Skip to main content
Erschienen in: DGNeurologie 4/2020

09.06.2020 | Neurologische Beteiligung bei Infektionserkrankungen | Arzneimitteltherapie

Risiken und Chancen von Immuntherapien in Zeiten der Coronavirus-2019-Pandemie

verfasst von: Dr. Marc Pawlitzki, Uwe K. Zettl, Tobias Ruck, Leoni Rolfes, Hans-Peter Hartung, Sven G. Meuth

Erschienen in: DGNeurologie | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Zusammenfassung

Immuntherapien stellen die essenzielle Grundlage der Behandlung von neuroinflammatorischen Erkrankungen dar. In Zeiten der Coronavirus-2019 (COVID-19)-Pandemie ergibt sich im klinischen Alltag jedoch zunehmend die Frage, ob eine Immuntherapie bei neurologischen Patienten aufgrund des potenziellen Infektionsrisikos eingeleitet, intensiviert, pausiert oder gar beendet werden sollte. Unsicherheit besteht v. a. deshalb, weil verschiedene nationale und internationale Fachgesellschaften diesbezüglich unterschiedliche Empfehlungen veröffentlichten. In diesem Artikel soll ein Überblick über die Wirkmechanismen von Immuntherapien und den daraus abzuleitenden Infektionsrisiken in Bezug auf COVID-19 (durch den Coronavirus verursachte Erkrankung) gegeben werden. Potenzielle Chancen und vorteilhafte Effekte einzelner Substrate in der Akuttherapie von COVID-19 werden diskutiert.
Literatur
1.
Zurück zum Zitat Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506CrossRefPubMedPubMedCentral Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Novi G, Mikulska M, Briano F et al (2020) COVID-19 in a MS patient treated with ocrelizumab: does immunosuppression have a protective role? Mult Scler Relat Disord 42:102120PubMedPubMedCentralCrossRef Novi G, Mikulska M, Briano F et al (2020) COVID-19 in a MS patient treated with ocrelizumab: does immunosuppression have a protective role? Mult Scler Relat Disord 42:102120PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Baker D, Marta M, Pryce G et al (2017) Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine 16:41–50PubMedPubMedCentralCrossRef Baker D, Marta M, Pryce G et al (2017) Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine 16:41–50PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Gilhus NE, Romi F, Hong Y et al (2018) Myasthenia gravis and infectious disease. J Neurol 265:1251–1258PubMedCrossRef Gilhus NE, Romi F, Hong Y et al (2018) Myasthenia gravis and infectious disease. J Neurol 265:1251–1258PubMedCrossRef
6.
Zurück zum Zitat Winkelmann A, Loebermann M, Reisinger EC et al (2016) Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol 12:217–233PubMedCrossRef Winkelmann A, Loebermann M, Reisinger EC et al (2016) Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol 12:217–233PubMedCrossRef
7.
Zurück zum Zitat Fung S‑Y, Yuen K‑S, Ye Z‑W et al (2020) A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg Microbes Infect 9:558–570PubMedCrossRef Fung S‑Y, Yuen K‑S, Ye Z‑W et al (2020) A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg Microbes Infect 9:558–570PubMedCrossRef
10.
Zurück zum Zitat Teijaro JR, Walsh KB, Rice S et al (2014) Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proc Natl Acad Sci USA 111:3799–3804PubMedCrossRefPubMedCentral Teijaro JR, Walsh KB, Rice S et al (2014) Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proc Natl Acad Sci USA 111:3799–3804PubMedCrossRefPubMedCentral
11.
Zurück zum Zitat Takada A, Kawaoka Y (2003) Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol 13:387–398PubMedCrossRef Takada A, Kawaoka Y (2003) Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol 13:387–398PubMedCrossRef
12.
14.
Zurück zum Zitat Xu J, Zhao S, Teng T et al (2020) Systematic comparison of two animal-to-human transmitted human Coronaviruses: SARS-coV‑2 and SARS-coV. Viruses 12:244PubMedCentralCrossRef Xu J, Zhao S, Teng T et al (2020) Systematic comparison of two animal-to-human transmitted human Coronaviruses: SARS-coV‑2 and SARS-coV. Viruses 12:244PubMedCentralCrossRef
16.
18.
Zurück zum Zitat de Wilde AH, Raj VS, Oudshoorn D et al (2013) MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon‑α treatment. J Gen Virol 94:1749–1760PubMedPubMedCentralCrossRef de Wilde AH, Raj VS, Oudshoorn D et al (2013) MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon‑α treatment. J Gen Virol 94:1749–1760PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Enjuanes L, Zuñiga S, Castaño-Rodriguez C et al (2016) Molecular basis of Coronavirus virulence and vaccine development. Adv Virus Res 96:245–286PubMedPubMedCentralCrossRef Enjuanes L, Zuñiga S, Castaño-Rodriguez C et al (2016) Molecular basis of Coronavirus virulence and vaccine development. Adv Virus Res 96:245–286PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Zhao Y, Zhao Z, Wang Y et al (2020) Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCovCrossRef Zhao Y, Zhao Z, Wang Y et al (2020) Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCovCrossRef
21.
Zurück zum Zitat Zou L, Ruan F, Huang M et al (2020) SARS-coV‑2 viral load in upper respiratory specimens of infected patients. N Engl J Med 382:1177–1179PubMedPubMedCentralCrossRef Zou L, Ruan F, Huang M et al (2020) SARS-coV‑2 viral load in upper respiratory specimens of infected patients. N Engl J Med 382:1177–1179PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Bahl K, Kim S‑K, Calcagno C et al (2006) IFN-induced attrition of CD8 T cells in the presence or absence of cognate antigen during the early stages of viral infections. J Immunol 176:4284–4295PubMedCrossRef Bahl K, Kim S‑K, Calcagno C et al (2006) IFN-induced attrition of CD8 T cells in the presence or absence of cognate antigen during the early stages of viral infections. J Immunol 176:4284–4295PubMedCrossRef
24.
Zurück zum Zitat Kindler E, Thiel V, Weber F (2016) Interaction of SARS and MERS Coronaviruses with the Antiviral interferon response. Adv Virus Res 96:219–243PubMedPubMedCentralCrossRef Kindler E, Thiel V, Weber F (2016) Interaction of SARS and MERS Coronaviruses with the Antiviral interferon response. Adv Virus Res 96:219–243PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Yoshikawa T, Hill T, Li K et al (2009) Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. J Virol 83:3039–3048PubMedCrossRef Yoshikawa T, Hill T, Li K et al (2009) Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. J Virol 83:3039–3048PubMedCrossRef
27.
Zurück zum Zitat Stankiewicz JM, Kolb H, Karni A et al (2013) Role of immunosuppressive therapy for the treatment of multiple sclerosis. Neurotherapeutics 10:77–88PubMedCrossRef Stankiewicz JM, Kolb H, Karni A et al (2013) Role of immunosuppressive therapy for the treatment of multiple sclerosis. Neurotherapeutics 10:77–88PubMedCrossRef
28.
Zurück zum Zitat Hartung H‑P, Gonsette R, Konig N et al (2002) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360:2018–2025PubMedCrossRef Hartung H‑P, Gonsette R, Konig N et al (2002) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360:2018–2025PubMedCrossRef
29.
Zurück zum Zitat Danza A, Ruiz-Irastorza G (2013) Infection risk in systemic lupus erythematosus patients: susceptibility factors and preventive strategies. Lupus 22:1286–1294PubMedCrossRef Danza A, Ruiz-Irastorza G (2013) Infection risk in systemic lupus erythematosus patients: susceptibility factors and preventive strategies. Lupus 22:1286–1294PubMedCrossRef
30.
Zurück zum Zitat McLean-Tooke A, Aldridge C, Waugh S et al (2009) Methotrexate, rheumatoid arthritis and infection risk: what is the evidence? Baillieres Clin Rheumatol 48:867–871 McLean-Tooke A, Aldridge C, Waugh S et al (2009) Methotrexate, rheumatoid arthritis and infection risk: what is the evidence? Baillieres Clin Rheumatol 48:867–871
31.
Zurück zum Zitat La Mantia L, Mascoli N, Milanese C (2007) Azathioprine. Safety profile in multiple sclerosis patients. Neurol Sci 28:299–303PubMedCrossRef La Mantia L, Mascoli N, Milanese C (2007) Azathioprine. Safety profile in multiple sclerosis patients. Neurol Sci 28:299–303PubMedCrossRef
32.
Zurück zum Zitat Löffler M, Klein A, Hayek-Ouassini M et al (2004) Dihydroorotate dehydrogenase mRNA and protein expression analysis in normal and drug-resistant cells. Nucleosides Nucleotides Nucleic Acids 23:1281–1285PubMedCrossRef Löffler M, Klein A, Hayek-Ouassini M et al (2004) Dihydroorotate dehydrogenase mRNA and protein expression analysis in normal and drug-resistant cells. Nucleosides Nucleotides Nucleic Acids 23:1281–1285PubMedCrossRef
33.
Zurück zum Zitat O’Connor P, Wolinsky JS, Confavreux C et al (2011) Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 365:1293–1303PubMedCrossRef O’Connor P, Wolinsky JS, Confavreux C et al (2011) Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 365:1293–1303PubMedCrossRef
34.
Zurück zum Zitat Confavreux C, O’Connor P, Comi G et al (2014) Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 13:247–256PubMedCrossRef Confavreux C, O’Connor P, Comi G et al (2014) Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 13:247–256PubMedCrossRef
35.
Zurück zum Zitat Bilger A, Plowshay J, Ma S et al (2017) Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication. Oncotarget 8:44266–44280PubMedPubMedCentralCrossRef Bilger A, Plowshay J, Ma S et al (2017) Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication. Oncotarget 8:44266–44280PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Xiong R, Zhang L, Li S et al (2020) Novel and potent inhibitors targeting DHODH, a rate-limiting enzyme in de novo pyrimidine biosynthesis, are broad-spectrum antiviral against RNA viruses including newly emerged coronavirus SARS-CoV‑2CrossRef Xiong R, Zhang L, Li S et al (2020) Novel and potent inhibitors targeting DHODH, a rate-limiting enzyme in de novo pyrimidine biosynthesis, are broad-spectrum antiviral against RNA viruses including newly emerged coronavirus SARS-CoV‑2CrossRef
37.
Zurück zum Zitat Allison AC, Eugui EM (2000) Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 47:85–118PubMedCrossRef Allison AC, Eugui EM (2000) Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 47:85–118PubMedCrossRef
38.
Zurück zum Zitat Meriggioli MN, Ciafaloni E, Al-Hayk KA et al (2003) Mycophenolate mofetil for myasthenia gravis: an analysis of efficacy, safety, and tolerability. Neurology 61:1438–1440PubMedCrossRef Meriggioli MN, Ciafaloni E, Al-Hayk KA et al (2003) Mycophenolate mofetil for myasthenia gravis: an analysis of efficacy, safety, and tolerability. Neurology 61:1438–1440PubMedCrossRef
39.
Zurück zum Zitat Beuker C, Schmidt A, Strunk D et al (2018) Primary angiitis of the central nervous system: diagnosis and treatment. Ther Adv Neurol Disord 11:1756286418785071PubMedPubMedCentralCrossRef Beuker C, Schmidt A, Strunk D et al (2018) Primary angiitis of the central nervous system: diagnosis and treatment. Ther Adv Neurol Disord 11:1756286418785071PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Olivo Pallo PA, de Souza FHC, Miossi R et al (2018) Mycophenolate mofetil in patients with refractory systemic autoimmune myopathies: case series. Adv Rheumatol 58:34PubMedCrossRef Olivo Pallo PA, de Souza FHC, Miossi R et al (2018) Mycophenolate mofetil in patients with refractory systemic autoimmune myopathies: case series. Adv Rheumatol 58:34PubMedCrossRef
41.
Zurück zum Zitat Montcuquet A, Collongues N, Papeix C et al (2017) Effectiveness of mycophenolate mofetil as first-line therapy in AQP4-IgG, MOG-IgG, and seronegative neuromyelitis optica spectrum disorders. Mult Scler 23:1377–1384PubMedCrossRef Montcuquet A, Collongues N, Papeix C et al (2017) Effectiveness of mycophenolate mofetil as first-line therapy in AQP4-IgG, MOG-IgG, and seronegative neuromyelitis optica spectrum disorders. Mult Scler 23:1377–1384PubMedCrossRef
42.
Zurück zum Zitat Cheng K‑W, Cheng S‑C, Chen W‑Y et al (2015) Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antivir Res 115:9–16PubMedCrossRef Cheng K‑W, Cheng S‑C, Chen W‑Y et al (2015) Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antivir Res 115:9–16PubMedCrossRef
43.
Zurück zum Zitat Chan JFW, Chan K‑H, Kao RYT et al (2013) Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infect 67:606–616PubMedPubMedCentralCrossRef Chan JFW, Chan K‑H, Kao RYT et al (2013) Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infect 67:606–616PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Hart BJ, Dyall J, Postnikova E et al (2014) Interferon‑β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. J Gen Virol 95:571–577PubMedPubMedCentralCrossRef Hart BJ, Dyall J, Postnikova E et al (2014) Interferon‑β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. J Gen Virol 95:571–577PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Chan JF‑W, Yao Y, Yeung M‑L et al (2015) Treatment with Lopinavir/Ritonavir or interferon-β1b improves outcome of MERS-coV infection in a nonhuman primate model of common marmoset. J Infect Dis 212:1904–1913PubMedCrossRef Chan JF‑W, Yao Y, Yeung M‑L et al (2015) Treatment with Lopinavir/Ritonavir or interferon-β1b improves outcome of MERS-coV infection in a nonhuman primate model of common marmoset. J Infect Dis 212:1904–1913PubMedCrossRef
47.
Zurück zum Zitat Al Ghamdi M, Alghamdi KM, Ghandoora Y et al (2016) Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia. BMC Infect Dis 16:174PubMedPubMedCentralCrossRef Al Ghamdi M, Alghamdi KM, Ghandoora Y et al (2016) Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia. BMC Infect Dis 16:174PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Faure E, Poissy J, Goffard A et al (2014) Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? Plos One 9:e88716PubMedPubMedCentralCrossRef Faure E, Poissy J, Goffard A et al (2014) Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? Plos One 9:e88716PubMedPubMedCentralCrossRef
50.
51.
52.
Zurück zum Zitat Giovannoni G, Soelberg Sorensen P, Cook S et al (2018) Safety and efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis: Results from the randomized extension trial of the CLARITY study. Mult Scler 24:1594–1604PubMedCrossRef Giovannoni G, Soelberg Sorensen P, Cook S et al (2018) Safety and efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis: Results from the randomized extension trial of the CLARITY study. Mult Scler 24:1594–1604PubMedCrossRef
53.
Zurück zum Zitat Cook S, Vermersch P, Comi G et al (2011) Safety and tolerability of cladribine tablets in multiple sclerosis: the CLARITY (CLAdRIbine Tablets treating multiple sclerosis orallY) study. Mult Scler 17:578–593PubMedCrossRef Cook S, Vermersch P, Comi G et al (2011) Safety and tolerability of cladribine tablets in multiple sclerosis: the CLARITY (CLAdRIbine Tablets treating multiple sclerosis orallY) study. Mult Scler 17:578–593PubMedCrossRef
54.
Zurück zum Zitat Klotz L, Havla J, Schwab N et al (2019) Risks and risk management in modern multiple sclerosis immunotherapeutic treatment. Ther Adv Neurol Disord 12:1756286419836571PubMedPubMedCentralCrossRef Klotz L, Havla J, Schwab N et al (2019) Risks and risk management in modern multiple sclerosis immunotherapeutic treatment. Ther Adv Neurol Disord 12:1756286419836571PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Whittam DH, Tallantyre EC, Jolles S et al (2019) Rituximab in neurological disease: principles, evidence and practice. Pract Neurol 19:5–20PubMedCrossRef Whittam DH, Tallantyre EC, Jolles S et al (2019) Rituximab in neurological disease: principles, evidence and practice. Pract Neurol 19:5–20PubMedCrossRef
56.
Zurück zum Zitat Hauser SL, Bar-Or A, Comi G et al (2017) Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med 376:221–234PubMedCrossRef Hauser SL, Bar-Or A, Comi G et al (2017) Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med 376:221–234PubMedCrossRef
57.
Zurück zum Zitat Montalban X, Hauser SL, Kappos L et al (2017) Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med 376:209–220PubMedCrossRef Montalban X, Hauser SL, Kappos L et al (2017) Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med 376:209–220PubMedCrossRef
58.
Zurück zum Zitat Schuh E, Berer K, Mulazzani M et al (1950) Features of human CD3+CD20+ T cells. J Immunol 197:1111–1117CrossRef Schuh E, Berer K, Mulazzani M et al (1950) Features of human CD3+CD20+ T cells. J Immunol 197:1111–1117CrossRef
59.
Zurück zum Zitat Cree BAC, Bennett JL, Kim HJ et al (2019) Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 394:1352–1363PubMedCrossRef Cree BAC, Bennett JL, Kim HJ et al (2019) Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 394:1352–1363PubMedCrossRef
60.
Zurück zum Zitat Halliley JL, Tipton CM, Liesveld J et al (2015) Long-lived plasma cells are contained within the CD19(-)CD38(hi)CD138(+) subset in human bone marrow. Immunity 43:132–145PubMedPubMedCentralCrossRef Halliley JL, Tipton CM, Liesveld J et al (2015) Long-lived plasma cells are contained within the CD19(-)CD38(hi)CD138(+) subset in human bone marrow. Immunity 43:132–145PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Mei HE, Wirries I, Frölich D et al (2015) A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood 125:1739–1748PubMedCrossRef Mei HE, Wirries I, Frölich D et al (2015) A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood 125:1739–1748PubMedCrossRef
62.
Zurück zum Zitat Chen D, Gallagher S, Monson NL et al (2016) Inebilizumab, a B cell-depleting anti-CD19 antibody for the treatment of autoimmune neurological diseases: insights from preclinical studies. JCM 5:107CrossRefPubMedCentral Chen D, Gallagher S, Monson NL et al (2016) Inebilizumab, a B cell-depleting anti-CD19 antibody for the treatment of autoimmune neurological diseases: insights from preclinical studies. JCM 5:107CrossRefPubMedCentral
63.
Zurück zum Zitat Misumi I, Whitmire JK (2014) B cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. J Immunol 192:1597–1608PubMedCrossRef Misumi I, Whitmire JK (2014) B cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. J Immunol 192:1597–1608PubMedCrossRef
64.
Zurück zum Zitat Palanichamy A, Jahn S, Nickles D et al (2014) Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J Immunol 193:580–586PubMedCrossRef Palanichamy A, Jahn S, Nickles D et al (2014) Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J Immunol 193:580–586PubMedCrossRef
65.
Zurück zum Zitat Sutter JA, Kwan-Morley J, Dunham J et al (2008) A longitudinal analysis of SLE patients treated with rituximab (anti-CD20): factors associated with B lymphocyte recovery. Clin Immunol 126:282–290PubMedCrossRef Sutter JA, Kwan-Morley J, Dunham J et al (2008) A longitudinal analysis of SLE patients treated with rituximab (anti-CD20): factors associated with B lymphocyte recovery. Clin Immunol 126:282–290PubMedCrossRef
66.
Zurück zum Zitat Kim W, Kim S‑H, Huh S‑Y et al (2013) Reduced antibody formation after influenza vaccination in patients with neuromyelitis optica spectrum disorder treated with rituximab. Eur J Neurol 20:975–980PubMedCrossRef Kim W, Kim S‑H, Huh S‑Y et al (2013) Reduced antibody formation after influenza vaccination in patients with neuromyelitis optica spectrum disorder treated with rituximab. Eur J Neurol 20:975–980PubMedCrossRef
67.
Zurück zum Zitat van Assen S, Holvast A, Benne CA et al (2010) Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheum 62:75–81PubMedCrossRef van Assen S, Holvast A, Benne CA et al (2010) Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheum 62:75–81PubMedCrossRef
68.
Zurück zum Zitat Bedognetti D, Zoppoli G, Massucco C et al (2011) Impaired response to influenza vaccine associated with persistent memory B cell depletion in non-Hodgkin’s lymphoma patients treated with rituximab-containing regimens. J Immunol 186:6044–6055PubMedCrossRef Bedognetti D, Zoppoli G, Massucco C et al (2011) Impaired response to influenza vaccine associated with persistent memory B cell depletion in non-Hodgkin’s lymphoma patients treated with rituximab-containing regimens. J Immunol 186:6044–6055PubMedCrossRef
69.
Zurück zum Zitat Chen D, Ireland SJ, Davis LS et al (2016) Autoreactive CD19+CD20- plasma cells contribute to disease severity of experimental autoimmune encephalomyelitis. J Immunol 196:1541–1549PubMedCrossRef Chen D, Ireland SJ, Davis LS et al (2016) Autoreactive CD19+CD20- plasma cells contribute to disease severity of experimental autoimmune encephalomyelitis. J Immunol 196:1541–1549PubMedCrossRef
70.
Zurück zum Zitat Tesfa D, Palmblad J (2011) Late-onset neutropenia following rituximab therapy: incidence, clinical features and possible mechanisms. Expert Rev Hematol 4:619–625PubMedCrossRef Tesfa D, Palmblad J (2011) Late-onset neutropenia following rituximab therapy: incidence, clinical features and possible mechanisms. Expert Rev Hematol 4:619–625PubMedCrossRef
71.
Zurück zum Zitat Rodig SJ, Abramson JS, Pinkus GS et al (2006) Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin Cancer Res 12:7174–7179PubMedCrossRef Rodig SJ, Abramson JS, Pinkus GS et al (2006) Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin Cancer Res 12:7174–7179PubMedCrossRef
74.
Zurück zum Zitat Brownlee WJ, Chataway J (2017) Opportunistic infections after alemtuzumab: New cases of norcardial infection and cytomegalovirus syndrome. Mult Scler 23:876–877PubMedCrossRef Brownlee WJ, Chataway J (2017) Opportunistic infections after alemtuzumab: New cases of norcardial infection and cytomegalovirus syndrome. Mult Scler 23:876–877PubMedCrossRef
75.
Zurück zum Zitat Ghosh S, Goldin E, Gordon FH et al (2003) Natalizumab for active Crohn’s disease. N Engl J Med 348:24–32PubMedCrossRef Ghosh S, Goldin E, Gordon FH et al (2003) Natalizumab for active Crohn’s disease. N Engl J Med 348:24–32PubMedCrossRef
76.
Zurück zum Zitat Polman CH, O’Connor PW, Havrdova E et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910PubMedCrossRef Polman CH, O’Connor PW, Havrdova E et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910PubMedCrossRef
77.
Zurück zum Zitat Yousry TA, Major EO, Ryschkewitsch C et al (2006) Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med 354:924–933PubMedPubMedCentralCrossRef Yousry TA, Major EO, Ryschkewitsch C et al (2006) Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med 354:924–933PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Pawlitzki M, Teuber J, Campe C et al (2018) VZV-associated acute retinal necrosis in a patient with MS treated with natalizumab. Neurol Neuroimmunol Neuroinflamm 5:e475PubMedPubMedCentralCrossRef Pawlitzki M, Teuber J, Campe C et al (2018) VZV-associated acute retinal necrosis in a patient with MS treated with natalizumab. Neurol Neuroimmunol Neuroinflamm 5:e475PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Niino M, Bodner C, Simard M‑L et al (2006) Natalizumab effects on immune cell responses in multiple sclerosis. Ann Neurol 59:748–754PubMedCrossRef Niino M, Bodner C, Simard M‑L et al (2006) Natalizumab effects on immune cell responses in multiple sclerosis. Ann Neurol 59:748–754PubMedCrossRef
80.
Zurück zum Zitat Bonig H, Wundes A, Chang K‑H et al (2008) Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab. Blood 111:3439–3441PubMedPubMedCentralCrossRef Bonig H, Wundes A, Chang K‑H et al (2008) Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab. Blood 111:3439–3441PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Planas R, Jelčić I, Schippling S et al (2012) Natalizumab treatment perturbs memory- and marginal zone-like B‑cell homing in secondary lymphoid organs in multiple sclerosis. Eur J Immunol 42:790–798PubMedCrossRef Planas R, Jelčić I, Schippling S et al (2012) Natalizumab treatment perturbs memory- and marginal zone-like B‑cell homing in secondary lymphoid organs in multiple sclerosis. Eur J Immunol 42:790–798PubMedCrossRef
82.
Zurück zum Zitat Mameli G, Arru G, Caggiu E et al (2016) Natalizumab therapy modulates miR-155, miR-26a and proinflammatory cytokine expression in MS patients. PLoS ONE 11:e157153PubMedPubMedCentralCrossRef Mameli G, Arru G, Caggiu E et al (2016) Natalizumab therapy modulates miR-155, miR-26a and proinflammatory cytokine expression in MS patients. PLoS ONE 11:e157153PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Woodside DG, Vanderslice P (2008) Cell adhesion antagonists: therapeutic potential in asthma and chronic obstructive pulmonary disease. BioDrugs 22:85–100PubMedCrossRef Woodside DG, Vanderslice P (2008) Cell adhesion antagonists: therapeutic potential in asthma and chronic obstructive pulmonary disease. BioDrugs 22:85–100PubMedCrossRef
84.
Zurück zum Zitat Brinkmann V (2009) FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 158:1173–1182PubMedPubMedCentralCrossRef Brinkmann V (2009) FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 158:1173–1182PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Kappos L, Radue E‑W, O’Connor P et al (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362:387–401PubMedCrossRef Kappos L, Radue E‑W, O’Connor P et al (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362:387–401PubMedCrossRef
86.
Zurück zum Zitat Comi G, Hartung H‑P, Bakshi R et al (2017) Benefit-risk profile of sphingosine-1-phosphate receptor modulators in relapsing and secondary progressive multiple sclerosis. Drugs 77:1755–1768PubMedPubMedCentralCrossRef Comi G, Hartung H‑P, Bakshi R et al (2017) Benefit-risk profile of sphingosine-1-phosphate receptor modulators in relapsing and secondary progressive multiple sclerosis. Drugs 77:1755–1768PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat van Rossum JA, Looysen EE, Daniels JMA et al (2014) Fingolimod-induced asthma deterioration in a patient with relapsing-remitting multiple sclerosis. Mult Scler 20:1792–1793PubMedCrossRef van Rossum JA, Looysen EE, Daniels JMA et al (2014) Fingolimod-induced asthma deterioration in a patient with relapsing-remitting multiple sclerosis. Mult Scler 20:1792–1793PubMedCrossRef
88.
Zurück zum Zitat Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30:69–94PubMedCrossRef Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30:69–94PubMedCrossRef
89.
Zurück zum Zitat Idzko M, Hammad H, van Nimwegen M et al (2006) Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest 116:2935–2944PubMedPubMedCentralCrossRef Idzko M, Hammad H, van Nimwegen M et al (2006) Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest 116:2935–2944PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Zhang X, Liu H, Wang S et al (2019) LncRNA analysis of lung tissues after hUC-MSCs and FTY720 treatment of lipopolysaccharide-induced acute lung injury in mouse models. Int Immunopharmacol 71:68–75PubMedCrossRef Zhang X, Liu H, Wang S et al (2019) LncRNA analysis of lung tissues after hUC-MSCs and FTY720 treatment of lipopolysaccharide-induced acute lung injury in mouse models. Int Immunopharmacol 71:68–75PubMedCrossRef
91.
Zurück zum Zitat Wang L, Sammani S, Moreno-Vinasco L et al (2014) FTY720 (s)-phosphonate preserves sphingosine 1‑phosphate receptor 1 expression and exhibits superior barrier protection to FTY720 in acute lung injury. Crit Care Med 42:e189–e199PubMedPubMedCentralCrossRef Wang L, Sammani S, Moreno-Vinasco L et al (2014) FTY720 (s)-phosphonate preserves sphingosine 1‑phosphate receptor 1 expression and exhibits superior barrier protection to FTY720 in acute lung injury. Crit Care Med 42:e189–e199PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Rahman MM, Prünte L, Lebender LF et al (2016) The phosphorylated form of FTY720 activates PP2A, represses inflammation and is devoid of S1P agonism in A549 lung epithelial cells. Sci Rep 6:37297PubMedPubMedCentralCrossRef Rahman MM, Prünte L, Lebender LF et al (2016) The phosphorylated form of FTY720 activates PP2A, represses inflammation and is devoid of S1P agonism in A549 lung epithelial cells. Sci Rep 6:37297PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Morales SF, Koralnik IJ, Gautam S et al (2020) Risk factors for lymphopenia in patients with relapsing-remitting multiple sclerosis treated with dimethyl fumarate. J Neurol 267:125–131PubMedCrossRef Morales SF, Koralnik IJ, Gautam S et al (2020) Risk factors for lymphopenia in patients with relapsing-remitting multiple sclerosis treated with dimethyl fumarate. J Neurol 267:125–131PubMedCrossRef
95.
Zurück zum Zitat Zettl UK, Hecker M, Aktas O et al (2018) Interferon β‑1a and β‑1b for patients with multiple sclerosis: updates to current knowledge. Expert Rev Clin Immunol 14:137–153PubMedCrossRef Zettl UK, Hecker M, Aktas O et al (2018) Interferon β‑1a and β‑1b for patients with multiple sclerosis: updates to current knowledge. Expert Rev Clin Immunol 14:137–153PubMedCrossRef
97.
Zurück zum Zitat Jiang H (1995) Interferon β‑lb reduces Interferon γ‑induced antigen-presenting capacity of human glial and B cells. J Neuroimmunol 61:17–25PubMedCrossRef Jiang H (1995) Interferon β‑lb reduces Interferon γ‑induced antigen-presenting capacity of human glial and B cells. J Neuroimmunol 61:17–25PubMedCrossRef
98.
Zurück zum Zitat Yong VW (2002) Differential mechanisms of action of interferon-beta and glatiramer aetate in MS. Neurology 59:802–808PubMedCrossRef Yong VW (2002) Differential mechanisms of action of interferon-beta and glatiramer aetate in MS. Neurology 59:802–808PubMedCrossRef
100.
Zurück zum Zitat de Wilde AH, Jochmans D, Posthuma CC et al (2014) Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 58:4875–4884PubMedPubMedCentralCrossRef de Wilde AH, Jochmans D, Posthuma CC et al (2014) Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 58:4875–4884PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Kleiter I, Ayzenberg I, Araki M et al (2016) Tocilizumab, MS, and NMOSD. Mult Scler 22:1891–1892PubMedCrossRef Kleiter I, Ayzenberg I, Araki M et al (2016) Tocilizumab, MS, and NMOSD. Mult Scler 22:1891–1892PubMedCrossRef
102.
Zurück zum Zitat Yamamura T, Kleiter I, Fujihara K et al (2019) Trial of satralizumab in neuromyelitis Optica spectrum disorder. N Engl J Med 381:2114–2124PubMedCrossRef Yamamura T, Kleiter I, Fujihara K et al (2019) Trial of satralizumab in neuromyelitis Optica spectrum disorder. N Engl J Med 381:2114–2124PubMedCrossRef
103.
105.
Zurück zum Zitat Norelli M, Camisa B, Barbiera G et al (2018) Monocyte-derived IL‑1 and IL‑6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 24:739–748PubMedCrossRef Norelli M, Camisa B, Barbiera G et al (2018) Monocyte-derived IL‑1 and IL‑6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 24:739–748PubMedCrossRef
106.
Zurück zum Zitat Tanaka T, Narazaki M, Kishimoto T (2016) Immunotherapeutic implications of IL‑6 blockade for cytokine storm. Immunotherapy 8:959–970PubMedCrossRef Tanaka T, Narazaki M, Kishimoto T (2016) Immunotherapeutic implications of IL‑6 blockade for cytokine storm. Immunotherapy 8:959–970PubMedCrossRef
107.
Zurück zum Zitat Zheng J, Shi Y, Xiong L et al (2017) The expression of IL‑6, TNF‑α, and MCP‑1 in respiratory viral infection in acute exacerbations of chronic obstructive pulmonary disease. J Immunol Res 2017:8539294PubMedPubMedCentralCrossRef Zheng J, Shi Y, Xiong L et al (2017) The expression of IL‑6, TNF‑α, and MCP‑1 in respiratory viral infection in acute exacerbations of chronic obstructive pulmonary disease. J Immunol Res 2017:8539294PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL et al (2019) The role of Interleukin 6 during viral infections. Front Microbiol 10:1057PubMedPubMedCentralCrossRef Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL et al (2019) The role of Interleukin 6 during viral infections. Front Microbiol 10:1057PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Herold T, Jurinovic V, Arnreich C et al (2020) Level of IL‑6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients Herold T, Jurinovic V, Arnreich C et al (2020) Level of IL‑6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients
112.
Zurück zum Zitat Coomes EA, Haghbayan H (2020) Interleukin‑6 in COVID-19: a systematic review and meta-analysis Coomes EA, Haghbayan H (2020) Interleukin‑6 in COVID-19: a systematic review and meta-analysis
113.
Zurück zum Zitat Le RQ, Li L, Yuan W et al (2018) FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist 23:943–947PubMedPubMedCentralCrossRef Le RQ, Li L, Yuan W et al (2018) FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist 23:943–947PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Sciascia S, Aprà F, Baffa A et al (2020) Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in severe patients with COVID-19. Clin Exp Rheumatol 38(3):529–532PubMed Sciascia S, Aprà F, Baffa A et al (2020) Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in severe patients with COVID-19. Clin Exp Rheumatol 38(3):529–532PubMed
119.
Zurück zum Zitat Pittock SJ, Berthele A, Fujihara K et al (2019) Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N Engl J Med 381:614–625PubMedCrossRef Pittock SJ, Berthele A, Fujihara K et al (2019) Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N Engl J Med 381:614–625PubMedCrossRef
120.
Zurück zum Zitat Howard JF, Utsugisawa K, Benatar M et al (2017) Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol 16:976–986PubMedCrossRef Howard JF, Utsugisawa K, Benatar M et al (2017) Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol 16:976–986PubMedCrossRef
121.
Zurück zum Zitat Stoermer KA, Morrison TE (2011) Complement and viral pathogenesis. Virology 411:362–373PubMedCrossRef Stoermer KA, Morrison TE (2011) Complement and viral pathogenesis. Virology 411:362–373PubMedCrossRef
122.
123.
Zurück zum Zitat Benamu E, Montoya JG (2016) Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr Opin Infect Dis 29:319–329PubMedCrossRef Benamu E, Montoya JG (2016) Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr Opin Infect Dis 29:319–329PubMedCrossRef
124.
Zurück zum Zitat Wang R, Xiao H, Guo R et al (2015) The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerg Microbes Infect 4:e28PubMedPubMedCentral Wang R, Xiao H, Guo R et al (2015) The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerg Microbes Infect 4:e28PubMedPubMedCentral
125.
126.
Zurück zum Zitat Jiang Y, Zhao G, Song N et al (2018) Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV. Emerg Microbes Infect 7:77PubMedPubMedCentral Jiang Y, Zhao G, Song N et al (2018) Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV. Emerg Microbes Infect 7:77PubMedPubMedCentral
127.
Zurück zum Zitat Elkharrat D, Goulon M, Gajdos P (1987) Cyclosporine for myasthenia gravis. N Engl J Med 317:770PubMed Elkharrat D, Goulon M, Gajdos P (1987) Cyclosporine for myasthenia gravis. N Engl J Med 317:770PubMed
128.
Zurück zum Zitat Barba T, Fort R, Cottin V et al (2019) Treatment of idiopathic inflammatory myositis associated interstitial lung disease: A systematic review and meta-analysis. Autoimmun Rev 18:113–122PubMedCrossRef Barba T, Fort R, Cottin V et al (2019) Treatment of idiopathic inflammatory myositis associated interstitial lung disease: A systematic review and meta-analysis. Autoimmun Rev 18:113–122PubMedCrossRef
129.
Zurück zum Zitat Bonifati DM, Angelini C (1997) Long-term cyclosporine treatment in a group of severe myasthenia gravis patients. J Neurol 244:542–547PubMedCrossRef Bonifati DM, Angelini C (1997) Long-term cyclosporine treatment in a group of severe myasthenia gravis patients. J Neurol 244:542–547PubMedCrossRef
130.
131.
Zurück zum Zitat Ericson JE, Zimmerman KO, Gonzalez D et al (2017) A systematic literature review approach to estimate the therapeutic index of selected immunosuppressant drugs after renal transplantation. Ther Drug Monit 39:13–20PubMedPubMedCentralCrossRef Ericson JE, Zimmerman KO, Gonzalez D et al (2017) A systematic literature review approach to estimate the therapeutic index of selected immunosuppressant drugs after renal transplantation. Ther Drug Monit 39:13–20PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Gold R, Buttgereit F, Toyka KV (2001) Mechanism of action of glucocorticosteroid hormones: possible implications for therapy of neuroimmunological disorders. J Neuroimmunol 117:1–8PubMedCrossRef Gold R, Buttgereit F, Toyka KV (2001) Mechanism of action of glucocorticosteroid hormones: possible implications for therapy of neuroimmunological disorders. J Neuroimmunol 117:1–8PubMedCrossRef
133.
Zurück zum Zitat Klein NC, Go CH‑U, Cunha BA (2001) Infections associated with steroid use. Infect Dis Clin North Am 15:423–432PubMedCrossRef Klein NC, Go CH‑U, Cunha BA (2001) Infections associated with steroid use. Infect Dis Clin North Am 15:423–432PubMedCrossRef
134.
Zurück zum Zitat Le Page E, Veillard D, Laplaud DA et al (2015) Oral versus intravenous high-dose methylprednisolone for treatment of relapses in patients with multiple sclerosis (COPOUSEP): a randomised, controlled, double-blind, non-inferiority trial. Lancet 386:974–981PubMedCrossRef Le Page E, Veillard D, Laplaud DA et al (2015) Oral versus intravenous high-dose methylprednisolone for treatment of relapses in patients with multiple sclerosis (COPOUSEP): a randomised, controlled, double-blind, non-inferiority trial. Lancet 386:974–981PubMedCrossRef
135.
Zurück zum Zitat Nicastri E, Petrosillo N, Bartoli TA et al (2020) National Institute for the Infectious Diseases “L. Spallanzani”, IRCCS. Recommendations for COVID-19 clinical management. Infect Dis Rep 12:8543PubMedPubMedCentralCrossRef Nicastri E, Petrosillo N, Bartoli TA et al (2020) National Institute for the Infectious Diseases “L. Spallanzani”, IRCCS. Recommendations for COVID-19 clinical management. Infect Dis Rep 12:8543PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Russell CD, Millar JE, Baillie JK (2020) Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 395:473–475PubMedPubMedCentralCrossRef Russell CD, Millar JE, Baillie JK (2020) Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 395:473–475PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Xu Z, Shi L, Wang Y et al (2020) Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8:420–422PubMedPubMedCentralCrossRef Xu Z, Shi L, Wang Y et al (2020) Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8:420–422PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Lünemann JD, Nimmerjahn F, Dalakas MC (2015) Intravenous immunoglobulin in neurology—mode of action and clinical efficacy. Nat Rev Neurol 11:80–89PubMedCrossRef Lünemann JD, Nimmerjahn F, Dalakas MC (2015) Intravenous immunoglobulin in neurology—mode of action and clinical efficacy. Nat Rev Neurol 11:80–89PubMedCrossRef
140.
Zurück zum Zitat Ichiyama T, Ueno Y, Hasegawa M et al (2004) Intravenous immunoglobulin inhibits NF-kappaB activation and affects Fcgamma receptor expression in monocytes/macrophages. Naunyn Schmiedebergs Arch Pharmacol 369:428–433PubMedCrossRef Ichiyama T, Ueno Y, Hasegawa M et al (2004) Intravenous immunoglobulin inhibits NF-kappaB activation and affects Fcgamma receptor expression in monocytes/macrophages. Naunyn Schmiedebergs Arch Pharmacol 369:428–433PubMedCrossRef
141.
Zurück zum Zitat Araujo LM, Chauvineau A, Zhu R et al (2011) Cutting edge: intravenous Ig inhibits invariant NKT cell-mediated allergic airway inflammation through FcγRIIIA-dependent mechanisms. J Immunol 186:3289–3293PubMedCrossRef Araujo LM, Chauvineau A, Zhu R et al (2011) Cutting edge: intravenous Ig inhibits invariant NKT cell-mediated allergic airway inflammation through FcγRIIIA-dependent mechanisms. J Immunol 186:3289–3293PubMedCrossRef
142.
Zurück zum Zitat Ichiyama T, Ueno Y, Isumi H et al (2004) An immunoglobulin agent (IVIG) inhibits NF-kappaB activation in cultured endothelial cells of coronary arteries in vitro. Inflamm Res 53:253–256PubMedCrossRef Ichiyama T, Ueno Y, Isumi H et al (2004) An immunoglobulin agent (IVIG) inhibits NF-kappaB activation in cultured endothelial cells of coronary arteries in vitro. Inflamm Res 53:253–256PubMedCrossRef
143.
Zurück zum Zitat Macmillan HF, Rowter D, Lee T et al (2010) Intravenous immunoglobulin G selectively inhibits IL-1α-induced neutrophil-endothelial cell adhesion. Autoimmunity 43:619–627PubMedCrossRef Macmillan HF, Rowter D, Lee T et al (2010) Intravenous immunoglobulin G selectively inhibits IL-1α-induced neutrophil-endothelial cell adhesion. Autoimmunity 43:619–627PubMedCrossRef
144.
Zurück zum Zitat Aukrust P, Müller F, Svenson M et al (1999) Administration of intravenous immunoglobulin (IVIG) in vivo—down-regulatory effects on the IL‑1 system. Clin Exp Immunol 115:136–143PubMedPubMedCentralCrossRef Aukrust P, Müller F, Svenson M et al (1999) Administration of intravenous immunoglobulin (IVIG) in vivo—down-regulatory effects on the IL‑1 system. Clin Exp Immunol 115:136–143PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Seite J‑F, Shoenfeld Y, Youinou P et al (2008) What is the contents of the magic draft IVIg? Autoimmun Rev 7:435–439PubMedCrossRef Seite J‑F, Shoenfeld Y, Youinou P et al (2008) What is the contents of the magic draft IVIg? Autoimmun Rev 7:435–439PubMedCrossRef
146.
Zurück zum Zitat Basta M, van Goor F, Luccioli S et al (2003) F(ab)’2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med 9:431–438PubMedCrossRef Basta M, van Goor F, Luccioli S et al (2003) F(ab)’2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med 9:431–438PubMedCrossRef
147.
Zurück zum Zitat Konrad S, Baumann U, Schmidt RE et al (2006) Intravenous immunoglobulin (IVIG)-mediated neutralisation of C5a: a direct mechanism of IVIG in the maintenance of a high Fc gammaRIIB to Fc gammaRIII expression ratio on macrophages. Br J Haematol 134:345–347PubMedCrossRef Konrad S, Baumann U, Schmidt RE et al (2006) Intravenous immunoglobulin (IVIG)-mediated neutralisation of C5a: a direct mechanism of IVIG in the maintenance of a high Fc gammaRIIB to Fc gammaRIII expression ratio on macrophages. Br J Haematol 134:345–347PubMedCrossRef
148.
Zurück zum Zitat Xu C, Poirier B, van Duong Huyen J‑P et al (1998) Modulation of endothelial cell function by normal polyspecific human intravenous Immunoglobulins. Am J Pathol 153:1257–1266PubMedPubMedCentralCrossRef Xu C, Poirier B, van Duong Huyen J‑P et al (1998) Modulation of endothelial cell function by normal polyspecific human intravenous Immunoglobulins. Am J Pathol 153:1257–1266PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Kreymann KG, de Heer G, Nierhaus A et al (2007) Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med 35:2677–2685PubMed Kreymann KG, de Heer G, Nierhaus A et al (2007) Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med 35:2677–2685PubMed
150.
Zurück zum Zitat Rolfes L, Pfeuffer S, Ruck T et al (2019) Therapeutic apheresis in acute relapsing multiple sclerosis: current evidence and unmet needs‑a systematic review. JCM 8:1623CrossRefPubMedCentral Rolfes L, Pfeuffer S, Ruck T et al (2019) Therapeutic apheresis in acute relapsing multiple sclerosis: current evidence and unmet needs‑a systematic review. JCM 8:1623CrossRefPubMedCentral
151.
Zurück zum Zitat Knaup H, Stahl K, Schmidt BMW et al (2018) Early therapeutic plasma exchange in septic shock: a prospective open-label nonrandomized pilot study focusing on safety, hemodynamics, vascular barrier function, and biologic markers. Crit Care 22:285PubMedPubMedCentralCrossRef Knaup H, Stahl K, Schmidt BMW et al (2018) Early therapeutic plasma exchange in septic shock: a prospective open-label nonrandomized pilot study focusing on safety, hemodynamics, vascular barrier function, and biologic markers. Crit Care 22:285PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Rimmer E, Houston BL, Kumar A et al (2014) The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care 18:699PubMedPubMedCentralCrossRef Rimmer E, Houston BL, Kumar A et al (2014) The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care 18:699PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Sanders DB, Evoli A (2010) Immunosuppressive therapies in myasthenia gravis. Autoimmunity 43:428–435PubMedCrossRef Sanders DB, Evoli A (2010) Immunosuppressive therapies in myasthenia gravis. Autoimmunity 43:428–435PubMedCrossRef
156.
Zurück zum Zitat Clerico M, de Mercanti SF, Signori A et al (2020) Extending the interval of natalizumab dosing: is efficacy preserved? Neurotherapeutics 17:200–207PubMedCrossRef Clerico M, de Mercanti SF, Signori A et al (2020) Extending the interval of natalizumab dosing: is efficacy preserved? Neurotherapeutics 17:200–207PubMedCrossRef
157.
Zurück zum Zitat Ellrichmann G, Bolz J, Peschke M et al (2019) Peripheral CD19+ B‑cell counts and infusion intervals as a surrogate for long-term B‑cell depleting therapy in multiple sclerosis and neuromyelitis optica/neuromyelitis optica spectrum disorders. J Neurol 266:57–67PubMedCrossRef Ellrichmann G, Bolz J, Peschke M et al (2019) Peripheral CD19+ B‑cell counts and infusion intervals as a surrogate for long-term B‑cell depleting therapy in multiple sclerosis and neuromyelitis optica/neuromyelitis optica spectrum disorders. J Neurol 266:57–67PubMedCrossRef
158.
Zurück zum Zitat Vågberg M, Kumlin U, Svenningsson A (2012) Humoral immune response to influenza vaccine in natalizumab-treated MS patients. Neurol Res 34:730–733PubMedCrossRef Vågberg M, Kumlin U, Svenningsson A (2012) Humoral immune response to influenza vaccine in natalizumab-treated MS patients. Neurol Res 34:730–733PubMedCrossRef
159.
Zurück zum Zitat Mehling M, Hilbert P, Fritz S et al (2011) Antigen-specific adaptive immune responses in fingolimod-treated multiple sclerosis patients. Ann Neurol 69:408–413PubMedCrossRef Mehling M, Hilbert P, Fritz S et al (2011) Antigen-specific adaptive immune responses in fingolimod-treated multiple sclerosis patients. Ann Neurol 69:408–413PubMedCrossRef
160.
Zurück zum Zitat Olberg HK, Eide GE, Cox RJ et al (2018) Antibody response to seasonal influenza vaccination in patients with multiple sclerosis receiving immunomodulatory therapy. Eur J Neurol 25:527–534PubMedCrossRef Olberg HK, Eide GE, Cox RJ et al (2018) Antibody response to seasonal influenza vaccination in patients with multiple sclerosis receiving immunomodulatory therapy. Eur J Neurol 25:527–534PubMedCrossRef
161.
Zurück zum Zitat Wiwanitkit V (2010) Safety of influenza vaccination: risk-benefit evaluation. Muscle Nerve 42:296 (author reply 296.)PubMedCrossRef Wiwanitkit V (2010) Safety of influenza vaccination: risk-benefit evaluation. Muscle Nerve 42:296 (author reply 296.)PubMedCrossRef
162.
Zurück zum Zitat Schwid SR, Decker MD, Lopez-Bresnahan M (2005) Immune response to influenza vaccine is maintained in patients with multiple sclerosis receiving interferon beta-1a. Neurology 65:1964–1966PubMedCrossRef Schwid SR, Decker MD, Lopez-Bresnahan M (2005) Immune response to influenza vaccine is maintained in patients with multiple sclerosis receiving interferon beta-1a. Neurology 65:1964–1966PubMedCrossRef
163.
Zurück zum Zitat Bar-Or A, Freedman MS, Kremenchutzky M et al (2013) Teriflunomide effect on immune response to influenza vaccine in patients with multiple sclerosis. Neurology 81:552–558PubMedPubMedCentralCrossRef Bar-Or A, Freedman MS, Kremenchutzky M et al (2013) Teriflunomide effect on immune response to influenza vaccine in patients with multiple sclerosis. Neurology 81:552–558PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat von Hehn C, Howard J, Liu S et al (2018) Immune response to vaccines is maintained in patients treated with dimethyl fumarate. Neurol Neuroimmunol Neuroinflamm 5:e409CrossRef von Hehn C, Howard J, Liu S et al (2018) Immune response to vaccines is maintained in patients treated with dimethyl fumarate. Neurol Neuroimmunol Neuroinflamm 5:e409CrossRef
165.
Zurück zum Zitat McCarthy CL, Tuohy O, Compston DAS et al (2013) Immune competence after alemtuzumab treatment of multiple sclerosis. Neurology 81:872–876PubMedPubMedCentralCrossRef McCarthy CL, Tuohy O, Compston DAS et al (2013) Immune competence after alemtuzumab treatment of multiple sclerosis. Neurology 81:872–876PubMedPubMedCentralCrossRef
166.
168.
Zurück zum Zitat Loebermann M, Winkelmann A, Hartung H‑P et al (2012) Vaccination against infection in patients with multiple sclerosis. Nat Rev Neurol 8:143–151PubMedCrossRef Loebermann M, Winkelmann A, Hartung H‑P et al (2012) Vaccination against infection in patients with multiple sclerosis. Nat Rev Neurol 8:143–151PubMedCrossRef
169.
Zurück zum Zitat Abbas AK, Lichtman AH, Pillai S (2018) Cellular and molecular immunology. Elsevier, Philadelphia Abbas AK, Lichtman AH, Pillai S (2018) Cellular and molecular immunology. Elsevier, Philadelphia
Metadaten
Titel
Risiken und Chancen von Immuntherapien in Zeiten der Coronavirus-2019-Pandemie
verfasst von
Dr. Marc Pawlitzki
Uwe K. Zettl
Tobias Ruck
Leoni Rolfes
Hans-Peter Hartung
Sven G. Meuth
Publikationsdatum
09.06.2020
Verlag
Springer Medizin
Erschienen in
DGNeurologie / Ausgabe 4/2020
Print ISSN: 2524-3446
Elektronische ISSN: 2524-3454
DOI
https://doi.org/10.1007/s42451-020-00205-6

Weitere Artikel der Ausgabe 4/2020

DGNeurologie 4/2020 Zur Ausgabe