Skip to main content
Erschienen in: Insights into Imaging 1/2019

Open Access 01.12.2019 | Educational Review

MRI of the axial skeleton in spondyloarthritis: the many faces of new bone formation

verfasst von: Frederiek Laloo, Nele Herregods, Jacob L. Jaremko, Philippe Carron, Dirk Elewaut, Filip Van den Bosch, Koenraad Verstraete, Lennart Jans

Erschienen in: Insights into Imaging | Ausgabe 1/2019

Abstract

Spondyloarthritis has two hallmark features: active inflammation and structural lesions with new bone formation. MRI is well suited to assess active inflammation, but there is increasing interest in the role of structural lesions at MRI. Recent MRI studies have examined the established features of new bone formation and demonstrated some novel features which show diagnostic value and might even have potential as possible markers of disease progression. Although MRI is not the first imaging modality that comes into mind for assessment of bony changes, these features of new bone formation can be detected on MRI—if one knows how to recognize them. This review illustrates the MRI features of new bone formation and addresses possible pitfalls.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ASAS
Assessment of SpondyloArthritis international Society
DISH
Diffuse idiopathic skeletal hyperostosis
SpA
Spondyloarthritis

Key points

  • New bone formation is a hallmark feature of spondyloarthritis.
  • New bone formation can be reliably assessed on MRI.
  • MRI shows new bone formation within the sacroiliac joints.
  • MRI shows (peri)-discal new bone formation in the spine.
  • The facet joints and manubriosternal joint show new bone formation as well.

Background

Spondyloarthritis (SpA) represents a group of inflammatory rheumatic diseases, inter-related by clinical, genetic, radiological, and therapeutic characteristics. Axial SpA manifests as arthritis and enthesitis of the axial skeleton, clinically associated with inflammatory back pain [15]. As the disease progresses, new bone formation becomes a prominent feature in the axial skeleton—resulting in reduced mobility, deformity of the spine, and increased morbidity [1, 2, 6]. Both active inflammation and new bone formation are considered hallmark features of SpA [1, 2, 710].
Establishing a diagnosis for SpA is based on the combined presence of a number of clinical features combined with imaging. As such, imaging of the axial skeleton has attained an important role in diagnosis, classification, and follow-up of SpA [11]. For initial evaluation of axial SpA, MRI of the sacroiliac joints is the preferred technique [11, 12]. For evaluation of established disease, both MRI and radiography are considered useful: radiography to detect structural bony changes and MRI of the axial skeleton to monitor inflammation and structural lesions and to evaluate treatment [13, 14].
In current clinical practice, when evaluating an MRI for features of SpA, the radiologist will often focus on the inflammatory lesions. Correspondingly, the definition of a “positive MRI” in the Assessment of SpondyloArthritis international Society (ASAS) classification criteria focusses on bone marrow edema and does not include structural lesions [11, 12]. Nevertheless, as stated in the ASAS classification criteria, bone marrow edema should only lead to a “positive MRI” if it is “suggestive of SpA” [11]. This addition to the definition implies the need of a certain qualitative aspect, which might be established by including early signs of structural lesions in the MRI assessment.
Recently, several studies have examined features of new bone formation on MRI of the axial skeleton in patients with SpA and found features that showed potential as diagnostic features or as markers of disease progression [1521]. The inclusion of these and other features of structural lesions might provide a useful additional qualitative aspect to MRI assessment for SpA.
The aim of this pictorial review is to familiarize the reader with the features of new bone formation on MRI of the axial skeleton in axial SpA and to point out possible pitfalls in interpretation.

MRI features of new bone formation in the sacroiliac joints

An illustration of the features associated with new bone formation in the sacroiliac joints has been presented in Fig. 1.

Intra-articular high signal intensity on T1-weighted MR images

“Backfill” (Fig. 2) has been defined as the presence of high signal intensity—similar to that of adipose tissue—on T1-weighted MR images within the sacroiliac joint space, present on two consecutive slices and measuring 10 mm or more parallel to the subchondral bone plate on at least one slice [19, 20]. This has been hypothesized to represent metaplastic tissue refilling the eroded subchondral bone [15]. However, no consensus exists on what this MRI feature really represents, as no histopathological analysis of this tissue has been obtained yet [19].
Although the term “backfill” is not in universal use, this intra-articular high signal intensity on T1-weighted MRI of the sacroiliac joints has been documented in 38–63% of patients ≤ 45 years old with SpA and has shown high diagnostic value for SpA [15, 19]. One study even suggested that the presence of this finding should overrule the ASAS definition for a “positive MRI” for sacroiliitis suggestive of SpA, even when no concomitant BME is present [20].

Ankylosis of the sacroiliac joints

Ankylosis of the sacroiliac joints (Fig. 3) is considered a hallmark feature of end-stage axial SpA. This bony bridging may appear as low signal intensity obliteration of articular cortical margins, on most MRI sequences—but it can have high signal intensity on T1-weighted MR images, when the subarticular bone marrow crossing the sacroiliac joint has high-fat content [11, 19, 20].
Similar to intra-articular high signal intensity on T1-weighted MR images, ankylosis is highly specific for SpA, and it has been suggested that its presence should lead to a “positive MRI” for sacroiliitis suggestive of SpA, even in the absence of BME [19, 20, 22].

MRI features of new bone formation in the spine

An illustration of the features associated with new bone formation at the disco-vertebral unit has been presented in Fig. 4.

Discal high signal intensity on T1-weighted MR images

Discal high signal intensity on T1-weighted MR images (Fig. 5) has only been examined in a limited number of studies. It has been hypothesized to represent early discal calcification [21, 2327]. It is defined as the presence of high signal intensity similar to adipose tissue on T1-weighted images within the intervertebral disc, present on two consecutive slices and measuring half of the disc height and a quarter of the vertebra width on at least one slice [21]. In a recent case-control study, discal high T1 signal intensity appeared to be something that was remarkably specific for SpA, although this needs independent validation [21].
It remains a possibility that this signal change of the intervertebral disc could be present in other diseases which also show new bone formation, e.g., diffuse idiopathic skeletal hyperostosis (DISH) [21]. However, no studies concerning this topic have been published to date.

Non-bridging syndesmophytes

Syndesmophyte formation (Fig. 6) is defined as bony growth originating from the Sharpey fibers of the annulus fibrosus [11, 13, 21]. On sagittal spinal MRI, syndesmophytes will be observed as longitudinal bony outgrowths at the anterior and posterior corners of the vertebral bodies, oriented craniocaudally. The signal intensity on T1-weighted images is isointense to red bone marrow or hyperintense to red bone marrow—in case of presence of fatty bone marrow [21].
Although a sign of new bone formation, the value of non-bridging syndesmophytes for SpA is questionable on spinal MRI. Firstly, syndesmophytes that are clearly visible radiographically can often hardly be seen on MRI [28]. Secondly, two separate MRI studies demonstrated that non-bridging syndesmophytes are frequently observed in patients without SpA [18, 21]. Finally, non-bridging syndesmophytes in the absence of other spinal features of new bone formation were only seen in patients without SpA [21]. This suggests that non-bridging syndesmophytes on MRI should not be used for purposes of SpA diagnosis. It is also unclear how these relate to disease progression.

Ankylosis of the vertebral bodies

Vertebral corner bridging

Vertebral corner bridging is also referred to as “bridging syndesmophytes” or “ankylosis within the annulus fibrosus” (Fig. 7) [13, 21]. On sagittal spinal MRI, vertebral corner bridging is observed as the bony fusion of the anterior or posterior corners of the vertebral bodies, at the Sharpey fibers of the annulus fibrosus of the intervertebral disc [21]. The signal intensity on T1-weighted images is isointense to red bone marrow or hyperintense to red bone marrow—in case of presence of fatty bone marrow [21]. In contrast to non-bridging syndesmophytes, this MRI feature is specific for SpA and is potentially a reliable indicator of SpA [21].
In extensive cases, vertebral corner bridging is often accompanied by squaring and sclerosis of the anterior aspect of the vertebral body margins resulting in the radiographic feature of a “bamboo spine” [10]. The appearance of a bamboo spine is less evident on MRI, but vertebral corner bridging can clearly be observed [21, 28].

Transdiscal ankylosis

Also referred to as “non-corner ankylosis” [21], this MRI feature (Fig. 8) is defined as bony fusion crossing the vertebral joint space through the expected location of the nucleus pulposus in the intervertebral disc, with obliteration of the cortical margins of the vertebral body [11, 13, 21]. Similar to syndesmophytes, the signal intensity on T1-weighted images is isointense to red bone marrow or hyperintense to red bone marrow—in case of presence of fatty bone marrow [21]. This MRI feature is specific for axial SpA and considered a reliable indicator of SpA [21].
It is generally considered a marker of late disease, as axial SpA almost always starts in the sacroiliac joints, typically leaving the spine unaffected for a longer period of time; however, it can also be found in younger patients with more extensive disease [11, 21].

Ankylosis of the intervertebral synovial joints

To the best of our knowledge, no MRI studies regarding the MR features and prevalence of ankylosis of intervertebral synovial joints in SpA have been published. This may be because detailed evaluation of these joints requires coronal or transverse slices, which are time-consuming to obtain at MRI and not generally found in standard SpA MRI protocols [11, 21, 29, 30].
There are three types of intervertebral synovial joints, i.e., costovertebral, costotransverse, and zygapophyseal (facet) joints. Only the facet joints—to a certain extent—can be assessed for ankylosis on standard sagittal MRI. When visible, they should be assessed for ankylosis (Fig. 9), as it has been suggested that these joints are primarily and early involved in the course of the disease [30, 31].

MRI features of new bone formation in the sternum

Although rarely discussed—and not even mentioned in the ASAS handbook—ankylosis of the manubriosternal joint (Fig. 8) or the sternoclavicular joints can occur in SpA [11, 32]. Nevertheless, sagittal imaging planes—as obtained in standard MRI of the spine in SpA—allow detailed evaluation of the manubriosternal joint. Therefore, it is important that no saturation bands are placed over the sternum in standard MR imaging of the spine for SpA, as this feature of new bone formation might be missed. Note that coronal planes can also be useful for assessing the sternum, but axial planes are not.

Pitfalls in MR imaging diagnosis

Diffuse idiopathic skeletal hyperostosis

Diffuse idiopathic skeletal hyperostosis (DISH) is also referred to as “Forestier disease” (Fig. 10). DISH patients typically have bulky osteophytes, which often exceed the length of anterior longitudinal ligament [33]. The Resnick criteria are helpful for the diagnosis of DISH: hyperproliferative bony changes in ≥ 4 adjacent vertebrae, preservation of the intervertebral disc space, and absence of apophyseal joint or inflammatory sacroiliac changes [34, 35]. If still ambiguous, it has also been suggested to evaluate the growth angle of the vertebral edge to differentiate syndesmophytes (primarily craniocaudal orientation ≤ 45° from vertical) from spondylophytes (primarily horizontal, > 45° from vertical) [36].
Although DISH is most typically seen on the right side of the thoracic spine, it can also be present in the sacroiliac joints [11]. Furthermore, recently, it has been shown that sacroiliac fusion, anterior and posterior bridging, and entheseal bridging also occur significantly in DISH [37].

Congenital vertebral fusion

Also referred to as “congenital block vertebrae” (Fig. 11), this vertebral fusion is due to a failure in the process of segmentation during the fetal period. Fusion of the vertebrae can be partial or complete, dependent on the involvement of anterior and/or posterior elements. At the level of the intervertebral disc, there is often a “waist.” The height of a block vertebra should be that of the two vertebrae and the intervertebral disc [38]; however, this is not always the case in clinical practice—as demonstrated in Fig. 11b. Since vertebrae grow in antero-posterior diameter during childhood, fusion that is congenital or developmental is often associated with narrow antero-posterior width of the affected vertebrae, a clue that can distinguish this from fusion later in life.

Acquired vertebral fusion

In acquired vertebral fusion, unlike congenital vertebral fusion, the height should be less than the sum of the two vertebral bodies and the intervertebral disc [38]. Acquired intervertebral fusion can occur as a late complication of infectious spondylodiscitis (e.g., Pott’s disease) after 12–24 months (Fig. 12) [39]. Post-traumatic interbody fusion is a rare phenomenon, and it has been suggested that it can only occur when both the opposing endplates and the intervertebral disc are involved in the injury (Fig. 13) [40]. Acquired vertebral fusion is desirable when surgical spinal arthrodesis is performed; however, this is beyond the scope of this review.

Conclusions

This review demonstrates the most important MRI features of new bone formation in the axial skeleton of patients with SpA for daily clinical practice. When reading MR of the sacroiliac joints, it is important to examine the joint space on T1-weighted images for high signal intensity (“backfill”) or ankylosis, as these signs are very specific for SpA. When reading MR of the spine, examine the intervertebral joint space and disc on T1-weighted images for discal high signal intensity or the presence of ankylosis (i.e., vertebral corner bridging or transdiscal ankylosis) as these signs are also very specific for SpA. When reporting non-bridging syndesmophytes on MRI of the spine, keep in mind that this finding at MRI is neither sensitive nor specific for SpA. When reading MR of the spine, inspection of the facet joints and manubriosternal joint can reveal under-appreciated features of SpA.
It is important for the radiologist to keep in mind that, although new bone formation is a hallmark feature of SpA, there are some pitfalls: DISH, sequelae of infectious spondylodiscitis, congenital block vertebra, or post-infectious or post-operative vertebral fusion also show or mimic new bone formation.
Although MRI features of new bone formation are not included in current ASAS classification criteria, they should be specifically evaluated to obtain a complete assessment of the spine and sacroiliac joints in a patient who may have SpA. These findings can provide an additional qualitative aspect to the presence of bone marrow edema and can be helpful when the outcome of an MRI is ambiguous or to evaluate disease progression.

Acknowledgements

Dr. Jaremko is supported by Medical Imaging Consultants, Edmonton, Canada.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Braun J, Sieper J (2007) Ankylosing spondylitis. Lancet 369:1379–1390CrossRef Braun J, Sieper J (2007) Ankylosing spondylitis. Lancet 369:1379–1390CrossRef
2.
Zurück zum Zitat Ward MM, Deodhar A, Akl EA et al (2016) American College Of Rheumatology/Spondylitis Association of America/Spondyloarthritis research and treatment network 2015 recommendations for the treatment of ankylosing spondylitis and non-radiographic axial spondyloarthritis. Arthritis Rheumatol 68:282–298CrossRef Ward MM, Deodhar A, Akl EA et al (2016) American College Of Rheumatology/Spondylitis Association of America/Spondyloarthritis research and treatment network 2015 recommendations for the treatment of ankylosing spondylitis and non-radiographic axial spondyloarthritis. Arthritis Rheumatol 68:282–298CrossRef
3.
Zurück zum Zitat Lacout A, Rousselin B, Pelage J (2008) CT and MRI of spine and sacroiliac involvement in spondylarthropathy. AJR Am J Roentgenol 191:1016–1023CrossRef Lacout A, Rousselin B, Pelage J (2008) CT and MRI of spine and sacroiliac involvement in spondylarthropathy. AJR Am J Roentgenol 191:1016–1023CrossRef
4.
Zurück zum Zitat Dougados M, Baeten D (2011) Spondyloarthritis. Lancet 377:2127–2137CrossRef Dougados M, Baeten D (2011) Spondyloarthritis. Lancet 377:2127–2137CrossRef
5.
Zurück zum Zitat Jans L, Van Langenhove C, Van Praet L et al (2014) Diagnostic value of pelvic enthesitis on MRI of the sacroiliac joints in spondyloarthritis. Eur Radiol 24:866–871CrossRef Jans L, Van Langenhove C, Van Praet L et al (2014) Diagnostic value of pelvic enthesitis on MRI of the sacroiliac joints in spondyloarthritis. Eur Radiol 24:866–871CrossRef
6.
Zurück zum Zitat Baraliakos X, Listing J, von der Recke A, Braun J (2009) The natural course of radiographic progression in ankylosing spondylitis—evidence for major individual variations in a large proportion of patients. J Rheumatol 36:997–1002CrossRef Baraliakos X, Listing J, von der Recke A, Braun J (2009) The natural course of radiographic progression in ankylosing spondylitis—evidence for major individual variations in a large proportion of patients. J Rheumatol 36:997–1002CrossRef
7.
Zurück zum Zitat Lories RJ, Schett G (2012) Pathophysiology of new bone formation and ankylosis in spondyloarthritis. Rheum Dis Clin North Am 38:555–567CrossRef Lories RJ, Schett G (2012) Pathophysiology of new bone formation and ankylosis in spondyloarthritis. Rheum Dis Clin North Am 38:555–567CrossRef
8.
Zurück zum Zitat Sieper J, Appel H, Braun J, Rudwaleit M (2008) Critical appraisal of assessment of structural damage in ankylosing spondylitis: implications for treatment outcomes. Arthritis Rheum 58:649–656CrossRef Sieper J, Appel H, Braun J, Rudwaleit M (2008) Critical appraisal of assessment of structural damage in ankylosing spondylitis: implications for treatment outcomes. Arthritis Rheum 58:649–656CrossRef
9.
Zurück zum Zitat Lories RJ, Luyten FP, de Vlam K (2009) Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis. Arthritis Res Ther 11:221CrossRef Lories RJ, Luyten FP, de Vlam K (2009) Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis. Arthritis Res Ther 11:221CrossRef
10.
Zurück zum Zitat Poddubnyy D, Sieper J (2017) Mechanism of new bone formation in axial spondyloarthritis. Curr Rheumatol Rep 19:55CrossRef Poddubnyy D, Sieper J (2017) Mechanism of new bone formation in axial spondyloarthritis. Curr Rheumatol Rep 19:55CrossRef
11.
Zurück zum Zitat Sieper J, Rudwaleit M, Baraliakos X et al (2009) The Assessment of Spondyloarthritis International Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis 68:ii1–ii44PubMed Sieper J, Rudwaleit M, Baraliakos X et al (2009) The Assessment of Spondyloarthritis International Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis 68:ii1–ii44PubMed
12.
Zurück zum Zitat Lambert RG, Bakker PA, van der Heijde D et al (2016) Defining active sacroiliitis on MRI for classification of axial spondyloarthritis: update by the ASAS MRI working group. Ann Rheum Dis 75:1958–1963CrossRef Lambert RG, Bakker PA, van der Heijde D et al (2016) Defining active sacroiliitis on MRI for classification of axial spondyloarthritis: update by the ASAS MRI working group. Ann Rheum Dis 75:1958–1963CrossRef
13.
Zurück zum Zitat Hermann KG, Baraliakos X, van der Heijde DM et al (2012) Descriptions of spinal MRI lesions and definition of a positive MRI of the spine in axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI study group. Ann Rheum Dis 71:1278–1288CrossRef Hermann KG, Baraliakos X, van der Heijde DM et al (2012) Descriptions of spinal MRI lesions and definition of a positive MRI of the spine in axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI study group. Ann Rheum Dis 71:1278–1288CrossRef
14.
Zurück zum Zitat Aydingoz U, Yildiz AE, Ozdemir ZM, Yildirim SA, Erkus F, Ergen FB (2012) A critical overview of the imaging arm of the ASAS criteria for diagnosing axial spondyloarthritis: what the radiologist should know. Diagn Interv Radiol 18:555–565PubMed Aydingoz U, Yildiz AE, Ozdemir ZM, Yildirim SA, Erkus F, Ergen FB (2012) A critical overview of the imaging arm of the ASAS criteria for diagnosing axial spondyloarthritis: what the radiologist should know. Diagn Interv Radiol 18:555–565PubMed
15.
Zurück zum Zitat Weber U, Pedersen SJ, Østergaard M, Rufibach K, Lambert RG, Maksymowych WP (2012) Can erosions on MRI of the sacroiliac joints be reliably detected in patients with ankylosing spondylitis? - a cross-sectional study. Arthritis Res Ther 14:R124CrossRef Weber U, Pedersen SJ, Østergaard M, Rufibach K, Lambert RG, Maksymowych WP (2012) Can erosions on MRI of the sacroiliac joints be reliably detected in patients with ankylosing spondylitis? - a cross-sectional study. Arthritis Res Ther 14:R124CrossRef
16.
Zurück zum Zitat Maksymowych WP, Wichuk S, Chiowchanwisawakit P, Lambert RG, Pedersen SJ (2014) Fat metaplasia and backfill are key intermediaries in the development of sacroiliac joint ankylosis in patients with ankylosing spondylitis. Arthritis Rheumatol 66:2958–2967CrossRef Maksymowych WP, Wichuk S, Chiowchanwisawakit P, Lambert RG, Pedersen SJ (2014) Fat metaplasia and backfill are key intermediaries in the development of sacroiliac joint ankylosis in patients with ankylosing spondylitis. Arthritis Rheumatol 66:2958–2967CrossRef
17.
Zurück zum Zitat Maksymowych WP, Wichuk S, Chiowchanwisawakit P, Lambert RG, Pedersen SJ (2015) Development and preliminary validation of the spondyloarthritis research consortium of Canada magnetic resonance imaging sacroiliac joint structural score. J Rheumatol 42:79–86CrossRef Maksymowych WP, Wichuk S, Chiowchanwisawakit P, Lambert RG, Pedersen SJ (2015) Development and preliminary validation of the spondyloarthritis research consortium of Canada magnetic resonance imaging sacroiliac joint structural score. J Rheumatol 42:79–86CrossRef
18.
Zurück zum Zitat de Hooge M, van den Berg R, Navarro-Compán V et al (2016) Patients with chronic back pain of short duration from the SPACE cohort: which MRI structural lesions in the sacroiliac joints and inflammatory and structural lesions in the spine are most specific for axial spondyloarthritis? Ann Rheum Dis 75:1308–1314CrossRef de Hooge M, van den Berg R, Navarro-Compán V et al (2016) Patients with chronic back pain of short duration from the SPACE cohort: which MRI structural lesions in the sacroiliac joints and inflammatory and structural lesions in the spine are most specific for axial spondyloarthritis? Ann Rheum Dis 75:1308–1314CrossRef
19.
Zurück zum Zitat Laloo F, Herregods N, Varkas G et al (2017) MR signal in the sacroiliac joint space in spondyloarthritis: a new sign. Eur Radiol 27:2024–2030CrossRef Laloo F, Herregods N, Varkas G et al (2017) MR signal in the sacroiliac joint space in spondyloarthritis: a new sign. Eur Radiol 27:2024–2030CrossRef
20.
Zurück zum Zitat Laloo F, Herregods N, Jaremko JL, Verstraete K, Jans L (2018) MRI of the sacroiliac joints in spondyloarthritis: the added value of intra-articular signal changes for a ‘positive MRI’. Skeletal Radiol 47:683–693CrossRef Laloo F, Herregods N, Jaremko JL, Verstraete K, Jans L (2018) MRI of the sacroiliac joints in spondyloarthritis: the added value of intra-articular signal changes for a ‘positive MRI’. Skeletal Radiol 47:683–693CrossRef
21.
Zurück zum Zitat Laloo F, Herregods N, Jaremko JL et al (2019) New bone formation in the intervertebral joint space in spondyloarthritis: an MRI study. Eur J Radiol 109:210–217CrossRef Laloo F, Herregods N, Jaremko JL et al (2019) New bone formation in the intervertebral joint space in spondyloarthritis: an MRI study. Eur J Radiol 109:210–217CrossRef
22.
Zurück zum Zitat Jans L, Coeman L, Van Praet L et al (2014) How sensitive and specific are MRI features of sacroiliitis for diagnosis of spondyloarthritis in patients with inflammatory back pain? JBR-BTR 97:202–205PubMed Jans L, Coeman L, Van Praet L et al (2014) How sensitive and specific are MRI features of sacroiliitis for diagnosis of spondyloarthritis in patients with inflammatory back pain? JBR-BTR 97:202–205PubMed
23.
Zurück zum Zitat Major NM, Helms CA, Genant HK (1993) Calcification demonstrated as high signal intensity on T1-weighted MR images of the disks of the lumbar spine. Radiology 189:494–496CrossRef Major NM, Helms CA, Genant HK (1993) Calcification demonstrated as high signal intensity on T1-weighted MR images of the disks of the lumbar spine. Radiology 189:494–496CrossRef
24.
Zurück zum Zitat Vignaux O, Sarrazin JL, Cordoliani YS, Cosnard G (1994) Hypersignal of the intervertebral disks in T1-weighted spin-echo MRI sequences. J Radiol 75:363–367 Vignaux O, Sarrazin JL, Cordoliani YS, Cosnard G (1994) Hypersignal of the intervertebral disks in T1-weighted spin-echo MRI sequences. J Radiol 75:363–367
25.
Zurück zum Zitat Bangert BA, Modic MT, Ross JS et al (1995) Hyperintense disks on T1-weighted MR images: correlation with calcification. Radiology 195:437–443CrossRef Bangert BA, Modic MT, Ross JS et al (1995) Hyperintense disks on T1-weighted MR images: correlation with calcification. Radiology 195:437–443CrossRef
26.
Zurück zum Zitat Tyrrell PN, Davies AM, Evans N, Jubb RW (1995) Signal changes in the intervertebral discs on MRI of the thoracolumbar spine in ankylosing spondylitis. Clin Radiol 50:377–383CrossRef Tyrrell PN, Davies AM, Evans N, Jubb RW (1995) Signal changes in the intervertebral discs on MRI of the thoracolumbar spine in ankylosing spondylitis. Clin Radiol 50:377–383CrossRef
27.
Zurück zum Zitat Malghem J, Lecouvet FE, François R et al (2005) High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content. Skeletal Radiol 34:80–86CrossRef Malghem J, Lecouvet FE, François R et al (2005) High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content. Skeletal Radiol 34:80–86CrossRef
28.
Zurück zum Zitat Braun J, Baraliakos X, Golder W et al (2004) Analysing chronic spinal changes in ankylosing spondylitis: a systematic comparison of conventional x rays with magnetic resonance imaging using established and new scoring systems. Ann Rheum Dis 63:1046–1055CrossRef Braun J, Baraliakos X, Golder W et al (2004) Analysing chronic spinal changes in ankylosing spondylitis: a systematic comparison of conventional x rays with magnetic resonance imaging using established and new scoring systems. Ann Rheum Dis 63:1046–1055CrossRef
29.
Zurück zum Zitat Hermann KG, Althoff CE, Schneider U et al (2005) Spinal changes in patients with spondyloarthritis: comparison of MR imaging and radiographic appearances. Radiographics 25:559–570CrossRef Hermann KG, Althoff CE, Schneider U et al (2005) Spinal changes in patients with spondyloarthritis: comparison of MR imaging and radiographic appearances. Radiographics 25:559–570CrossRef
30.
Zurück zum Zitat Baraliakos X (2017) Imaging in axial spondyloarthritis. Isr Med Assoc J 19:712–718PubMed Baraliakos X (2017) Imaging in axial spondyloarthritis. Isr Med Assoc J 19:712–718PubMed
31.
Zurück zum Zitat de Vlam K, Mielants H, Veys EM (1999) Involvement of the zygapophyseal joint in ankylosing spondylitis: relation to the bridging syndesmophyte. J Rheumatol 26:1738–1745PubMed de Vlam K, Mielants H, Veys EM (1999) Involvement of the zygapophyseal joint in ankylosing spondylitis: relation to the bridging syndesmophyte. J Rheumatol 26:1738–1745PubMed
32.
Zurück zum Zitat Ehara S (2010) Manubriosternal joint: imaging features of normal anatomy and arthritis. Jpn J Radiol 28:329–334CrossRef Ehara S (2010) Manubriosternal joint: imaging features of normal anatomy and arthritis. Jpn J Radiol 28:329–334CrossRef
33.
Zurück zum Zitat Baraliakos X, Listing J, Buschmann J, von der Recke A, Braun J (2012) A comparison of new bone formation in patients with ankylosing spondylitis and patients with diffuse idiopathic skeletal hyperostosis: a retrospective cohort study over six years. Arthritis Rheum 64:1127–1133CrossRef Baraliakos X, Listing J, Buschmann J, von der Recke A, Braun J (2012) A comparison of new bone formation in patients with ankylosing spondylitis and patients with diffuse idiopathic skeletal hyperostosis: a retrospective cohort study over six years. Arthritis Rheum 64:1127–1133CrossRef
34.
Zurück zum Zitat Resnick D, Shaul SR, Robins JM (1975) Diffuse idiopathic skeletal hyperostosis (DISH): Forestier’s disease with extraspinal manifestations. Radiology 115:513–524CrossRef Resnick D, Shaul SR, Robins JM (1975) Diffuse idiopathic skeletal hyperostosis (DISH): Forestier’s disease with extraspinal manifestations. Radiology 115:513–524CrossRef
35.
Zurück zum Zitat Oudkerk SF, de Jong PA, Attrach M et al (2017) Diagnosis of diffuse idiopathic skeletal hyperostosis with chest computed tomography: inter-observer agreement. Eur Radiol 27:188–194CrossRef Oudkerk SF, de Jong PA, Attrach M et al (2017) Diagnosis of diffuse idiopathic skeletal hyperostosis with chest computed tomography: inter-observer agreement. Eur Radiol 27:188–194CrossRef
36.
Zurück zum Zitat Baraliakos X, Listing J, Rudwaleit M et al (2007) Progression of radiographic damage in patients with ankylosing spondylitis: defining the central role of syndesmophytes. Ann Rheum Dis 66:910–915CrossRef Baraliakos X, Listing J, Rudwaleit M et al (2007) Progression of radiographic damage in patients with ankylosing spondylitis: defining the central role of syndesmophytes. Ann Rheum Dis 66:910–915CrossRef
37.
Zurück zum Zitat Leibushor N, Slonimsky E, Aharoni D, Lidar M, Eshed I (2017) CT abnormalities in the sacroiliac joints of patients with diffuse idiopathic skeletal hyperostosis. AJR Am J Roentgenol 208:834–837CrossRef Leibushor N, Slonimsky E, Aharoni D, Lidar M, Eshed I (2017) CT abnormalities in the sacroiliac joints of patients with diffuse idiopathic skeletal hyperostosis. AJR Am J Roentgenol 208:834–837CrossRef
38.
Zurück zum Zitat Kumar R, Guinto FC Jr, Madewell JE, Swischuk LE, David R (1988) The vertebral body: radiographic configurations in various congenital and acquired disorders. Radiographics 8:455–485CrossRef Kumar R, Guinto FC Jr, Madewell JE, Swischuk LE, David R (1988) The vertebral body: radiographic configurations in various congenital and acquired disorders. Radiographics 8:455–485CrossRef
39.
Zurück zum Zitat Batirel A, Erdem H, Sengoz G et al (2015) The course of spinal tuberculosis (Pott disease): results of the multinational, multicentre Backbone-2 study. Clin Microbiol Infect 21:1008 e9-1008.e18CrossRef Batirel A, Erdem H, Sengoz G et al (2015) The course of spinal tuberculosis (Pott disease): results of the multinational, multicentre Backbone-2 study. Clin Microbiol Infect 21:1008 e9-1008.e18CrossRef
40.
Zurück zum Zitat Korres DS, Babis GC, Paraskevakou H, Stamos K, Tsarouchas J, Lykomitros V (2000) Spontaneous interbody fusion after controlled injuries to the spine: an experimental study in rabbits. J Spinal Disord 13:31–35CrossRef Korres DS, Babis GC, Paraskevakou H, Stamos K, Tsarouchas J, Lykomitros V (2000) Spontaneous interbody fusion after controlled injuries to the spine: an experimental study in rabbits. J Spinal Disord 13:31–35CrossRef
Metadaten
Titel
MRI of the axial skeleton in spondyloarthritis: the many faces of new bone formation
verfasst von
Frederiek Laloo
Nele Herregods
Jacob L. Jaremko
Philippe Carron
Dirk Elewaut
Filip Van den Bosch
Koenraad Verstraete
Lennart Jans
Publikationsdatum
01.12.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Insights into Imaging / Ausgabe 1/2019
Elektronische ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-019-0752-4

Weitere Artikel der Ausgabe 1/2019

Insights into Imaging 1/2019 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.