Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 12/2017

02.06.2017 | Original Article

Multi-level deep supervised networks for retinal vessel segmentation

verfasst von: Juan Mo, Lei Zhang

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 12/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Changes in the appearance of retinal blood vessels are an important indicator for various ophthalmologic and cardiovascular diseases, including diabetes, hypertension, arteriosclerosis, and choroidal neovascularization. Vessel segmentation from retinal images is very challenging because of low blood vessel contrast, intricate vessel topology, and the presence of pathologies such as microaneurysms and hemorrhages. To overcome these challenges, we propose a neural network-based method for vessel segmentation.

Methods

A deep supervised fully convolutional network is developed by leveraging multi-level hierarchical features of the deep networks. To improve the discriminative capability of features in lower layers of the deep network and guide the gradient back propagation to overcome gradient vanishing, deep supervision with auxiliary classifiers is incorporated in some intermediate layers of the network. Moreover, the transferred knowledge learned from other domains is used to alleviate the issue of insufficient medical training data. The proposed approach does not rely on hand-crafted features and needs no problem-specific preprocessing or postprocessing, which reduces the impact of subjective factors.

Results

We evaluate the proposed method on three publicly available databases, the DRIVE, STARE, and CHASE_DB1 databases. Extensive experiments demonstrate that our approach achieves better or comparable performance to state-of-the-art methods with a much faster processing speed, making it suitable for real-world clinical applications. The results of cross-training experiments demonstrate its robustness with respect to the training set.

Conclusions

The proposed approach segments retinal vessels accurately with a much faster processing speed and can be easily applied to other biomedical segmentation tasks.
Literatur
1.
Zurück zum Zitat Al-Diri B, Hunter A, Steel D (2009) An active contour model for segmenting and measuring retinal vessels. IEEE Trans Med Imaging 28(9):1488–1497CrossRefPubMed Al-Diri B, Hunter A, Steel D (2009) An active contour model for segmenting and measuring retinal vessels. IEEE Trans Med Imaging 28(9):1488–1497CrossRefPubMed
2.
Zurück zum Zitat Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Trainable cosfire filters for vessel delineation with application to retinal images. Med Image Anal 19(1):46–57CrossRefPubMed Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Trainable cosfire filters for vessel delineation with application to retinal images. Med Image Anal 19(1):46–57CrossRefPubMed
3.
Zurück zum Zitat Chen H, Qi XJ, Cheng JZ, Heng PA (2016) Deep contextual networks for neuronal structure segmentation. In: Thirtieth AAAI conference on artificial intelligence Chen H, Qi XJ, Cheng JZ, Heng PA (2016) Deep contextual networks for neuronal structure segmentation. In: Thirtieth AAAI conference on artificial intelligence
4.
Zurück zum Zitat Cheng E, Du L, Wu Y, Zhu YJ, Megalooikonomou V, Ling H (2014) Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features. Mach Vis Appl 25(7):1779–1792CrossRef Cheng E, Du L, Wu Y, Zhu YJ, Megalooikonomou V, Ling H (2014) Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features. Mach Vis Appl 25(7):1779–1792CrossRef
5.
Zurück zum Zitat Ciresan D, Giusti A, Gambardella LM, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in neural information processing systems, pp 2843–2851 Ciresan D, Giusti A, Gambardella LM, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in neural information processing systems, pp 2843–2851
6.
Zurück zum Zitat Fraz MM, Barman SA, Remagnino P, Hoppe A, Basit A, Uyyanonvara B, Rudnicka AR, Owen CG (2012) An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput Methods Programs Biomed 108(2):600–616CrossRefPubMed Fraz MM, Barman SA, Remagnino P, Hoppe A, Basit A, Uyyanonvara B, Rudnicka AR, Owen CG (2012) An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput Methods Programs Biomed 108(2):600–616CrossRefPubMed
7.
Zurück zum Zitat Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) Blood vessel segmentation methodologies in retinal images-a survey. Comput Methods Programs Biomed 108(1):407–433CrossRefPubMed Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) Blood vessel segmentation methodologies in retinal images-a survey. Comput Methods Programs Biomed 108(1):407–433CrossRefPubMed
8.
Zurück zum Zitat Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: International conference on artificial intelligence and statistics, pp 315–323 Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: International conference on artificial intelligence and statistics, pp 315–323
9.
Zurück zum Zitat Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210CrossRefPubMed Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210CrossRefPubMed
10.
Zurück zum Zitat Jiang X, Mojon D (2003) Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 25(1):131–137CrossRef Jiang X, Mojon D (2003) Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 25(1):131–137CrossRef
11.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
12.
Zurück zum Zitat Kse C, kiBa C (2011) A personal identification system using retinal vasculature in retinal fundus images. Expert Syst Appl 38(11):13,670–13,681 Kse C, kiBa C (2011) A personal identification system using retinal vasculature in retinal fundus images. Expert Syst Appl 38(11):13,670–13,681
13.
Zurück zum Zitat Lam BS, Gao Y, Liew AWC (2010) General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans Med Imaging 29(7):1369–1381CrossRefPubMed Lam BS, Gao Y, Liew AWC (2010) General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans Med Imaging 29(7):1369–1381CrossRefPubMed
15.
Zurück zum Zitat Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2016) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35(1):109–118CrossRefPubMed Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2016) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35(1):109–118CrossRefPubMed
16.
Zurück zum Zitat Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380 Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380
17.
Zurück zum Zitat Liu I, Sun Y (1993) Recursive tracking of vascular networks in angiograms based on the detection-deletion scheme. IEEE Trans Med Imaging 12(2):334–341CrossRefPubMed Liu I, Sun Y (1993) Recursive tracking of vascular networks in angiograms based on the detection-deletion scheme. IEEE Trans Med Imaging 12(2):334–341CrossRefPubMed
18.
Zurück zum Zitat Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
19.
Zurück zum Zitat Lupaşcu CA, Tegolo D, Trucco E (2010) Fabc: retinal vessel segmentation using adaboost. IEEE Trans Inf Technol Biomed 14(5):1267–1274CrossRefPubMed Lupaşcu CA, Tegolo D, Trucco E (2010) Fabc: retinal vessel segmentation using adaboost. IEEE Trans Inf Technol Biomed 14(5):1267–1274CrossRefPubMed
20.
Zurück zum Zitat Marin D, Aquino A, Gegundez-Arias ME, Bravo JM (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30(1):146–158CrossRefPubMed Marin D, Aquino A, Gegundez-Arias ME, Bravo JM (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30(1):146–158CrossRefPubMed
21.
Zurück zum Zitat Mendonca AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 25(9):1200–1213CrossRefPubMed Mendonca AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 25(9):1200–1213CrossRefPubMed
22.
Zurück zum Zitat Miri MS, Mahloojifar A (2011) Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE Trans Biomed Eng 58(5):1183–1192CrossRefPubMed Miri MS, Mahloojifar A (2011) Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE Trans Biomed Eng 58(5):1183–1192CrossRefPubMed
23.
Zurück zum Zitat Muhammad Moazam F, Paolo R, Andreas H, Bunyarit U, Rudnicka AR, Owen CG, Barman SA (2012) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538–2548CrossRef Muhammad Moazam F, Paolo R, Andreas H, Bunyarit U, Rudnicka AR, Owen CG, Barman SA (2012) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538–2548CrossRef
24.
Zurück zum Zitat Niemeijer M, Staal J, Ginneken BV, Loog M, Abramoff MD (2004) Comparative study of retinal vessel segmentation methods on a new publicly available database. Proc SPIE Int Soc Opt Eng 5370:648–656 Niemeijer M, Staal J, Ginneken BV, Loog M, Abramoff MD (2004) Comparative study of retinal vessel segmentation methods on a new publicly available database. Proc SPIE Int Soc Opt Eng 5370:648–656
25.
Zurück zum Zitat Owen CG, Rudnicka AR, Mullen R, Barman SA, Monekosso D, Whincup PH, Ng J, Paterson C (2009) Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (caiar) program. Invest Ophthalmol Vis Sci 50(5):2004–2010CrossRefPubMed Owen CG, Rudnicka AR, Mullen R, Barman SA, Monekosso D, Whincup PH, Ng J, Paterson C (2009) Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (caiar) program. Invest Ophthalmol Vis Sci 50(5):2004–2010CrossRefPubMed
26.
Zurück zum Zitat Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26(10):1357–1365CrossRefPubMed Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26(10):1357–1365CrossRefPubMed
27.
Zurück zum Zitat Roychowdhury S, Koozekanani DD, Parhi KK (2015) Iterative vessel segmentation of fundus images. IEEE Trans Biomed Eng 62(7):1738–1749CrossRefPubMed Roychowdhury S, Koozekanani DD, Parhi KK (2015) Iterative vessel segmentation of fundus images. IEEE Trans Biomed Eng 62(7):1738–1749CrossRefPubMed
28.
Zurück zum Zitat Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298CrossRefPubMed Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298CrossRefPubMed
29.
Zurück zum Zitat Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556
30.
Zurück zum Zitat Soares JV, Leandro JJ, Cesar RM Jr, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214–1222CrossRefPubMed Soares JV, Leandro JJ, Cesar RM Jr, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214–1222CrossRefPubMed
31.
Zurück zum Zitat Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509CrossRefPubMed Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509CrossRefPubMed
32.
Zurück zum Zitat Wang L, Lee CY, Tu Z, Lazebnik S (2015) Training deeper convolutional networks with deep supervision. arXiv preprint arXiv:1505.02496 Wang L, Lee CY, Tu Z, Lazebnik S (2015) Training deeper convolutional networks with deep supervision. arXiv preprint arXiv:​1505.​02496
33.
Zurück zum Zitat Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403 Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403
34.
Zurück zum Zitat Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing systems, pp 3320–3328 Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing systems, pp 3320–3328
35.
Zurück zum Zitat You X, Peng Q, Yuan Y, Ym Cheung, Lei J (2011) Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn 44(10):2314–2324CrossRef You X, Peng Q, Yuan Y, Ym Cheung, Lei J (2011) Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn 44(10):2314–2324CrossRef
36.
Zurück zum Zitat Zana F, Klein JC (2001) Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 10(7):1010–1019CrossRefPubMed Zana F, Klein JC (2001) Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 10(7):1010–1019CrossRefPubMed
37.
Zurück zum Zitat Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Computer vision–ECCV 2014, Springer, pp 818–833 Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Computer vision–ECCV 2014, Springer, pp 818–833
Metadaten
Titel
Multi-level deep supervised networks for retinal vessel segmentation
verfasst von
Juan Mo
Lei Zhang
Publikationsdatum
02.06.2017
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 12/2017
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-017-1619-0

Weitere Artikel der Ausgabe 12/2017

International Journal of Computer Assisted Radiology and Surgery 12/2017 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.