Skip to main content
Erschienen in: Neurocritical Care 2/2022

09.05.2022 | Big Data in Neurocritical Care

Natural Language Processing of Radiology Reports to Detect Complications of Ischemic Stroke

verfasst von: Matthew I. Miller, Agni Orfanoudaki, Michael Cronin, Hanife Saglam, Ivy So Yeon Kim, Oluwafemi Balogun, Maria Tzalidi, Kyriakos Vasilopoulos, Georgia Fanaropoulou, Nina M. Fanaropoulou, Jack Kalin, Meghan Hutch, Brenton R. Prescott, Benjamin Brush, Emelia J. Benjamin, Min Shin, Asim Mian, David M. Greer, Stelios M. Smirnakis, Charlene J. Ong

Erschienen in: Neurocritical Care | Sonderheft 2/2022

Einloggen, um Zugang zu erhalten

Abstract

Background

Abstraction of critical data from unstructured radiologic reports using natural language processing (NLP) is a powerful tool to automate the detection of important clinical features and enhance research efforts. We present a set of NLP approaches to identify critical findings in patients with acute ischemic stroke from radiology reports of computed tomography (CT) and magnetic resonance imaging (MRI).

Methods

We trained machine learning classifiers to identify categorical outcomes of edema, midline shift (MLS), hemorrhagic transformation, and parenchymal hematoma, as well as rule-based systems (RBS) to identify intraventricular hemorrhage (IVH) and continuous MLS measurements within CT/MRI reports. Using a derivation cohort of 2289 reports from 550 individuals with acute middle cerebral artery territory ischemic strokes, we externally validated our models on reports from a separate institution as well as from patients with ischemic strokes in any vascular territory.

Results

In all data sets, a deep neural network with pretrained biomedical word embeddings (BioClinicalBERT) achieved the highest discrimination performance for binary prediction of edema (area under precision recall curve [AUPRC] > 0.94), MLS (AUPRC > 0.98), hemorrhagic conversion (AUPRC > 0.89), and parenchymal hematoma (AUPRC > 0.76). BioClinicalBERT outperformed lasso regression (p < 0.001) for all outcomes except parenchymal hematoma (p = 0.755). Tailored RBS for IVH and continuous MLS outperformed BioClinicalBERT (p < 0.001) and linear regression, respectively (p < 0.001).

Conclusions

Our study demonstrates robust performance and external validity of a core NLP tool kit for identifying both categorical and continuous outcomes of ischemic stroke from unstructured radiographic text data. Medically tailored NLP methods have multiple important big data applications, including scalable electronic phenotyping, augmentation of clinical risk prediction models, and facilitation of automatic alert systems in the hospital setting.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Foreman B. Neurocritical care: bench to bedside (Eds. Claude Hemphill, Michael James) integrating and using big data in neurocritical care. Neurotherapeutics. 2020;17(2):593–605.PubMedPubMedCentralCrossRef Foreman B. Neurocritical care: bench to bedside (Eds. Claude Hemphill, Michael James) integrating and using big data in neurocritical care. Neurotherapeutics. 2020;17(2):593–605.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Casey A, et al. A systematic review of natural language processing applied to radiology reports. BMC Med Inform Decis Mak. 2021;21(1):1–18.CrossRef Casey A, et al. A systematic review of natural language processing applied to radiology reports. BMC Med Inform Decis Mak. 2021;21(1):1–18.CrossRef
3.
Zurück zum Zitat Pons E, et al. Natural language processing in radiology: a systematic review. Radiology. 2016;279(2):329–43.PubMedCrossRef Pons E, et al. Natural language processing in radiology: a systematic review. Radiology. 2016;279(2):329–43.PubMedCrossRef
4.
Zurück zum Zitat Ong CJ, et al. Machine learning and natural language processing methods to identify ischemic stroke, acuity and location from radiology reports. PLoS ONE. 2020;15(6): e0234908.PubMedPubMedCentralCrossRef Ong CJ, et al. Machine learning and natural language processing methods to identify ischemic stroke, acuity and location from radiology reports. PLoS ONE. 2020;15(6): e0234908.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Elkins JS, et al. Coding neuroradiology reports for the Northern Manhattan Stroke Study: a comparison of natural language processing and manual review. Comput Biomed Res. 2000;33(1):1–10.PubMedCrossRef Elkins JS, et al. Coding neuroradiology reports for the Northern Manhattan Stroke Study: a comparison of natural language processing and manual review. Comput Biomed Res. 2000;33(1):1–10.PubMedCrossRef
6.
Zurück zum Zitat Langlotz CP, et al. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology. 2019;291(3):781–91.PubMedCrossRef Langlotz CP, et al. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology. 2019;291(3):781–91.PubMedCrossRef
7.
Zurück zum Zitat Mayampurath A, et al. Improving prehospital stroke diagnosis using natural language processing of paramedic reports. Stroke. 2021;52(8):2676–9.PubMedPubMedCentralCrossRef Mayampurath A, et al. Improving prehospital stroke diagnosis using natural language processing of paramedic reports. Stroke. 2021;52(8):2676–9.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Manning C, Schutze H. Foundations of statistical natural language processing. MIT Press; 1999. Manning C, Schutze H. Foundations of statistical natural language processing. MIT Press; 1999.
10.
Zurück zum Zitat Mozayan A, et al. Practical guide to natural language processing for radiology. Radiographics. 2021;41(5):1446–53.PubMedCrossRef Mozayan A, et al. Practical guide to natural language processing for radiology. Radiographics. 2021;41(5):1446–53.PubMedCrossRef
11.
Zurück zum Zitat Friedlin J, McDonald CJ. A natural language processing system to extract and code concepts relating to congestive heart failure from chest radiology reports. In: AMIA annual symposium proceedings. American Medical Informatics Association; 2006. Friedlin J, McDonald CJ. A natural language processing system to extract and code concepts relating to congestive heart failure from chest radiology reports. In: AMIA annual symposium proceedings. American Medical Informatics Association; 2006.
12.
Zurück zum Zitat Hinton G. Deep learning—a technology with the potential to transform health care. JAMA. 2018;320(11):1101–2.PubMedCrossRef Hinton G. Deep learning—a technology with the potential to transform health care. JAMA. 2018;320(11):1101–2.PubMedCrossRef
13.
Zurück zum Zitat Li M, et al. Analysis of stroke detection during the COVID-19 pandemic using natural language processing of radiology reports. Am J Neuroradiol. 2021;42(3):429–34.PubMedPubMedCentralCrossRef Li M, et al. Analysis of stroke detection during the COVID-19 pandemic using natural language processing of radiology reports. Am J Neuroradiol. 2021;42(3):429–34.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Garg R, et al. Automating ischemic stroke subtype classification using machine learning and natural language processing. J Stroke Cerebrovasc Dis. 2019;28(7):2045–51.PubMedCrossRef Garg R, et al. Automating ischemic stroke subtype classification using machine learning and natural language processing. J Stroke Cerebrovasc Dis. 2019;28(7):2045–51.PubMedCrossRef
15.
Zurück zum Zitat Guan W, et al. Automated electronic phenotyping of cardioembolic stroke. Stroke. 2021;52(1):181–9.PubMedCrossRef Guan W, et al. Automated electronic phenotyping of cardioembolic stroke. Stroke. 2021;52(1):181–9.PubMedCrossRef
16.
Zurück zum Zitat Castro VM, et al. Large-scale identification of patients with cerebral aneurysms using natural language processing. Neurology. 2017;88(2):164–8.PubMedPubMedCentralCrossRef Castro VM, et al. Large-scale identification of patients with cerebral aneurysms using natural language processing. Neurology. 2017;88(2):164–8.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Heo TS, et al. Prediction of stroke outcome using natural language processing-based machine learning of radiology report of brain MRI. J Pers Med. 2020;10(4):286.PubMedCentralCrossRef Heo TS, et al. Prediction of stroke outcome using natural language processing-based machine learning of radiology report of brain MRI. J Pers Med. 2020;10(4):286.PubMedCentralCrossRef
18.
Zurück zum Zitat Bacchi S, et al. Deep learning natural language processing successfully predicts the cerebrovascular cause of transient ischemic attack-like presentations. Stroke. 2019;50(3):758–60.PubMedCrossRef Bacchi S, et al. Deep learning natural language processing successfully predicts the cerebrovascular cause of transient ischemic attack-like presentations. Stroke. 2019;50(3):758–60.PubMedCrossRef
19.
Zurück zum Zitat Zech J, et al. Natural language-based machine learning models for the annotation of clinical radiology reports. Radiology. 2018;287(2):570–80.PubMedCrossRef Zech J, et al. Natural language-based machine learning models for the annotation of clinical radiology reports. Radiology. 2018;287(2):570–80.PubMedCrossRef
20.
Zurück zum Zitat Devlin J, et al. Bert: pre-training of deep bidirectional transformers for language understanding. 2018. arXiv preprint arXiv:1810.04805. Devlin J, et al. Bert: pre-training of deep bidirectional transformers for language understanding. 2018. arXiv preprint arXiv:​1810.​04805.
21.
Zurück zum Zitat Larrue V, et al. Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke. 2001;32(2):438–41.PubMedCrossRef Larrue V, et al. Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke. 2001;32(2):438–41.PubMedCrossRef
22.
Zurück zum Zitat Harris PA, et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.PubMedCrossRef Harris PA, et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.PubMedCrossRef
23.
Zurück zum Zitat Vaswani A, et al. Attention is all you need. In: Advances in neural information processing systems. 2017. Vaswani A, et al. Attention is all you need. In: Advances in neural information processing systems. 2017.
24.
Zurück zum Zitat Lee J, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2020;36(4):1234–40.PubMed Lee J, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2020;36(4):1234–40.PubMed
25.
Zurück zum Zitat Johnson AE, et al. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3(1):1–9.CrossRef Johnson AE, et al. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3(1):1–9.CrossRef
27.
Zurück zum Zitat Franklin J. The elements of statistical learning: data mining, inference and prediction. Math Intell. 2005;27(2):83–5.CrossRef Franklin J. The elements of statistical learning: data mining, inference and prediction. Math Intell. 2005;27(2):83–5.CrossRef
28.
Zurück zum Zitat Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7.CrossRef Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7.CrossRef
29.
30.
Zurück zum Zitat Chaudhuri B, Bhattacharya U. Efficient training and improved performance of multilayer perceptron in pattern classification. Neurocomputing. 2000;34(1–4):11–27.CrossRef Chaudhuri B, Bhattacharya U. Efficient training and improved performance of multilayer perceptron in pattern classification. Neurocomputing. 2000;34(1–4):11–27.CrossRef
31.
Zurück zum Zitat Pedregosa F, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30. Pedregosa F, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
32.
Zurück zum Zitat Darby DG, et al. Primary intraventricular hemorrhage: clinical and neuropsychological findings in a prospective stroke series. Neurology. 1988;38(1):68–68.PubMedCrossRef Darby DG, et al. Primary intraventricular hemorrhage: clinical and neuropsychological findings in a prospective stroke series. Neurology. 1988;38(1):68–68.PubMedCrossRef
33.
Zurück zum Zitat Foroushani HM, et al. Accelerating prediction of malignant cerebral edema after ischemic stroke with automated image analysis and explainable neural networks. Neurocrit Care. 2021;36:471–82.PubMedCrossRef Foroushani HM, et al. Accelerating prediction of malignant cerebral edema after ischemic stroke with automated image analysis and explainable neural networks. Neurocrit Care. 2021;36:471–82.PubMedCrossRef
34.
Zurück zum Zitat Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE. 2015;10(3): e0118432.PubMedPubMedCentralCrossRef Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE. 2015;10(3): e0118432.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Dietterich TG. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 1998;10(7):1895–923.PubMedCrossRef Dietterich TG. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 1998;10(7):1895–923.PubMedCrossRef
36.
Zurück zum Zitat Armstrong RA. When to use the Bonferroni corrrection. Ophthalmic Physiol Opt. 2014;34:502–8.PubMedCrossRef Armstrong RA. When to use the Bonferroni corrrection. Ophthalmic Physiol Opt. 2014;34:502–8.PubMedCrossRef
37.
Zurück zum Zitat Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.PubMedCrossRef Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.PubMedCrossRef
38.
Zurück zum Zitat Cai T, et al. Natural language processing technologies in radiology research and clinical applications. Radiographics. 2016;36(1):176–91.PubMedCrossRef Cai T, et al. Natural language processing technologies in radiology research and clinical applications. Radiographics. 2016;36(1):176–91.PubMedCrossRef
39.
Zurück zum Zitat Sorin V, et al. Deep learning for natural language processing in radiology—fundamentals and a systematic review. J Am Coll Radiol. 2020;17(5):639–48.PubMedCrossRef Sorin V, et al. Deep learning for natural language processing in radiology—fundamentals and a systematic review. J Am Coll Radiol. 2020;17(5):639–48.PubMedCrossRef
40.
41.
Zurück zum Zitat Quan H, et al. Assessing validity of ICD-9-CM and ICD-10 administrative data in recording clinical conditions in a unique dually coded database. Health Serv Res. 2008;43(4):1424–41.PubMedPubMedCentralCrossRef Quan H, et al. Assessing validity of ICD-9-CM and ICD-10 administrative data in recording clinical conditions in a unique dually coded database. Health Serv Res. 2008;43(4):1424–41.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Elkins JS, et al. Recruiting subjects for acute stroke trials: a meta-analysis. Stroke. 2006;37(1):123–8.PubMedCrossRef Elkins JS, et al. Recruiting subjects for acute stroke trials: a meta-analysis. Stroke. 2006;37(1):123–8.PubMedCrossRef
46.
Zurück zum Zitat Alexander M, et al. Evaluation of an artificial intelligence clinical trial matching system in Australian lung cancer patients. JAMIA Open. 2020;3(2):209–15.PubMedPubMedCentralCrossRef Alexander M, et al. Evaluation of an artificial intelligence clinical trial matching system in Australian lung cancer patients. JAMIA Open. 2020;3(2):209–15.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Murphy DR, Singh H, Berlin L. Communication breakdowns and diagnostic errors: a radiology perspective. Diagnosis. 2014;1(4):253–61.PubMedCrossRef Murphy DR, Singh H, Berlin L. Communication breakdowns and diagnostic errors: a radiology perspective. Diagnosis. 2014;1(4):253–61.PubMedCrossRef
48.
Zurück zum Zitat Mollura DJ, et al. 2016 RAD-AID conference on international radiology for developing countries: gaps, growth, and United Nations sustainable development goals. J Am Coll Radiol. 2017;14(6):841–7.PubMedCrossRef Mollura DJ, et al. 2016 RAD-AID conference on international radiology for developing countries: gaps, growth, and United Nations sustainable development goals. J Am Coll Radiol. 2017;14(6):841–7.PubMedCrossRef
49.
50.
Zurück zum Zitat Do BH, et al. Automatic retrieval of bone fracture knowledge using natural language processing. J Digit Imaging. 2013;26(4):709–13.PubMedCrossRef Do BH, et al. Automatic retrieval of bone fracture knowledge using natural language processing. J Digit Imaging. 2013;26(4):709–13.PubMedCrossRef
Metadaten
Titel
Natural Language Processing of Radiology Reports to Detect Complications of Ischemic Stroke
verfasst von
Matthew I. Miller
Agni Orfanoudaki
Michael Cronin
Hanife Saglam
Ivy So Yeon Kim
Oluwafemi Balogun
Maria Tzalidi
Kyriakos Vasilopoulos
Georgia Fanaropoulou
Nina M. Fanaropoulou
Jack Kalin
Meghan Hutch
Brenton R. Prescott
Benjamin Brush
Emelia J. Benjamin
Min Shin
Asim Mian
David M. Greer
Stelios M. Smirnakis
Charlene J. Ong
Publikationsdatum
09.05.2022
Verlag
Springer US
Erschienen in
Neurocritical Care / Ausgabe Sonderheft 2/2022
Print ISSN: 1541-6933
Elektronische ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-022-01513-3

Weitere Artikel der Sonderheft 2/2022

Neurocritical Care 2/2022 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.