Skip to main content
Erschienen in: Inflammation 3/2019

26.02.2019 | ORIGINAL ARTICLE

MSU Crystals Enhance TDB-Mediated Inflammatory Macrophage IL-1β Secretion

verfasst von: Kanu Wahi, Kristel Kodar, Melanie J. McConnell, Jacquie L. Harper, Mattie S. M. Timmer, Bridget L. Stocker

Erschienen in: Inflammation | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

The tumour microenvironment predominantly consists of macrophages with phenotypes ranging from pro-inflammatory (M1-like) to anti-inflammatory (M2-like). Trehalose-6,6′-dibehenate (TDB) displays moderate anti-tumour activity and stimulates M1-like macrophages via the macrophage inducible C-type lectin (Mincle) resulting in IL-1β production. In this study, we examined if monosodium urate (MSU), a known vaccine adjuvant, can boost IL-1β production by TDB-stimulated macrophages. We investigated the effect of MSU/TDB co-treatment on IL-1β production by GM-CSF (M1-like) and M-CSF/IL-4 (M2-like) differentiated mouse bone marrow macrophages (BMMs) and found that MSU/TDB co-treatment of GM-CSF BMMs significantly enhanced IL-1β production in a Mincle-dependent manner. Western blot analysis showed that increased IL-1β production by GM-CSF BMMs was associated with the induction of pro-IL-1β expression by TDB rather than MSU. Flow cytometry analysis showed that MSU/TDB co-stimulation of GM-CSF BMMs led to greater expansion of CD86high/MHC IIhigh and CD86low/MHC IIlow subpopulations; however, only the latter showed increased production of IL-1β. Together, these findings provide evidence of the potential to use MSU/TDB co-treatment to boost IL-1β-mediated anti-tumour activity in M1-like tumour-associated macrophages.
Literatur
1.
Zurück zum Zitat Temizoz, B., E. Kuroda, and K.J. Ishii. 2016. Vaccine adjuvants as potential cancer immunotherapeutics. International Immunology 28: 329–338.PubMedPubMedCentral Temizoz, B., E. Kuroda, and K.J. Ishii. 2016. Vaccine adjuvants as potential cancer immunotherapeutics. International Immunology 28: 329–338.PubMedPubMedCentral
2.
Zurück zum Zitat Bowen, W.J., K.S. Abhishek, L. Batra, H. Barsoumian, and H. Shirwan. 2018. Current challenges for cancer vaccine adjuvant development. Expert Review of Vaccines 17: 207–215.PubMedPubMedCentral Bowen, W.J., K.S. Abhishek, L. Batra, H. Barsoumian, and H. Shirwan. 2018. Current challenges for cancer vaccine adjuvant development. Expert Review of Vaccines 17: 207–215.PubMedPubMedCentral
3.
Zurück zum Zitat Pasquale, A.D., S. Preiss, F.T. Da Silva, and N. Garcon. 2015. Vaccine adjuvants: From 1920 to 2015 and beyond. Vaccines 3: 320–343.PubMedPubMedCentral Pasquale, A.D., S. Preiss, F.T. Da Silva, and N. Garcon. 2015. Vaccine adjuvants: From 1920 to 2015 and beyond. Vaccines 3: 320–343.PubMedPubMedCentral
4.
Zurück zum Zitat Zepp, F. 2016. Principles of vaccination. Methods in Molecular Biology 1403: 57–84.PubMed Zepp, F. 2016. Principles of vaccination. Methods in Molecular Biology 1403: 57–84.PubMed
5.
Zurück zum Zitat van Ravenswaay Claasen, H.H., P.M. Kluin, and G.J. Fleuren. 1992. Tumor infiltrating cells in human cancer. On the possible role of CD16+ macrophages in antitumor cytotoxicity. Laboratory Investigation 67: 166–174.PubMed van Ravenswaay Claasen, H.H., P.M. Kluin, and G.J. Fleuren. 1992. Tumor infiltrating cells in human cancer. On the possible role of CD16+ macrophages in antitumor cytotoxicity. Laboratory Investigation 67: 166–174.PubMed
6.
Zurück zum Zitat Mosser, D.M., and J.P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology 8: 958–969.PubMedPubMedCentral Mosser, D.M., and J.P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology 8: 958–969.PubMedPubMedCentral
7.
Zurück zum Zitat Mantovani, A., F. Marchesi, A. Malesci, L. Laghi, and P. Allavena. 2017. Tumour-associated macrophages as treatment targets in oncology. Nature Reviews Clinical Oncology 14: 399–416.PubMedPubMedCentral Mantovani, A., F. Marchesi, A. Malesci, L. Laghi, and P. Allavena. 2017. Tumour-associated macrophages as treatment targets in oncology. Nature Reviews Clinical Oncology 14: 399–416.PubMedPubMedCentral
8.
Zurück zum Zitat Buhtoiarov, I.N., P.M. Sondel, J.M. Wigginton, T.N. Buhtoiarova, E.M. Yanke, D.A. Mahvi, and A.L. Rakhmilevich. 2011. Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology 132: 226–239.PubMedPubMedCentral Buhtoiarov, I.N., P.M. Sondel, J.M. Wigginton, T.N. Buhtoiarova, E.M. Yanke, D.A. Mahvi, and A.L. Rakhmilevich. 2011. Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology 132: 226–239.PubMedPubMedCentral
9.
Zurück zum Zitat Shi, Y., M.A.R. Felder, P.M. Sondel, and A.L. Rakhmilevich. 2015. Synergy of anti-CD40, CpG and MPL in activation of mouse macrophages. Molecular Immunology 66: 208–215.PubMedPubMedCentral Shi, Y., M.A.R. Felder, P.M. Sondel, and A.L. Rakhmilevich. 2015. Synergy of anti-CD40, CpG and MPL in activation of mouse macrophages. Molecular Immunology 66: 208–215.PubMedPubMedCentral
10.
Zurück zum Zitat Dewan, M.Z., C. Vanpouille-Box, N. Kawashima, S. DiNapoli, J.S. Babb, S.C. Formenti, S. Adams, and S. Demaria. 2012. Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clinical Cancer Research 18: 6668–6678.PubMedPubMedCentral Dewan, M.Z., C. Vanpouille-Box, N. Kawashima, S. DiNapoli, J.S. Babb, S.C. Formenti, S. Adams, and S. Demaria. 2012. Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clinical Cancer Research 18: 6668–6678.PubMedPubMedCentral
11.
Zurück zum Zitat Hussain, S.F., L.-Y. Kong, J. Jordan, C. Conrad, T. Madden, I. Fokt, W. Priebe, and A.B. Heimberger. 2007. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Research 67: 9630–9636.PubMed Hussain, S.F., L.-Y. Kong, J. Jordan, C. Conrad, T. Madden, I. Fokt, W. Priebe, and A.B. Heimberger. 2007. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Research 67: 9630–9636.PubMed
12.
Zurück zum Zitat Edwards, J.P., and L.A. Emens. 2010. The multikinase inhibitor Sorafenib reverses the suppression of IL-12 and enhancement of IL-10 by PGE2 in murine macrophages. International Immunopharmacology 10: 1220–1228.PubMedPubMedCentral Edwards, J.P., and L.A. Emens. 2010. The multikinase inhibitor Sorafenib reverses the suppression of IL-12 and enhancement of IL-10 by PGE2 in murine macrophages. International Immunopharmacology 10: 1220–1228.PubMedPubMedCentral
13.
Zurück zum Zitat Bloch, H., and H. Noll. 1954. Studies on the virulence of tubercle bacilli; the effect of cord factor on murine tuberculosis. British Journal of Experimental Pathology 36: 8–17. Bloch, H., and H. Noll. 1954. Studies on the virulence of tubercle bacilli; the effect of cord factor on murine tuberculosis. British Journal of Experimental Pathology 36: 8–17.
14.
Zurück zum Zitat Ishikawa, E., T. Ishikawa, Y.S. Morita, K. Toyonaga, H. Yamada, O. Takeuchi, T. Kinoshita, S. Akira, Y. Yoshikai, and S. Yamasaki. 2009. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. The Journal of Experimental Medicine 206: 2879–2888.PubMedPubMedCentral Ishikawa, E., T. Ishikawa, Y.S. Morita, K. Toyonaga, H. Yamada, O. Takeuchi, T. Kinoshita, S. Akira, Y. Yoshikai, and S. Yamasaki. 2009. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. The Journal of Experimental Medicine 206: 2879–2888.PubMedPubMedCentral
15.
Zurück zum Zitat Schoenen, H., B. Bodendorfer, K. Hitchens, S. Manzanero, K. Werninghaus, F. Nimmerjahn, E.M. Agger, S. Stenger, P. Andersen, J. Ruland, G.D. Brown, C. Wells, and R. Lang. 2010. Cutting edge: Mincle is essential for recognition and Adjuvanticity of the mycobacterial cord factor and its synthetic analog Trehalose-Dibehenate. Journal of Immunology 184: 2756–2760. Schoenen, H., B. Bodendorfer, K. Hitchens, S. Manzanero, K. Werninghaus, F. Nimmerjahn, E.M. Agger, S. Stenger, P. Andersen, J. Ruland, G.D. Brown, C. Wells, and R. Lang. 2010. Cutting edge: Mincle is essential for recognition and Adjuvanticity of the mycobacterial cord factor and its synthetic analog Trehalose-Dibehenate. Journal of Immunology 184: 2756–2760.
16.
Zurück zum Zitat Braganza, C., T. Teunissen, M.S.M. Timmer, and B. Stocker. 2018. Synthetic Mincle ligands. Frontiers in Immunology 8: 1940.PubMedPubMedCentral Braganza, C., T. Teunissen, M.S.M. Timmer, and B. Stocker. 2018. Synthetic Mincle ligands. Frontiers in Immunology 8: 1940.PubMedPubMedCentral
17.
Zurück zum Zitat Yarkoni, E., L. Wang, and A. Bekierkunst. 1974. Suppression of growth of Ehrlich ascites tumor cells in mice by trehalose-6,6′-dimycolate (cord factor) and BCG. Infection and Immunity 9: 977–984.PubMedPubMedCentral Yarkoni, E., L. Wang, and A. Bekierkunst. 1974. Suppression of growth of Ehrlich ascites tumor cells in mice by trehalose-6,6′-dimycolate (cord factor) and BCG. Infection and Immunity 9: 977–984.PubMedPubMedCentral
18.
Zurück zum Zitat Yarkoni, E., E. Lederer, and H.J. Rapp. 1981. Immunotherapy of experimental cancer with a mixture of synthetic muramyl dipeptide and trehalose dimycolate. Infection and Immunity 32: 273–276.PubMedPubMedCentral Yarkoni, E., E. Lederer, and H.J. Rapp. 1981. Immunotherapy of experimental cancer with a mixture of synthetic muramyl dipeptide and trehalose dimycolate. Infection and Immunity 32: 273–276.PubMedPubMedCentral
19.
Zurück zum Zitat Watanabe, R., Y.C. Yoo, K. Hata, M. Mitobe, Y. Koike, M. Nishizawa, D.M. Garcia, Y. Nobuchi, H. Imagawa, H. Yamada, and I. Azuma. 1999. Inhibitory effect of trehalose dimycolate (TDM) and its stereoisometric derivatives, trehalose dicorynomycolates (TDCMs), with low toxicity on lung metastasis of tumour cells in mice. Vaccine 17: 1484–1492.PubMed Watanabe, R., Y.C. Yoo, K. Hata, M. Mitobe, Y. Koike, M. Nishizawa, D.M. Garcia, Y. Nobuchi, H. Imagawa, H. Yamada, and I. Azuma. 1999. Inhibitory effect of trehalose dimycolate (TDM) and its stereoisometric derivatives, trehalose dicorynomycolates (TDCMs), with low toxicity on lung metastasis of tumour cells in mice. Vaccine 17: 1484–1492.PubMed
20.
Zurück zum Zitat Yamamoto, H., M. Oda, M. Nakano, N. Watanabe, K. Yabiku, M. Shibutani, M. Inoue, H. Imagawa, M. Nagahama, S. Himeno, K. Setsu, J. Sakurai, and M. Nishizawa. 2013. Development of Vizantin, a safe immunostimulant, based on the structure-activity relationship of trehalose-6,6′-dicorynomycolate. Journal of Medicinal Chemistry 56: 381–385.PubMed Yamamoto, H., M. Oda, M. Nakano, N. Watanabe, K. Yabiku, M. Shibutani, M. Inoue, H. Imagawa, M. Nagahama, S. Himeno, K. Setsu, J. Sakurai, and M. Nishizawa. 2013. Development of Vizantin, a safe immunostimulant, based on the structure-activity relationship of trehalose-6,6′-dicorynomycolate. Journal of Medicinal Chemistry 56: 381–385.PubMed
21.
Zurück zum Zitat Pimm, M.V., R.W. Baldwin, J. Polonsky, and E. Lederer. 1979. Immunotherapy of an ascitic rat hepatoma with cord factor (trehalose-6,6′-dimycolate) and synthetic analogues. International Journal of Cancer 24: 780–785.PubMed Pimm, M.V., R.W. Baldwin, J. Polonsky, and E. Lederer. 1979. Immunotherapy of an ascitic rat hepatoma with cord factor (trehalose-6,6′-dimycolate) and synthetic analogues. International Journal of Cancer 24: 780–785.PubMed
22.
Zurück zum Zitat Nishikawa, Y., T. Katori, K. Kukita, and T. Ikekawa. 1982. Synthesis and anti-tumour effects of 6,6′-di-O-acyl-α,α'-trehaloses. Nippon Kagaku Kaishi 10: 1661–1666. Nishikawa, Y., T. Katori, K. Kukita, and T. Ikekawa. 1982. Synthesis and anti-tumour effects of 6,6′-di-O-acyl-α,α'-trehaloses. Nippon Kagaku Kaishi 10: 1661–1666.
23.
Zurück zum Zitat Kodar, K., J.L. Harper, M.J. McConnell, M.S.M. Timmer, and B.L. Stocker. 2017. The Mincle ligand trehalose dibehenate differentially modulates M1-like and M2-like macrophage phenotype and function via Syk signaling. Immunity, Inflammation and Disease 5: 503–514.PubMedPubMedCentral Kodar, K., J.L. Harper, M.J. McConnell, M.S.M. Timmer, and B.L. Stocker. 2017. The Mincle ligand trehalose dibehenate differentially modulates M1-like and M2-like macrophage phenotype and function via Syk signaling. Immunity, Inflammation and Disease 5: 503–514.PubMedPubMedCentral
24.
Zurück zum Zitat Werninghaus, K., A. Babiak, O. Groß, C. Hölscher, H. Dietrich, E.M. Agger, J. Mages, A. Mocsai, H. Schoenen, K. Finger, F. Nimmerjahn, G.D. Brown, C. Kirschning, A. Heit, P. Andersen, H. Wagner, J. Ruland, and R. Lang. 2009. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRγ–Syk–Card9–dependent innate immune activation. The Journal of Experimental Medicine 206: 89–97.PubMedPubMedCentral Werninghaus, K., A. Babiak, O. Groß, C. Hölscher, H. Dietrich, E.M. Agger, J. Mages, A. Mocsai, H. Schoenen, K. Finger, F. Nimmerjahn, G.D. Brown, C. Kirschning, A. Heit, P. Andersen, H. Wagner, J. Ruland, and R. Lang. 2009. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRγ–Syk–Card9–dependent innate immune activation. The Journal of Experimental Medicine 206: 89–97.PubMedPubMedCentral
25.
Zurück zum Zitat Schweneker, K., O. Gorka, M. Schweneker, H. Poeck, J. Tschopp, C. Peschel, J. Ruland, and O. Groß. 2013. The mycobacterial cord factor adjuvant analogue trehalose-6,6′-dibehenate (TDB) activates the Nlrp3 inflammasome. Immunobiology 218: 664–673.PubMed Schweneker, K., O. Gorka, M. Schweneker, H. Poeck, J. Tschopp, C. Peschel, J. Ruland, and O. Groß. 2013. The mycobacterial cord factor adjuvant analogue trehalose-6,6′-dibehenate (TDB) activates the Nlrp3 inflammasome. Immunobiology 218: 664–673.PubMed
26.
Zurück zum Zitat Giamarellos-Bourboulis, E.J., M. Mouktaroudi, E. Bodar, J. Van Der Ven, B.J. Kullberg, M.G. Netea, et al. 2009. Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1 βby mononuclear cells through a caspase 1-mediated process. Annals of the Rheumatic Diseases 68: 273–278.PubMed Giamarellos-Bourboulis, E.J., M. Mouktaroudi, E. Bodar, J. Van Der Ven, B.J. Kullberg, M.G. Netea, et al. 2009. Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1 βby mononuclear cells through a caspase 1-mediated process. Annals of the Rheumatic Diseases 68: 273–278.PubMed
27.
Zurück zum Zitat Chen, C.J., Y. Shi, A. Hearn, K. Fitzgerald, D. Golenbock, G. Reed, S. Akira, and K.L. Rock. 2006. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. The Journal of Clinical Investigation 116: 2262–2271.PubMedPubMedCentral Chen, C.J., Y. Shi, A. Hearn, K. Fitzgerald, D. Golenbock, G. Reed, S. Akira, and K.L. Rock. 2006. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. The Journal of Clinical Investigation 116: 2262–2271.PubMedPubMedCentral
28.
Zurück zum Zitat Taus, F., M.B. Santucci, E. Greco, M. Morandi, I. Palucci, S. Mariotti, et al. 2015. Monosodium urate crystals promote innate anti-mycobacterial immunity and improve BCG efficacy as a vaccine against tuberculosis. PLoS One 10: 1–16. Taus, F., M.B. Santucci, E. Greco, M. Morandi, I. Palucci, S. Mariotti, et al. 2015. Monosodium urate crystals promote innate anti-mycobacterial immunity and improve BCG efficacy as a vaccine against tuberculosis. PLoS One 10: 1–16.
29.
Zurück zum Zitat Kuhn, S., E.J. Hyde, J. Yang, F.J. Rich, J.L. Harper, J.R. Kirman, and F. Ronchese. 2013. Increased numbers of monocyte-derived dendritic cells during successful tumor immunotherapy with immune-activating agents. Journal of Immunology 191: 1984–1992. Kuhn, S., E.J. Hyde, J. Yang, F.J. Rich, J.L. Harper, J.R. Kirman, and F. Ronchese. 2013. Increased numbers of monocyte-derived dendritic cells during successful tumor immunotherapy with immune-activating agents. Journal of Immunology 191: 1984–1992.
30.
Zurück zum Zitat Shi, Y., J.E. Evans, and K.L. Rock. 2003. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425: 516–521.PubMed Shi, Y., J.E. Evans, and K.L. Rock. 2003. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425: 516–521.PubMed
31.
Zurück zum Zitat Hu, D.-E., A.M. Moore, L.L. Thomsen, and K.M. Brindle. 2004. Uric acid promotes tumor immune rejection. Cancer Research 64: 5059–5062.PubMed Hu, D.-E., A.M. Moore, L.L. Thomsen, and K.M. Brindle. 2004. Uric acid promotes tumor immune rejection. Cancer Research 64: 5059–5062.PubMed
32.
Zurück zum Zitat Dziaman, T., Z. Banaszkiewicz, K. Roszkowski, D. Gackowski, E. Wisniewska, R. Rozalski, M. Foksinski, A. Siomek, E. Speina, A. Winczura, A. Marszalek, B. Tudek, and R. Olinski. 2014. 8-Oxo-7,8-dihydroguanine and uric acid as efficient predictors of survival in colon cancer patients. International Journal of Cancer 134: 376–383.PubMed Dziaman, T., Z. Banaszkiewicz, K. Roszkowski, D. Gackowski, E. Wisniewska, R. Rozalski, M. Foksinski, A. Siomek, E. Speina, A. Winczura, A. Marszalek, B. Tudek, and R. Olinski. 2014. 8-Oxo-7,8-dihydroguanine and uric acid as efficient predictors of survival in colon cancer patients. International Journal of Cancer 134: 376–383.PubMed
34.
Zurück zum Zitat Fleetwood, A.J., T. Lawrence, J.A. Hamilton, and A.D. Cook. 2007. Granulocyte-macrophage Colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: Implications for CSF blockade in inflammation. Journal of Immunology 178: 5245–5252. Fleetwood, A.J., T. Lawrence, J.A. Hamilton, and A.D. Cook. 2007. Granulocyte-macrophage Colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: Implications for CSF blockade in inflammation. Journal of Immunology 178: 5245–5252.
35.
Zurück zum Zitat Hamilton, T.A., C. Zhao, P.G. Pavicic, and S. Datta. 2014. Myeloid colony-stimulating factors as regulators of macrophage polarization. Frontiers in Immunology 5: 1–6. Hamilton, T.A., C. Zhao, P.G. Pavicic, and S. Datta. 2014. Myeloid colony-stimulating factors as regulators of macrophage polarization. Frontiers in Immunology 5: 1–6.
36.
Zurück zum Zitat Khan, A.A., S.H. Chee, R.J. McLaughlin, J.L. Harper, F. Kamena, M.S. Timmer, and B.L. Stocker. 2011. Long-chain lipids are required for the innate immune recognition of trehalose diesters by macrophages. Chembiochem 12: 2572–2576.PubMed Khan, A.A., S.H. Chee, R.J. McLaughlin, J.L. Harper, F. Kamena, M.S. Timmer, and B.L. Stocker. 2011. Long-chain lipids are required for the innate immune recognition of trehalose diesters by macrophages. Chembiochem 12: 2572–2576.PubMed
37.
Zurück zum Zitat Martin, W.J., M. Walton, and J.L. Harper. 2009. Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis and Rheumatism 60: 281–289.PubMed Martin, W.J., M. Walton, and J.L. Harper. 2009. Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis and Rheumatism 60: 281–289.PubMed
38.
Zurück zum Zitat Haabeth, O.A.W., K.B. Lorvik, H. Yagita, B. Bogen, and A. Corthay. 2016. Interleukin-1 is required for cancer eradication mediated by tumor-specific Th1 cells. Oncoimmunology 5: e1039763.PubMed Haabeth, O.A.W., K.B. Lorvik, H. Yagita, B. Bogen, and A. Corthay. 2016. Interleukin-1 is required for cancer eradication mediated by tumor-specific Th1 cells. Oncoimmunology 5: e1039763.PubMed
39.
Zurück zum Zitat He, Y., H. Hara, and G. Núñez. 2016. Mechanism and regulation of NLRP3 Inflammasome activation. Trends in Biochemical Sciences 41: 1012–1021.PubMedPubMedCentral He, Y., H. Hara, and G. Núñez. 2016. Mechanism and regulation of NLRP3 Inflammasome activation. Trends in Biochemical Sciences 41: 1012–1021.PubMedPubMedCentral
40.
Zurück zum Zitat Helft, J., J. Böttcher, P. Chakravarty, S. Zelenay, J. Huotari, B.U. Schraml, D. Goubau, and C. Reise Sousa. 2015. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c(+)MHCII(+) macrophages and dendritic cells. Immunity 42: 1197–1211.PubMed Helft, J., J. Böttcher, P. Chakravarty, S. Zelenay, J. Huotari, B.U. Schraml, D. Goubau, and C. Reise Sousa. 2015. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c(+)MHCII(+) macrophages and dendritic cells. Immunity 42: 1197–1211.PubMed
41.
Zurück zum Zitat Na, Y.R., D. Jung, G.J. Gu, and S.H. Seok. 2016. GM-CSF grown bone marrow derived cells are composed of phenotypically different dendritic cells and macrophages. Molecules and Cells 39: 734–741.PubMedPubMedCentral Na, Y.R., D. Jung, G.J. Gu, and S.H. Seok. 2016. GM-CSF grown bone marrow derived cells are composed of phenotypically different dendritic cells and macrophages. Molecules and Cells 39: 734–741.PubMedPubMedCentral
42.
Zurück zum Zitat Guermonprez, P., J. Valladeau, L. Zitvogel, C. Théry, and S. Amigorena. 2002. Antigen presentaion and T cell stimulation by dendritic cells. Annual Review of Immunology 20: 621–667.PubMed Guermonprez, P., J. Valladeau, L. Zitvogel, C. Théry, and S. Amigorena. 2002. Antigen presentaion and T cell stimulation by dendritic cells. Annual Review of Immunology 20: 621–667.PubMed
43.
Zurück zum Zitat Wang, C., X. Yu, Q. Cao, Y. Wang, G. Zheng, T.K. Tan, et al. 2013. Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunology 14: 1–10.PubMedPubMedCentral Wang, C., X. Yu, Q. Cao, Y. Wang, G. Zheng, T.K. Tan, et al. 2013. Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunology 14: 1–10.PubMedPubMedCentral
Metadaten
Titel
MSU Crystals Enhance TDB-Mediated Inflammatory Macrophage IL-1β Secretion
verfasst von
Kanu Wahi
Kristel Kodar
Melanie J. McConnell
Jacquie L. Harper
Mattie S. M. Timmer
Bridget L. Stocker
Publikationsdatum
26.02.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-00976-5

Weitere Artikel der Ausgabe 3/2019

Inflammation 3/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.