitat Hotta M, Tashiro F, Ikegami H et al (1998) Pancreatic beta cell-specific expression of thioredoxin, an antioxidative and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. J Exp Med 188:1445–1451PubMedCrossRef Hotta M, Tashiro F, Ikegami H et al (1998) Pancreatic beta cell-specific expression of thioredoxin, an antioxidative and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. J Exp Med 188:1445–1451PubMedCrossRef
22.
Zurück zum Zitat Pitari G, Malergue F, Martin F et al (2000) Pantetheinase activity of membrane-bound Vanin-1: lack of free cysteamine in tissues of Vanin-1 deficient mice. FEBS Lett 483:149–154PubMedCrossRef Pitari G, Malergue F, Martin F et al (2000) Pantetheinase activity of membrane-bound Vanin-1: lack of free cysteamine in tissues of Vanin-1 deficient mice. FEBS Lett 483:149–154PubMedCrossRef
23.
Zurück zum Zitat Berruyer C, Martin FM, Castellano R et al (2004) Vanin-1−/− mice exhibit a glutathione-mediated tissue resistance to oxidative stress. Mol Cell Biol 24:7214–7224PubMedCrossRef Berruyer C, Martin FM, Castellano R et al (2004) Vanin-1−/− mice exhibit a glutathione-mediated tissue resistance to oxidative stress. Mol Cell Biol 24:7214–7224PubMedCrossRef
24.
Zurück zum Zitat Martin F, Penet MF, Malergue F et al (2004) Vanin-1(−/−) mice show decreased NSAID- and schistosoma-induced intestinal inflammation associated with higher glutathione stores. J Clin Invest 113:591–597PubMed Martin F, Penet MF, Malergue F et al (2004) Vanin-1(−/−) mice show decreased NSAID- and schistosoma-induced intestinal inflammation associated with higher glutathione stores. J Clin Invest 113:591–597PubMed
25.
Zurück zum Zitat Berruyer C, Pouyet L, Millet V et al (2006) Vanin-1 licenses inflammatory mediator production by gut epithelial cells and controls colitis by antagonizing peroxisome proliferator-activated receptor gamma activity. J Exp Med 203:2817–2827PubMedCrossRef Berruyer C, Pouyet L, Millet V et al (2006) Vanin-1 licenses inflammatory mediator production by gut epithelial cells and controls colitis by antagonizing peroxisome proliferator-activated receptor gamma activity. J Exp Med 203:2817–2827PubMedCrossRef
26.
Zurück zum Zitat Karpuj MV, Becher MW, Springer JE et al (2002) Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat Med 8:143–149PubMedCrossRef Karpuj MV, Becher MW, Springer JE et al (2002) Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat Med 8:143–149PubMedCrossRef
27.
Zurück zum Zitat Borrell-Pages M, Canals JM, Cordelieres FP et al (2006) Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase. J Clin Invest 116:1410–1424PubMedCrossRef Borrell-Pages M, Canals JM, Cordelieres FP et al (2006) Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase. J Clin Invest 116:1410–1424PubMedCrossRef
28.
Zurück zum Zitat Tremblay ME, Saint-Pierre M, Bourhis E, Levesque D, Rouillard C, Cicchetti F (2006) Neuroprotective effects of cystamine in aged Parkinsonian mice. Neurobiol Aging 27:862–870PubMedCrossRef Tremblay ME, Saint-Pierre M, Bourhis E, Levesque D, Rouillard C, Cicchetti F (2006) Neuroprotective effects of cystamine in aged Parkinsonian mice. Neurobiol Aging 27:862–870PubMedCrossRef
29.
Zurück zum Zitat Harada M, Makino S (1984) Promotion of spontaneous diabetes in non-obese diabetes-prone mice by cyclophosphamide. Diabetologia 27:604–606PubMedCrossRef Harada M, Makino S (1984) Promotion of spontaneous diabetes in non-obese diabetes-prone mice by cyclophosphamide. Diabetologia 27:604–606PubMedCrossRef
30.
Zurück zum Zitat McEvoy RC, Andersson J, Sandler S, Hellerstrom C (1984) Multiple low-dose streptozotocin-induced diabetes in the mouse. Evidence for stimulation of a cytotoxic cellular immune response against an insulin-producing beta cell line. J Clin Invest 74:715–722PubMedCrossRef McEvoy RC, Andersson J, Sandler S, Hellerstrom C (1984) Multiple low-dose streptozotocin-induced diabetes in the mouse. Evidence for stimulation of a cytotoxic cellular immune response against an insulin-producing beta cell line. J Clin Invest 74:715–722PubMedCrossRef
31.
Zurück zum Zitat Karges W, Hammond-McKibben D, Gaedigk R, Shibuya N, Cheung R, Dosch HM (1997) Loss of self-tolerance to ICA69 in nonobese diabetic mice. Diabetes 46:1548–1556PubMedCrossRef Karges W, Hammond-McKibben D, Gaedigk R, Shibuya N, Cheung R, Dosch HM (1997) Loss of self-tolerance to ICA69 in nonobese diabetic mice. Diabetes 46:1548–1556PubMedCrossRef
32.
Zurück zum Zitat Bendelac A, Carnaud C, Boitard C, Bach JF (1987) Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+T cells. J Exp Med 166:823–832PubMedCrossRef Bendelac A, Carnaud C, Boitard C, Bach JF (1987) Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+T cells. J Exp Med 166:823–832PubMedCrossRef
33.
Zurück zum Zitat Liadis N, Murakami K, Eweida M et al (2005) Caspase-3-dependent beta-cell apoptosis in the initiation of autoimmune diabetes mellitus. Mol Cell Biol 25:3620–3629PubMedCrossRef Liadis N, Murakami K, Eweida M et al (2005) Caspase-3-dependent beta-cell apoptosis in the initiation of autoimmune diabetes mellitus. Mol Cell Biol 25:3620–3629PubMedCrossRef
34.
Zurück zum Zitat Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279PubMedCrossRef Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279PubMedCrossRef
35.
Zurück zum Zitat Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRef Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRef
36.
Zurück zum Zitat Gregori S, Giarratana N, Smiroldo S, Adorini L (2003) Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J Immunol 171:4040–4047PubMed Gregori S, Giarratana N, Smiroldo S, Adorini L (2003) Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J Immunol 171:4040–4047PubMed
37.
Zurück zum Zitat Brode S, Raine T, Zaccone P, Cooke A (2006) Cyclophosphamide-induced type-1 diabetes in the NOD mouse is associated with a reduction of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 177:6603–6612PubMed Brode S, Raine T, Zaccone P, Cooke A (2006) Cyclophosphamide-induced type-1 diabetes in the NOD mouse is associated with a reduction of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 177:6603–6612PubMed
38.
Zurück zum Zitat Nicolls MR, Haskins K, Flores SC (2007) Oxidant stress, immune dysregulation, and vascular function in type I diabetes. Antioxid Redox Signal 9:879–889PubMedCrossRef Nicolls MR, Haskins K, Flores SC (2007) Oxidant stress, immune dysregulation, and vascular function in type I diabetes. Antioxid Redox Signal 9:879–889PubMedCrossRef
39.
Zurück zum Zitat Shoda LK, Young DL, Ramanujan S et al (2005) A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 23:115–126PubMedCrossRef Shoda LK, Young DL, Ramanujan S et al (2005) A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 23:115–126PubMedCrossRef
40.
42.
Zurück zum Zitat Pantano C, Reynaert NL, van der Vliet A, Janssen-Heininger YM (2006) Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway. Antioxid Redox Signal 8:1791–1806PubMedCrossRef Pantano C, Reynaert NL, van der Vliet A, Janssen-Heininger YM (2006) Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway. Antioxid Redox Signal 8:1791–1806PubMedCrossRef
43.
Zurück zum Zitat Eldor R, Yeffet A, Baum K et al (2006) Conditional and specific NF-kappaB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci U S A 103:5072–5077PubMedCrossRef Eldor R, Yeffet A, Baum K et al (2006) Conditional and specific NF-kappaB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci U S A 103:5072–5077PubMedCrossRef
44.
Zurück zum Zitat Ientile R, Campisi A, Raciti G et al (2003) Cystamine inhibits transglutaminase and caspase-3 cleavage in glutamate-exposed astroglial cells. J Neurosci Res 74:52–59PubMedCrossRef Ientile R, Campisi A, Raciti G et al (2003) Cystamine inhibits transglutaminase and caspase-3 cleavage in glutamate-exposed astroglial cells. J Neurosci Res 74:52–59PubMedCrossRef
45.
Zurück zum Zitat Lesort M, Lee M, Tucholski J, Johnson GV (2003) Cystamine inhibits caspase activity. Implications for the treatment of polyglutamine disorders. J Biol Chem 278:3825–3830PubMedCrossRef Lesort M, Lee M, Tucholski J, Johnson GV (2003) Cystamine inhibits caspase activity. Implications for the treatment of polyglutamine disorders. J Biol Chem 278:3825–3830PubMedCrossRef
46.
Zurück zum Zitat Chu F, Koomen JM, Kobayashi R, O'Brian CA (2005) Identification of an inactivating cysteine switch in protein kinase Cepsilon, a rational target for the design of protein kinase Cepsilon-inhibitory cancer therapeutics. Cancer Res 65:10478–10485PubMedCrossRef Chu F, Koomen JM, Kobayashi R, O'Brian CA (2005) Identification of an inactivating cysteine switch in protein kinase Cepsilon, a rational target for the design of protein kinase Cepsilon-inhibitory cancer therapeutics. Cancer Res 65:10478–10485PubMedCrossRef
47.
Zurück zum Zitat Ivaska J, Bosca L, Parker PJ (2003) PKCepsilon is a permissive link in integrin-dependent IFN-gamma signalling that facilitates JAK phosphorylation of STAT1. Nat Cell Biol 5:363–369PubMedCrossRef Ivaska J, Bosca L, Parker PJ (2003) PKCepsilon is a permissive link in integrin-dependent IFN-gamma signalling that facilitates JAK phosphorylation of STAT1. Nat Cell Biol 5:363–369PubMedCrossRef
48.
Zurück zum Zitat Suk K, Kim S, Kim YH et al (2001) IFN-gamma/TNF-alpha synergism as the final effector in autoimmune diabetes: a key role for STAT1/IFN regulatory factor-1 pathway in pancreatic beta cell death. J Immunol 166:4481–4489PubMed Suk K, Kim S, Kim YH et al (2001) IFN-gamma/TNF-alpha synergism as the final effector in autoimmune diabetes: a key role for STAT1/IFN regulatory factor-1 pathway in pancreatic beta cell death. J Immunol 166:4481–4489PubMed
Metadaten
Titel
Mouse vanin-1 is cytoprotective for islet beta cells and regulates the development of type 1 diabetes
verfasst von
C. Roisin-Bouffay
R. Castellano
R. Valéro
L. Chasson
F. Galland
P. Naquet
Publikationsdatum
01.07.2008
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 7/2008
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-008-1017-9

Weitere Artikel der Ausgabe 7/2008

Diabetologia 7/2008 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Perioperative Checkpointhemmer-Therapie verbessert NSCLC-Prognose

28.05.2024 NSCLC Nachrichten

Eine perioperative Therapie mit Nivolumab reduziert das Risiko für Rezidive und Todesfälle bei operablem NSCLC im Vergleich zu einer alleinigen neoadjuvanten Chemotherapie um über 40%. Darauf deuten die Resultate der Phase-3-Studie CheckMate 77T.

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.