Skip to main content
Erschienen in: Cancer Cell International 1/2022

Open Access 01.12.2022 | Review

Oncogenic roles of the lncRNA LINC00460 in human cancers

verfasst von: Min Su, Jinming Tang, Desong Yang, Zhining Wu, Qianjin Liao, Hui Wang, Yuhang Xiao, Wenxiang Wang

Erschienen in: Cancer Cell International | Ausgabe 1/2022

Abstract

Long noncoding RNAs (lncRNAs) represent an important group of endogenous RNAs with limit protein-encoding capability, with a length of more than 200 nucleotides. Emerging evidence have demonstrated that lncRNAs are greatly involved in multiple cancers by playing critical roles in tumor initiation and progression. Long intergenic non-protein coding RNA 460 (LINC00460), a novel cancer-related lncRNA, exhibits abnormal expression and oncogenic function in multiple cancers, and positively correlates with poor clinical characteristics of cancer patients. LINC00460 has also been shown to be a promising biomarker for diagnosis as well as prognostic evaluation in cancer patients. In this review, we briefly summarized recent knowledge on the expression, functional roles, molecular mechanisms, and diagnostic and prognostic values of LINC00460 in human malignancies.
Hinweise
Min Su and Jinming Tang contributed equally  to this work

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AML
Acute myeloid leukemia
AUC
Area under the curve
ceRNA
Competing endogenous RNA
ChIP
Chromatin immunoprecipitation
CRLM
Colorectal cancer liver metastasis
EMT
Epithelial-to-mesenchymal transition
GAL
GLUT1 associated lncRNA
GLUT1
Glucose transporter 1
HNSCC
Head and neck squamous cell carcinoma
LINC00460
Long intergenic non-protein coding RNA 460
lncRNAs
Long noncoding RNAs
ncRNAs
Noncoding RNAs
MALAT1
Metastasis-associated lung adenocarcinoma transcript1
NSCLC
Non-small cell lung cancer
OS
Overall survival
PFS
Progression free survival
RBP
RNA binding protein
RIP
RNA immunoprecipitation
ROC
Receiver operating characteristic
TNM
Tumor Node Metastasis

Introduction

Deep sequencing of mammalian transcriptomes has revealed that approximately 98% of RNA sequences are noncoding RNAs (ncRNAs) that comprise two groups based on length, including small (< 200 nucleotides) and long (lncRNAs; >200 nucleotides) ncRNAs [1, 2]. Over the past two decades, an increasing number of studies have assessed lncRNAs because of their potential involvement in many pathologies, including malignancies [3]. LncRNAs contribute to multiple biological functions in cancer, ranging from cell proliferation, invasion, stemness, angiogenesis, to chemotherapy resistance [4, 5]. LncRNAs were demonstrated to mediate diverse molecular cellular events such as genetic transcription, nuclear compartment formation, alternative splicing and epigenetic modification [6, 7]. For example, lncRNA metastasis-associated lung adenocarcinoma transcript1 (MALAT1) has high expression in non-small cell lung cancer (NSCLC), and promotes proliferation progression of NSCLC cells through stabilizing FOXP3 by inhibited its ubiquitination induced by STUB1 [8]. Glucose transporter 1 (GLUT1) associated lncRNA (GAL) was upregulated in colorectal cancer liver metastasis (CRLM) tissues and associated with the overall survival (OS) rates of CRLM patients. GAL promoted colorectal cancer cell migration and invasion. GAL served as an oncogene through interacting with the GLUT1 protein to increase GLUT1 SUMOylation, inhibiting the effect of the ubiquitin-proteasome system on the GLUT1 protein [9].
Recent evidence reveals the long intergenic non-protein coding RNA 460 (LINC00460, NR_034119) plays a critical role in tumor progression [10]. LINC00460 (on chromosome 13q33.2), is a novel cancer-related lncRNA with a transcript length of 935 nucleotides that contains 3 exons [11, 12]. In the present review, we summarize current research on the expression, functions, underlying mechanism and clinical significance of LINC00460 in human malignancies. Moreover, these provide support for the potential of LINC00460 as a novel biomarker and as a therapeutic target for cancers.

LINC00460 expression in malignancies

LINC00460 is generally upregulated in multiple tumor cells in comparison to that in control cells (Table 1), including bladder [13, 14], breast [15], cervical [16, 17], colon [18, 19], colorectal [10, 2024], esophageal [25], gastric [26, 27], ovarian [28], lung [11, 2931], pancreatic [32] and papillary thyroid cancers [3335], as well as acute myeloid leukemia (AML) [36], glioma [37], head and neck squamous cell carcinoma (HNSCC) [3842], hepatocellular carcinoma [4345], laryngeal squamous cell carcinoma [46], meningioma [47], nasopharyngeal carcinoma [48] and osteosarcoma [49]. In addition, LINC00460 is also overexpressed in these tumor tissues compared with adjacent normal tissues. Its expression level is significantly associated with several clinical characteristics, including tumor size [10, 15, 32, 44, 49], tumor differentiation [25, 41, 42, 44, 45], lymph node metastasis [10, 13, 22, 25, 27, 34, 39, 41, 45], and TNM stage [10, 25, 27, 33, 34, 42, 44, 45].
Table 1
Expression and functional characterization of LINC00460 in cancers
Cancer type
Expression in tissue
Sample size
Expression in cancer cells
Cancer cell lines
Relative normal cell lines
Functional role
Refs.
Acute myeloid leukemia
Up
80
Up
THP1, KG1, ME1, HL60
HS5
Proliferation, apoptosis, cell cycle
[36]
Bladder cancer
Up
43
Up
T-24, 5637,SW780, RT-112
SV-HUC-1
Proliferation, migration, invasion
[13]
 
Up
5637, T24
SV-HUC-1
Proliferation, migration
[14]
Breast cancer
Up
42
Up
MCF-7, BT-474, MDA-MB-231, BT-549
MCF-10 A
Proliferation, migration, invasion
[15]
Cervical cancer
Up
20
Up
HeLa, CaSki
Proliferation, invasion, cell cycle
[16]
 
Up
30
SiHa, C-33 A, HeLa, CaSki
Proliferation, apoptosis, cell cycle
[17]
Colon cancer
Up
HT-29, HCT-116, SW480, LOVO
NCM-460
Proliferation, invasion, EMT
[19]
 
Up
36
Up
H460, A549, SK-MES-1, and H1299)
NHBE
Invasion, chemoresistance
[18]
Colorectal cancer
Up
60
Up
HCT116, SW480, HT-29, Lovo
HcoEpiC
Proliferation, apoptosis
[10]
 
Up
92
Up
SW620, HCT116, CX-1, HT29
NCM460
proliferation, cell cycle
[24]
 
Up
74
Up
HT29, HCT116, SW480, and LOVO
NCM460
Proliferation, migration, invasion, apoptosis
[21]
 
Up
62
Up
HCT-15, HCT-116, SW480, SW620, RKO, LoVo, HT-29
CCD841CoN
Proliferation, migration, invasion, EMT
[60]
 
Up
74
Up
HT29, HCT116, SW480, LOVO
NCM460
Pigration, invasion
[22]
 
Up
498
Up
SW480, SW620, HCT116, DLD1, LOVO, HT29
FHC
Proliferation, migration, invasion
[20]
 
Up
40
Up
HCT116, HT–29
FHC
Migration, invasion
[23]
 
Up
21
Chemoresistance
[64]
Epithelial ovarian cancer
Up
98
Up
SKOV3, A2780, OVCAR, HO–8910
HOSEpiC
[28]
Esophageal cancer
Up
EC1, EC9706, KYSE70, TE1, TE13
Het-1 A
Migration, invasion, EMT
[61]
 
Up
65
Up
EC109, KYSE150, KYSE450
Het-1 A
Proliferation, apoptosis
[25]
Gastric cancer
Up
60
Up
MGC803, BGC823 and SGC7901)
GSE1
Proliferation, migration, invasion, cell cycle
[53]
 
Up
80
Up
(BGC823, AGS, SGC7901, and MGC803
GES1
Proliferation, apoptosis, cell cycle
[26]
 
Up
90
Up
BGC-823, SGC-7901, MKN-28, MKN-45
GES-1
Proliferation, invasion, cell cycle
[27]
Glioma
Up
42
Up
U87, U251, LN229, A172
NHA
Proliferation, migration, invasion, apoptosis
[37]
Head and neck squamous cell carcinoma
Up
15
Up
CAL-27, WSU-HN4, WSUHN6
HOEC
Proliferation, migration,EMT, apoptosis
[38]
 
Up
60
Up
HSC3, Fadu, SAS
HACA
Proliferation, migration, invasion, EMT
[39]
 
Up
123
Up
WSU–HN4, WSUHN6, WSU-HN30, SCC-4, SCC-9, SCC-25 and CAL-27
Normal oral epithelial cells
Proliferation, migration, invasion, EMT
[41]
 
Up
54
PCI-13, FaDu, SCC-15, UM-SCC-10 A
Apoptosis, autophagy, cell cycle
[42]
Hepatocellular carcinoma
Up
60
Up
SNU423, Hep3B, HuH7, SK-Hep-1
HS-5
Proliferation, migration, invasion, apoptosis
[43]
 
Up
60
Up
HepG2, Hep3B, SNU-449, THLE-3, HCCLM3,
Huh-7, LO2
Proliferation, migration, invasion, apoptosis
[44]
 
Up
50
Up
HepG2, Huh7, SMMC7721, BEL-7402,HCCLM3, SK-HEP-1
LO2
Proliferation, migration, invasion, cell cycle
[45]
Laryngeal squamous cell carcinoma
Up
68
[46]
Lung cancer
Up
50
Up
H157, 95D, SPC-A-1, A549, SK-LU-1, Calu-3, HCC-78, H1299, H1975
16HBE
Proliferation
[11]
 
Up
52
Up
A549, H226, H1915, SPCA–1, PC–9
16HBE
Proliferation, migration, invasion, EMT
[29]
 
Up
36
Up
H460, A549, SK-MES-1, and H1299
NHBE
Proliferation, invasion, chemoresistance
[30]
 
Up
8
Up
A549, H1299, H1975, H460, PC9, SPC-A1
Beas-2B
Migration, invasion, EMT
[31]
Meningioma
Up
33
Up
(IOMM-Lee, CH157-MN)
Ben–Men-1
Proliferation, invasion, apoptosis
[47]
Nasopharyngeal carcinoma
Up
50
Up
SUNE-1, CNE-1, HNE-1, CNE-2, C666-1, HONE-1
NP69
Proliferation
[48]
Osteosarcoma
Up
31
Up
Saos-2, HOS, U2OS, MG63
hFOB 1.19
Proliferation, migration, invasion
[49]
Pancreatic cancer
Up
59
Proliferation
[32]
Papillary thyroid cancer
Up
58
Up
5CTPC1, BCPAP, FTC-133, 8505 C
Nthyori 3-1
Proliferation, migration, invasion, EMT
[33]
 
Up
48
Up
TPC-1, BCPAP, IHH-4
Nthyori 3-1
Proliferation, migration, invasion
[34]
 
Up
K1, TPC-1
Nthyori 3-1
Proliferation, invasion, apoptosis
[35]

Regulation of LINC00460 in cancer

The expression of LINC00460 has been reported to be regulated by genetic and epigenetic methods. A study performed by Zhang and colleagues [50] revealed LINC00460 is increased in colorectal cancer HCT116 cells following irradiation at 2 or 4 Gy. The critical region controlling LINC00460 transcription after irradiation was shown to be between − 240 and − 44 bp upstream of the LINC0460 transcription initiating site. In addition, C-jun was identified as a positive regulator of LINC00460 expression post-irradiation.
Nakano et al. [51] demonstrated that cells transfected with active EGFR mutations have elevated LINC00460 amounts. Furthermore, EGFR activation induced by EGF treatment also caused LINC00460 upregulation, the EGFR-induced increase in LINC00460 expression could be significantly attenuated by gefitinib pre-treatment induced EGFR inactivation. These results suggested that overexpression of LINC00460 was associated with the the abnormal activation of EGFR.
In a report by Zhang et al. [18], LINC00460 showed significant hypomethylation in colorectal cancer tissue samples in comparison with adjacent noncancerous tissue specimens, which had a negative correlation with its expression. In addition, treatment with 5-aza-2’-deoxycytidine resulted in LINC00460 overexpression and demethylation in LOVO and SW620 cells, demonstrating that LINC00460 could be activated by DNA methylation.
In another study, Liang et al. [25] revealed elevated acetyl-histone H3 (Lys18 and Lys27) enrichment signals in the LINC00460 promoter. The chromatin immunoprecipitation (CHIP)-qPCR assay indicated CBP (CREB-binding protein) and P300 (histone acetyltransferase) individually and directly interact with the LINC00460 promoter, and CBP/P300 downregulation decreased LINC00460 amounts in ESCC cells. In addition, both CBP and P300 suppression downregulated LINC00460. These results indicated CBP/P300 interaction with the LINC00460 promoter induces LINC00460 transcription via histone H3 acetylation.

LINC00460 functions in malignancies

Studies have proposed that multiple properties contribute to tumor initiation and progression, including sustaining cell growth, resisting cell death, activating invasive and metastatic pathways, and increasing resistance to chemotherapy [52]. Recently, LINC00460 was described for its critical role in controlling oncogenes [11, 13, 15, 19, 2123, 33, 35, 36, 39, 4245, 47, 49, 51, 53] and tumor suppressors [10], generally modulating the above mentioned cancer cell features (Fig. 1).

LINC00460 in cell viability and proliferation

LINC00460 expression is tightly correlated with tumor size in patients with several cancers such as osteosarcoma, and breast, colorectal, liver and pancreatic cancers. such as breast [15], colorectal [10], liver [44], pancreatic [32] cancer, and osteosarcoma [49]. In vitro gain- or loss- of function experiments demonstrated LINC00460 could promote cancer cell proliferation, including acute myeloid leukemia [36], bladder [13, 14], breast [15], cervical [16, 17], colon [19], colorectal [10, 2024], esophageal [25], gastric [26, 27], ovarian [28], lung, pancreatic [32] and papillary thyroid cancers [3335], glioma [37], HNSCC [38, 39, 41, 42], hepatocellular carcinoma [4345], meningioma [47], nasopharyngeal carcinoma [48] and osteosarcoma [49]. Additionally, in vivo tumor xenograft models also demonstrated that silencing LINC00460 reduces tumor volume and lowers tumor weight (Table 2).
Table 2
In vivo functional characterization of LINC00460 in cancer
Cancer type
Cancer cell lines
Animal
Role in tumor growth
Refs.
Bladder Cancer
T-24
BALB/c nude mice
Promote
[59]
Breast cancer
MCF-7
Nude mice
Promote
[15]
Cervical cancer
HeLa, CaSki
Nude mice
Promote
[16]
 
SiHa
Nude mice
Promote
[17]
Colon cancer
HCT-116, LOVO
BALB/c nude mice
Promote
[19]
Colorectal cancer
HCT116
Nude mice
Promote
[20]
 
HCT116, SW480
BALB/c nude mice
Promote
[10]
 
HT29
BALB/c nude mice
Promote
[21]
 
RKO
BALB/c nude mice
Promote
[60]
Gastric cancer
BGC823
Athymic mice nude mice.
Promote
[26]
 
MKN-45
Nude mice
Promote
[27]
Head and neck squamous cell carcinoma
CAL-27
BALB/c nude mice
Promote
[41]
 
Fadu
BALB/c nude mice
Promote
[39]
Hepatocellular carcinoma
Hep3B
BALB/c nude mice
Promote
[44]
 
HepG2
BALB/c nude mice
Promote
[45]
 
HuH7
BALB/c nude mice
Promote
[43]
Lung cancer
A549, SPC-A-1
BALB/c nude mice
Promote
[11]
 
A549
Nude mice
Promote
[30]
Nasopharyngeal carcinoma
5-8 F
BALB/c nude mice
Promote
[62]
 
CNE-1, SUNE-1
BALB/c nude mice
Promote
[48]
Papillary thyroid cancer
TPC1
BALB/c nude mice
Promote
[33]
Studies have shown that LINC00460 knockdown significantly suppressed cancer cell progression at the G1 phase of the cell cycle. The function of LINC00460 on cell cycle progression might be related to the regulation of LINC00460 on protein proteins relevant to cell cycle, including cyclin D1 [17, 44, 54], CDK2 [26], CDK4/CDK6 [54], CCNG2 [26], CCND1 [53].

LINC00460 in cell death

Apoptotic, autophagic and necrotic cell deaths are the main mechanisms of cell death [55]. Cell apoptosis is the common process of programmed cell death [56]. LINC00460 has been reported to inhibit apoptosis in various cancers. The anti-apoptotic function of LINC00460 might be related to the regulation of the apoptotic proteins caspase-3 [21, 36], caspase-9 [10], PARP [17], Bcl-2 and Bax [10, 44].
LINC00460 could also regulate autophagy in cancer cells [42]. Knockdown of LINC00460 resulted in increased amounts of autophagosomes in HNSCC cells, along with increased LC3 II/LC3 I ratio and Beclin 1 amounts. Meanwhile, overexpression of LINC00460 restrains autophagy, with reduced number of autophagosomes and decreased LC3 II/LC3 I ratio and Beclin 1 amounts.

LINC00460 in cancer metastasis

Metastasis is the major cause results in the high mortality rate of diverse types of cancer, and high rates of metastasis are characteristic of advanced malignancies [57, 58]. LINC00460 has been reported to be positively associated with lymph node and distant metastases as well as TNM stage in diverse malignancies, including bladder [59], colorectal [21, 22, 24], esophageal [25], gastric [27], head and neck [39, 41, 42], liver [45] and papillary thyroid [34] cancers, as well as osteosarcoma [49]. In vitro experiments demonstrated LINC00460 could regulate migratory and invasive pathways in malignant cells. A role for LINC00460 in metastasis has also been documented, primarily involving the regulation of epithelial-to-mesenchymal transition (EMT), in which epithelial cells undergo diverse modifications to acquire a mesenchymal phenotype. Several studies have demonstrated that LINC00460 knockdown inhibits EMT development and regulates the expression of proteins relevant to EMT (upregulate E-cadherin, downregulate N-cadherin and vimentin) [19, 22, 29, 38, 39, 41, 50, 54, 6062].

LINC00460 in chemotherapeutic or radiation resistance

At present, intrinsic or acquired resistance is the main cause of chemotherapy failure in many cancers [63]. LINC00460 has been demonstrated to be involved in chemoresistance. Zhang et al. [18] investigated the associations of lncRNAs and antitumor drug response, and demonstrated that LINC00460 could distinguish responses to AZD6244 and PD-0325901 in colon cancer samples. Meng and colleagues [64] demonstrated that LINC00460 is upregulated in colorectal cancer cells with oxaliplatin resistance and p53 mutations, compared with parental oxaliplatin-sensitive cells. LINC00460 silencing sensitized oxaliplatin-resistant colorectal cancer cells to this drug via p53 regulation.
The expression of LINC00460 was shown to be elevated in gefitinib-resistant NSCLC and cells [30]. Gain- and loss of function assays showed LINC00460 induces gefitinib resistance by increasing the expression of EGFR and the multidrug-resistance-associated proteins P-gp, MRP1, and BCRP. In another study, Nakano and collaborators [51] demonstrated that LINC00460 amounts are markedly elevated in cancer with wild-type or mutated (exon 19 deletion and L858R) EGFR in comparison with noncancerous tissues. It was also upregulated in NSCLC cells with gefitinib resistance in comparison with gefitinibsensitive cells. EGFR activation, induced by transfection with active EGFR mutations or treatment with EGF, resulted in higher LINC00460 expression, suggesting LINC00460 contributes to resistance against EGFR-TKIs.
Radiation therapy is broadly utilized for treatment of some solid tumors, and recent advances enable direct tumor targeting, without harming adjacent noncancerous tissues [65]. Radiation treatment is mostly hampered by tumor resistance, and decreasing recurrence post-radiotherapy represents an important challenge [66]. LINC00460 was shown to be markedly upregulated following irradiation at 2 or 4 Gy in HCT116 cells [50]. Transient LINC00460 silencing remarkably reduced HCT116 cell proliferation and EMT induced by irradiation. Thus, LINC00460 was considered to mediate the sensitization of HCT116 cells to ionizing radiation.

Mechanisms underlying LINC00460’s effects in malignancies

Mounting evidence suggests the regulatory mechanisms of lncRNAs include modulating epigenetic alterations, regulating transcription or splicing, interacting with RNA binding proteins, and acting as miRNA sponges [4]. LncRNAs are involved in the regulation of various biological functions in the nucleus and cytoplasm [67]. LINC00460 was shown to be subcellular distributed in both cytoplasm and nucleus, thus playing important modulatory roles at the transcriptional and post-transcriptional levels [10, 11, 25, 48, 60] (Fig. 1). The following sections mainly focus on the molecular mechanisms of LINC00460 in regulating biological functions of malignancies.

LINC00460 serves as a ceRNA

One important mechanism of lncRNA is function as competing endogenous RNA (ceRNA), through sponging miRNA from target mRNA of the miRNAs and constructing a triple network of lncRNA-miRNA-mRNA. Several studies have shown LINC00460 is primarily expressed in cytoplasm of cells, and thus could act as a ceRNA through interaction with miRNAs, including miR-1224-5p [61], miR-149-5p [10], miR-206 [42], miR-302c-5p [11], miR‑320b [36], miR-342-3p [53], miR-433-3p [19], miR-539 [35], and so on (Table 3). In addition, several assays, such as luciferase reporter assays and RNA immunoprecipitation (RIP) and/or RNA pull-down assays, were performed to identify miRNA-binding sites on LINC00460. Furthermore, functional assays indicated the miRNA and its target mRNA control LINC00460’s effects.
Table 3
CeRNA function of LINC00460 in cancer
LINC00460 target miRNA
Validated method
miRNA target gene
Cancer type
Refs.
miR-1224-5p
Luciferase reporter assay
Esophageal cancer
[61]
miR-1224-5p
Luciferase reporter assay, RIP
FADS1
osteosarcoma
[49]
miR-149-5p
Luciferase reporter assay, RIP
CUL4A
colorectal cancer
[10]
miR-149-5p
Luciferase reporter assay, RNA pull–down
IL6
nasopharyngeal carcinoma
[48]
miR-149-5p
Luciferase reporter assay
BGN
colorectal cancer
[23]
miR1495p
Luciferase reporter assay, RIP
IL6
Lung adenocarcinoma
[51]
miR-149-5p, miR-150-5p
Luciferase reporter assay, RNA pull–down
p53
Colorectal Cancer
[64]
miR-206
Luciferase reporter assay, RNA pull–down
STC2
Head and neck squamous cell carcinoma
[42]
miR-302c-5p
Luciferase reporter assay, RNA pull–down
FOXA1
Lung adenocarcinoma
[11]
miR30a3p
Luciferase reporter assay, RNA pull–down
Nasopharyngeal carcinoma
[62]
miR-320a
Luciferase reporter assay
Glioma
[37]
miR320b
Luciferase reporter assay
PBX3
Acute myeloid leukemia
[36]
miR-338-3p
Luciferase reporter assay
Epithelial ovarian cancer
[28]
miR-342-3p
Luciferase reporter assay, RIP
KDM2A
Gastric cancer
[53]
miR-342-3p
Luciferase reporter assay, RNA pull–down
AGR2
Hepatocellular carcinoma
[45]
miR-342-3p
Luciferase reporter assay
AGR2
Hepatocellular carcinoma
[43]
miR3613p
Luciferase reporter assay
Gli1
Cervical cancer
[16]
miR-433-3p
Luciferase reporter assay, RNA pull–down
ANXA2
Colon cancer
[19]
miR-4443
Luciferase reporter assay
Head and neck squamous cell carcinoma
[38]
miR-485-5p
Luciferase reporter assay
Raf1
Papillary thyroid cancer
[33]
miR-485-5p
Dual luciferase reporter assay, RNA pull–down assay, RIP
PAK1
Hepatocellular carcinoma
[44]
miR-489-5p
Luciferase reporter assay, RNA pull–down
FGF7, AKT
Breast cancer
[15]
miR-5035p
Luciferase reporter assay
AKT2, HMGA2, SHOX2
Cervical cancer
[17]
miR-539
Luciferase reporter assay
MMP–9
Meningioma
[47]
miR-539
Luciferase reporter assay
MMP–9
Papillary thyroid carcinoma
[35]
miR-612
Luciferase reporter assay, RIP
AKT2
Head and neck squamous cell carcinoma
[39]
miR-612
Luciferase reporter assay
FOXK1
Bladder Cancer
[59]
miR-613
Luciferase reporter assay, RIP
SphK1
Colorectal cancer
[21]
miR-939-5p
Luciferase reporter assay, RNA pull–down
LIMK2
Colorectal cancer
[22]

LINC00460 interacts with RNA binding proteins

LncRNAs has been shown to control gene expression by interacting with RNA binding proteins (RBPs) [68]. RNA pull-down assays and mass spectroscopy are generally performed in sequence for identifying RBPs for lncRNAs. Utilizing this method, Jiang et al. revealed PRDX1 as an RBP that binds LINC00460 [41]. The interaction between PRDX1 and LINC00460 was confirmed by RIP assays. In a further report, Li and co-workers [31] showed hnRNP K is a RBP that binds to LINC00460, and confirmed LINC00460 interacts with hnRNP K by immunoblot.
Apart from mass spectrometry, bioinformatics is also generally carried out for predicting the odds of LINC00460 interacting with RBPs, followed by confirmation by the RIP assay. Using this method, Yang and collaborators [26] showed LINC00460 interacts with EZH2 and LSD1, inducing H3K27 trimethylation and H3K4 demethylation of target gene promoters, thereby suppressing transcription. In addition, LINC00460 interactions with EZH2 and LSD1 were also confirmed by the ChIP assay. In another report, Lian et al. [10] predicted LINC00460 could potentially bind to EZH2, SUZ12, DNMT1, and AGO2, by using bioinformatics analysis. They further confirmed that LINC00460 interacts with EZH2 through RIP assays, and further regulates the expression of KLF2.

LINC00460 as a cancer biomarker

LINC00460 as a molecular marker for cancer diagnosis

It is now widely accepted that the early diagnosis is crucial for achieving a lower mortality rate of tumors [69]. The detection and identification of lncRNAs in body fluids, including serum and plasma, may provide a novel tool for early noninvasive diagnosis of cancer [70]. Serum LINC00460 amounts were markedly elevated in 80 AML or CN-AML cases compared with 67 healthy control cases [36]. Receiver operating characteristic (ROC) curve analysis revealed serum LINC00460 amounts provided a clear separation of AML and healthy controls, with an area under the curve (AUC) of 0.8488 (95% CI, 0.7697–0.9279). Additionally, serum LINC00460 reliably differentiated CN-AML cases from healthy control cases (AUC = 0.7591). Serum LINC00460 amounts were also markedly reduced in patients after complete remission. These findings suggested that LINC00460 might be a potential diagnostic biomarker for patients with AML.
However, LINC00460 is expressed in a broad range of cancer types, making it less specific in distinguishing the origin of tumors. Further studies for the expression, sensitivity and stability of LINC00460 in non-invasive body fluids should be further investigated for are required to make LINC00460 an ideal tool for disease diagnosis. In addition, LINC00460 in body fluids are required to investigate for its diagnostic value alongside other specific molecular markers, and further investigations with larger clinical sample sizes are still required.

LINC00460 serves as a biomarker for cancer prognosis

Recently, aberrant expression of LINC00460 has been considered an independent prognostic factor in diverse cancers. Indeed, elevated LINC00460 amounts were significantly associated with poor OS in bladder cancer [13, 71], cervical cancer [16, 17], colorectal cancer [10, 2022], esophageal cancer [25, 72], gastric cancer [27], HNSCC [39, 40], liver cancer [45], lung cancer [30, 31, 51], osteosarcoma [49, 54], pancreatic cancer [32] and papillary thyroid carcinoma [33]. In addition, upregulation of LINC00460 was also associated with poor progression free survival (PFS) in AML [36], colorectal cancer [20, 23, 24], gastric cancer [26, 27], glioma [37], hepatocellular carcinoma [45] and lung adenocarcinoma [51] and osteosarcoma [54]. Besides survival data, other clinical features including tumor size, histological grade, differentiation degree, lymph node metastasis and TNM stage, are related to LINC00460 expression, (Table 4).
Table 4
Involvement of LINC00460 in cancer prognosis
Cancer type
Prognostic indicator
Associated clinical features
Refs.
Acute myeloid leukemia
OS, PFS
FAB classification, cytogenetics
[36]
Bladder cancer
OS
Tumor stage, lymph nodes metastasis
[59, 71]
Breast cancer
OS
Tumor size, WHO stage
[15]
Cervical cancer
OS
[16, 17]
Colon cancer
OS
[18]
Colorectal cancer
OS, DFS
Tumor stage, metastasis classification, lymph node metastasis, TNM stage
[10, 2024]
Esophageal squamous cell carcinoma
OS
TNM stage, lymph node metastasis, differentiation degree
[25]
Gastric cancer
OS, DFS
TNM stage, lymph node metastasis
[26, 27]
Head and neck squamous cell carcinoma
OS
Tumor stage, tumor differentiation, lymph node metastasis, TNM stage,
[3942]
Hepatocellular carcinoma
OS, PFS
Tumor differentiation degree, TNM stages, lymph node metastasis
[44, 45]
Lung cancer
OS, PFS
[30, 31, 51]
Nasopharyngeal carcinoma
OS
[48, 62]
Osteosarcoma
OS, DFS
Tumor size, distant metastasis
[49, 54]
Pancreatic cancer
OS
Tumor size
[32]
Papillary thyroid carcinoma
OS
TNM stage, lymph node metastasis
[33, 34]
The prognostic value of LINC00460 was further investigated in combination with other lncRNAs. Cao and colleagues [73] identified an lncRNA trio (LINC00460, KTN1-AS1 and RP5-894A10.6) jointly showing an AUC of 0.68 (95% CI 0.60–0.76, P < 0.0001). In addition, Kaplan-Meier analysis of HNSCC cases, categorized into the high- and low-risk groups according to lncRNA signature-based risk score, revealed marked OS differences between the high- (43.9 months) and low- (25.6 months) risk groups (P = 0.002 in the log-rank test). The findings suggested the three-lncRNA panel-based signature could effectively predict patient survival in HNSCC.
Zhang et al. [74] conducted a lncRNA prognostic model with another lncRNA trio, comprising LINC00460, MIAT and LINC00443, which could independently distinguish kidney renal clear cell carcinoma cases at low- and high-risk of poor OS, with AUCs for 1-, 5- and 10-year OS of 0.723, 0.714 and 0.826, respectively. The model had independent and great prognostic value in these patients.
In another study, Huang et al. [72] identified another lncRNA trio, comprised of RP11-366H4.1.1, LINC00460 and AC093850.2, as an efficient predictive factor of OS and DFS in patients with ESCC. The authors utilized multivariable Cox regression analysis to generate a risk score as (0.882 × AC093850.2)+(1.219 × LINC00460)+(0.921 × RP11-366H4.1.1), whose cutoff was 48.48. Median OS was markedly reduced in high-risk cases compared with the low-risk group in the training set (23.1 months vs. 39.1 months, P < 0.001), the test set (23 months vs. 59 months, P < 0.001) and an independent esophageal squamous cell carcinoma dataset (GSE53624) (22.4 months vs. 60.4 months, P < 0.001). In addition, the three-lncRNA signature could also be used for predicting DFS, with median DFS times of 15.2 and 33.3 months in high- and low-risk cases of the training set, respectively (P < 0.001), versus 16.4 and 50.8 months in the test set, respectively (P < 0.001). The above findings demonstrated the prognostic capability of the three-lncRNA signature to predict survival and recurrence risk.
Therefore, LINC00460 in combination with other lncRNAs or specific biomarkers can function as an independent prognostic indicator in diverse cancer types.

Conclusion and future perspectives

Numerous studies have confirmed that lncRNAs play critical roles in tumor development and progression in humans. This review mainly discusses research progress of the role, mechanism and clinical value of LINC00460 in a variety of human tumors. LINC00460 has been demonstrated to be upregulated in major types of human malignancies, regulating cellular events such as cell proliferation, apoptosis, migration, invasion, and chemoresistance. Thus, LINC00460 might be a potential candidate for treating diverse cancer types. Mechanistically, LINC00460 might modulate genes via a ceRNA mechanism or by interacting with RBPs. However, how LINC00460 is dysregulated in cancer remains incompletely defined. Regarding clinical application, LINC00460 dysregulation is associated with patient survival in many cancer types, and may also constitute a potent noninvasive molecular marker for diagnosing malignancies, indicating LINC00460 might represent a potential diagnostic and prognostic molecular marker. Overall, the above data indicate upregulation of and an oncogenic role for LINC00460 in human cancer.
However, there is a need for additional basic and clinical experimental results before LINC00460 can be applied in the clinic. Firstly, the actual molecular mechanism and regulatory effect of LINC00460 needs to be further explored. Secondly, many of these findings were established in tissues and cancer cell lines, lacking clinical correlation. Thirdly, although strategies such as lentivirus or plasmid containing siRNA have been used to target LINC00460 in vitro, the in vivo delivery vector for therapeutic lncRNA is still need to be developed. In summary, basic research on LINC00460 has shown encouraging results, it is expected to achieve breakthroughs in diagnosis, prognosis evaluation, and treatment in clinical trials.

Acknowledgements

Not applicable.

Declarations

Not applicable.
All the co-authors agreed to publish the final version of this manuscript.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Lu W, Cao F, Feng L, Song G, Chang Y, Chu Y, et al. LncRNA Snhg6 regulates the differentiation of MDSCs by regulating the ubiquitination of EZH2. J Hematol Oncol. 2021;14(1):196.PubMedPubMedCentralCrossRef Lu W, Cao F, Feng L, Song G, Chang Y, Chu Y, et al. LncRNA Snhg6 regulates the differentiation of MDSCs by regulating the ubiquitination of EZH2. J Hematol Oncol. 2021;14(1):196.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199–208.PubMedPubMedCentralCrossRef Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199–208.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Jiang W, Pan S, Chen X, Wang ZW, Zhu X. The role of lncRNAs and circRNAs in the PD-1/PD-L1 pathway in cancer immunotherapy. Mol Cancer. 2021;20(1):116.PubMedPubMedCentralCrossRef Jiang W, Pan S, Chen X, Wang ZW, Zhu X. The role of lncRNAs and circRNAs in the PD-1/PD-L1 pathway in cancer immunotherapy. Mol Cancer. 2021;20(1):116.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Su M, Xiao Y, Ma J, Cao D, Zhou Y, Wang H, et al. Long non-coding RNAs in esophageal cancer: molecular mechanisms, functions, and potential applications. J Hematol Oncol. 2018;11(1):118.PubMedPubMedCentralCrossRef Su M, Xiao Y, Ma J, Cao D, Zhou Y, Wang H, et al. Long non-coding RNAs in esophageal cancer: molecular mechanisms, functions, and potential applications. J Hematol Oncol. 2018;11(1):118.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Liu Y, Yang Y, Zhang L, Lin J, Li B, Yang M, et al. LncRNA ASAP1-IT1 enhances cancer cell stemness via regulating miR-509-3p/YAP1 axis in NSCLC. Cancer Cell Int. 2021;21(1):572.PubMedPubMedCentralCrossRef Liu Y, Yang Y, Zhang L, Lin J, Li B, Yang M, et al. LncRNA ASAP1-IT1 enhances cancer cell stemness via regulating miR-509-3p/YAP1 axis in NSCLC. Cancer Cell Int. 2021;21(1):572.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Hua Q, Wang D, Zhao L, Hong Z, Ni K, Shi Y, et al. AL355338 acts as an oncogenic lncRNA by interacting with protein ENO1 to regulate EGFR/AKT pathway in NSCLC. Cancer Cell Int. 2021;21(1):525.PubMedPubMedCentralCrossRef Hua Q, Wang D, Zhao L, Hong Z, Ni K, Shi Y, et al. AL355338 acts as an oncogenic lncRNA by interacting with protein ENO1 to regulate EGFR/AKT pathway in NSCLC. Cancer Cell Int. 2021;21(1):525.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Li M, Shi M, Hu C, Chen B, Li S. MALAT1 modulated FOXP3 ubiquitination then affected GINS1 transcription and drived NSCLC proliferation. Oncogene. 2021;40(22):3870–84.PubMedCrossRef Li M, Shi M, Hu C, Chen B, Li S. MALAT1 modulated FOXP3 ubiquitination then affected GINS1 transcription and drived NSCLC proliferation. Oncogene. 2021;40(22):3870–84.PubMedCrossRef
9.
Zurück zum Zitat Li B, Kang H, Xiao Y, Du Y, Song G, Zhang Y, et al. LncRNA GAL promotes colorectal cancer liver metastasis through stabilizing GLUT1. Oncogene. 2022;41(13):1882–94.PubMedCrossRef Li B, Kang H, Xiao Y, Du Y, Song G, Zhang Y, et al. LncRNA GAL promotes colorectal cancer liver metastasis through stabilizing GLUT1. Oncogene. 2022;41(13):1882–94.PubMedCrossRef
10.
Zurück zum Zitat Lian Y, Yan C, Xu H, Yang J, Yu Y, Zhou J, et al. A novel lncRNA, LINC00460, affects cell proliferation and apoptosis by regulating KLF2 and CUL4A expression in colorectal cancer. Mol Ther Nucleic Acids. 2018;12:684–97.PubMedPubMedCentralCrossRef Lian Y, Yan C, Xu H, Yang J, Yu Y, Zhou J, et al. A novel lncRNA, LINC00460, affects cell proliferation and apoptosis by regulating KLF2 and CUL4A expression in colorectal cancer. Mol Ther Nucleic Acids. 2018;12:684–97.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Ye JJ, Cheng YL, Deng JJ, Tao WP, Wu L. LncRNA LINC00460 promotes tumor growth of human lung adenocarcinoma by targeting miR-302c-5p/FOXA1 axis. Gene. 2019;685:76–84.PubMedCrossRef Ye JJ, Cheng YL, Deng JJ, Tao WP, Wu L. LncRNA LINC00460 promotes tumor growth of human lung adenocarcinoma by targeting miR-302c-5p/FOXA1 axis. Gene. 2019;685:76–84.PubMedCrossRef
13.
Zurück zum Zitat Li J, Huang S, Zhang Y, Zhuo W, Tong B, Cai F. LINC00460 enhances bladder carcinoma cell proliferation and migration by modulating miR-612/FOXK1 Axis. Pharmacology. 2021;106(1–2):79–90.PubMedCrossRef Li J, Huang S, Zhang Y, Zhuo W, Tong B, Cai F. LINC00460 enhances bladder carcinoma cell proliferation and migration by modulating miR-612/FOXK1 Axis. Pharmacology. 2021;106(1–2):79–90.PubMedCrossRef
14.
Zurück zum Zitat Wen L, Zhang X, Bian J, Han L, Huang H, He M, et al. The long non-coding RNA LINC00460 predicts the prognosis and promotes the proliferation and migration of cells in bladder urothelial carcinoma. Oncol Lett. 2019;17(4):3874–80.PubMedPubMedCentral Wen L, Zhang X, Bian J, Han L, Huang H, He M, et al. The long non-coding RNA LINC00460 predicts the prognosis and promotes the proliferation and migration of cells in bladder urothelial carcinoma. Oncol Lett. 2019;17(4):3874–80.PubMedPubMedCentral
15.
Zurück zum Zitat Zhu Y, Yang L, Chong QY, Yan H, Zhang W, Qian W, et al. Long noncoding RNA Linc00460 promotes breast cancer progression by regulating the miR-489-5p/FGF7/AKT axis. Cancer Manag Res. 2019;11:5983–6001.PubMedPubMedCentralCrossRef Zhu Y, Yang L, Chong QY, Yan H, Zhang W, Qian W, et al. Long noncoding RNA Linc00460 promotes breast cancer progression by regulating the miR-489-5p/FGF7/AKT axis. Cancer Manag Res. 2019;11:5983–6001.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Li F, Zhu W, Wang Z. Long noncoding RNA LINC00460 promotes the progression of cervical cancer via regulation of the miR-361-3p/Gli1 axis. Hum Cell. 2021;34(1):229–37.PubMedCrossRef Li F, Zhu W, Wang Z. Long noncoding RNA LINC00460 promotes the progression of cervical cancer via regulation of the miR-361-3p/Gli1 axis. Hum Cell. 2021;34(1):229–37.PubMedCrossRef
17.
Zurück zum Zitat Lin L, Xin B, Jiang T, Wang XL, Yang H, Shi TM. Long non-coding RNA LINC00460 promotes proliferation and inhibits apoptosis of cervical cancer cells by targeting microRNA-503-5p. Mol Cell Biochem. 2020;475(1–2):1–13.PubMedCrossRef Lin L, Xin B, Jiang T, Wang XL, Yang H, Shi TM. Long non-coding RNA LINC00460 promotes proliferation and inhibits apoptosis of cervical cancer cells by targeting microRNA-503-5p. Mol Cell Biochem. 2020;475(1–2):1–13.PubMedCrossRef
18.
Zurück zum Zitat Zhang J, Shen Z, Song Z, Luan J, Li Y, Zhao T. Drug response associated with and prognostic lncRNAs mediated by DNA Methylation and transcription factors in colon cancer. Front Genet. 2020;11:554833.PubMedPubMedCentralCrossRef Zhang J, Shen Z, Song Z, Luan J, Li Y, Zhao T. Drug response associated with and prognostic lncRNAs mediated by DNA Methylation and transcription factors in colon cancer. Front Genet. 2020;11:554833.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Hong W, Ying H, Lin F, Ding R, Wang W, Zhang M. lncRNA LINC00460 silencing represses EMT in colon cancer through downregulation of ANXA2 via upregulating miR-433-3p. Mol Ther Nucleic Acids. 2020;19:1209–18.PubMedCrossRef Hong W, Ying H, Lin F, Ding R, Wang W, Zhang M. lncRNA LINC00460 silencing represses EMT in colon cancer through downregulation of ANXA2 via upregulating miR-433-3p. Mol Ther Nucleic Acids. 2020;19:1209–18.PubMedCrossRef
20.
Zurück zum Zitat Hou P, Meng S, Li M, Lin T, Chu S, Li Z, et al. LINC00460/DHX9/IGF2BP2 complex promotes colorectal cancer proliferation and metastasis by mediating HMGA1 mRNA stability depending on m6A modification. J Exp Clin Cancer Res. 2021;40(1):52.PubMedPubMedCentralCrossRef Hou P, Meng S, Li M, Lin T, Chu S, Li Z, et al. LINC00460/DHX9/IGF2BP2 complex promotes colorectal cancer proliferation and metastasis by mediating HMGA1 mRNA stability depending on m6A modification. J Exp Clin Cancer Res. 2021;40(1):52.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Wang L, Chen X, Sun X, Suo J. Long noncoding RNA LINC00460 facilitates colorectal cancer progression by negatively regulating miR-613. Onco Targets Ther. 2020;13:7555–69.PubMedPubMedCentralCrossRef Wang L, Chen X, Sun X, Suo J. Long noncoding RNA LINC00460 facilitates colorectal cancer progression by negatively regulating miR-613. Onco Targets Ther. 2020;13:7555–69.PubMedPubMedCentralCrossRef
22.
23.
Zurück zum Zitat Ruan T, Lu S, Xu J, Zhou JY. lncRNA LINC00460 Functions as a competing endogenous RNA and regulates expression of BGN by sponging miR-149-5p in colorectal cancer. Technol Cancer Res Treat. 2021;20:1533033820964238.PubMedPubMedCentralCrossRef Ruan T, Lu S, Xu J, Zhou JY. lncRNA LINC00460 Functions as a competing endogenous RNA and regulates expression of BGN by sponging miR-149-5p in colorectal cancer. Technol Cancer Res Treat. 2021;20:1533033820964238.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Wang X, Mo FM, Bo H, Xiao L, Chen GY, Zeng PW, et al. Upregulated expression of long non-coding RNA, LINC00460, suppresses proliferation of colorectal cancer. J Cancer. 2018;9(16):2834–43.PubMedPubMedCentralCrossRef Wang X, Mo FM, Bo H, Xiao L, Chen GY, Zeng PW, et al. Upregulated expression of long non-coding RNA, LINC00460, suppresses proliferation of colorectal cancer. J Cancer. 2018;9(16):2834–43.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Yang J, Lian Y, Yang R, Wu J, Liu J, Wang K, et al. Upregulation of lncRNA LINC00460 Facilitates GC Progression through Epigenetically Silencing CCNG2 by EZH2/LSD1 and Indicates Poor Outcomes. Mol Ther Nucleic Acids. 2020;19:1164–75.PubMedPubMedCentralCrossRef Yang J, Lian Y, Yang R, Wu J, Liu J, Wang K, et al. Upregulation of lncRNA LINC00460 Facilitates GC Progression through Epigenetically Silencing CCNG2 by EZH2/LSD1 and Indicates Poor Outcomes. Mol Ther Nucleic Acids. 2020;19:1164–75.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Zhang S, Xu J, Wang H, Guo H. Downregulation of long noncoding RNA LINC00460 expression suppresses tumor growth in vitro and in vivo in gastric cancer. Cancer Biomark. 2019;24(4):429–37.PubMedCrossRef Zhang S, Xu J, Wang H, Guo H. Downregulation of long noncoding RNA LINC00460 expression suppresses tumor growth in vitro and in vivo in gastric cancer. Cancer Biomark. 2019;24(4):429–37.PubMedCrossRef
28.
Zurück zum Zitat Liu X, Wen J, Wang H, Wang Y. Long non-coding RNA LINC00460 promotes epithelial ovarian cancer progression by regulating microRNA-338-3p. Biomed Pharmacother. 2018;108:1022–8.PubMedCrossRef Liu X, Wen J, Wang H, Wang Y. Long non-coding RNA LINC00460 promotes epithelial ovarian cancer progression by regulating microRNA-338-3p. Biomed Pharmacother. 2018;108:1022–8.PubMedCrossRef
29.
Zurück zum Zitat Yue QY, Zhang Y. Effects of Linc00460 on cell migration and invasion through regulating epithelial-mesenchymal transition (EMT) in non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 2018;22(4):1003–10.PubMed Yue QY, Zhang Y. Effects of Linc00460 on cell migration and invasion through regulating epithelial-mesenchymal transition (EMT) in non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 2018;22(4):1003–10.PubMed
30.
Zurück zum Zitat Ma G, Zhu J, Liu F, Yang Y. Long Noncoding RNA LINC00460 promotes the gefitinib resistance of nonsmall cell lung cancer through epidermal growth factor receptor by Sponging miR-769-5p. DNA Cell Biol. 2019;38(2):176–83.PubMedPubMedCentralCrossRef Ma G, Zhu J, Liu F, Yang Y. Long Noncoding RNA LINC00460 promotes the gefitinib resistance of nonsmall cell lung cancer through epidermal growth factor receptor by Sponging miR-769-5p. DNA Cell Biol. 2019;38(2):176–83.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Li K, Sun D, Gou Q, Ke X, Gong Y, Zuo Y, et al. Long non-coding RNA linc00460 promotes epithelial-mesenchymal transition and cell migration in lung cancer cells. Cancer Lett. 2018;420:80–90.PubMedCrossRef Li K, Sun D, Gou Q, Ke X, Gong Y, Zuo Y, et al. Long non-coding RNA linc00460 promotes epithelial-mesenchymal transition and cell migration in lung cancer cells. Cancer Lett. 2018;420:80–90.PubMedCrossRef
32.
Zurück zum Zitat Sun J, Yang J, Lv K, Guan J. Long non-coding RNA LINC00460 predicts poor survival and promotes cell viability in pancreatic cancer. Oncol Lett. 2020;20(2):1369–75.PubMedPubMedCentralCrossRef Sun J, Yang J, Lv K, Guan J. Long non-coding RNA LINC00460 predicts poor survival and promotes cell viability in pancreatic cancer. Oncol Lett. 2020;20(2):1369–75.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Li G, Kong Q. LncRNA LINC00460 promotes the papillary thyroid cancer progression by regulating the LINC00460/miR-485-5p/Raf1 axis. Biol Res. 2019;52(1):61.PubMedPubMedCentralCrossRef Li G, Kong Q. LncRNA LINC00460 promotes the papillary thyroid cancer progression by regulating the LINC00460/miR-485-5p/Raf1 axis. Biol Res. 2019;52(1):61.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Feng L, Yang B, Tang XD. Long noncoding RNA LINC00460 promotes carcinogenesis via sponging miR-613 in papillary thyroid carcinoma. J Cell Physiol. 2019;234(7):11431–9.PubMedCrossRef Feng L, Yang B, Tang XD. Long noncoding RNA LINC00460 promotes carcinogenesis via sponging miR-613 in papillary thyroid carcinoma. J Cell Physiol. 2019;234(7):11431–9.PubMedCrossRef
35.
Zurück zum Zitat Zou X, Guo ZH, Li Q, Wang PS, Long Noncoding. RNA LINC00460 modulates MMP-9 to promote cell proliferation, invasion and apoptosis by targeting miR-539 in papillary thyroid cancer. Cancer Manag Res. 2020;12:199–207.PubMedPubMedCentralCrossRef Zou X, Guo ZH, Li Q, Wang PS, Long Noncoding. RNA LINC00460 modulates MMP-9 to promote cell proliferation, invasion and apoptosis by targeting miR-539 in papillary thyroid cancer. Cancer Manag Res. 2020;12:199–207.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Feng L, Rao M, Zhou Y, Zhang Y, Zhu Y. Long noncoding RNA 00460 (LINC00460) promotes glioma progression by negatively regulating miR-320a. J Cell Biochem. 2019;120(6):9556–63.PubMedPubMedCentralCrossRef Feng L, Rao M, Zhou Y, Zhang Y, Zhu Y. Long noncoding RNA 00460 (LINC00460) promotes glioma progression by negatively regulating miR-320a. J Cell Biochem. 2019;120(6):9556–63.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Li M, Zhang X, Ding X, Zheng Y, Du H, Li H, et al. Long noncoding RNA LINC00460 promotes cell progression by sponging miR-4443 in Head and neck squamous cell carcinoma. Cell Transpl. 2020;29:963689720927405. Li M, Zhang X, Ding X, Zheng Y, Du H, Li H, et al. Long noncoding RNA LINC00460 promotes cell progression by sponging miR-4443 in Head and neck squamous cell carcinoma. Cell Transpl. 2020;29:963689720927405.
39.
Zurück zum Zitat Xie X, Xiong G, Wang Q, Ge Y, Cui X. Long non-coding RNA LINC00460 promotes head and neck squamous cell carcinoma cell progression by sponging miR-612 to up-regulate AKT2. Am J Transl Res. 2019;11(10):6326–40.PubMedPubMedCentral Xie X, Xiong G, Wang Q, Ge Y, Cui X. Long non-coding RNA LINC00460 promotes head and neck squamous cell carcinoma cell progression by sponging miR-612 to up-regulate AKT2. Am J Transl Res. 2019;11(10):6326–40.PubMedPubMedCentral
40.
Zurück zum Zitat Chaudhary R, Wang X, Cao B, De La Iglesia J, Masannat J, Song F, et al. Long noncoding RNA, LINC00460, as a prognostic biomarker in head and neck squamous cell carcinoma (HNSCC). Am J Transl Res. 2020;12(2):684–96.PubMedPubMedCentral Chaudhary R, Wang X, Cao B, De La Iglesia J, Masannat J, Song F, et al. Long noncoding RNA, LINC00460, as a prognostic biomarker in head and neck squamous cell carcinoma (HNSCC). Am J Transl Res. 2020;12(2):684–96.PubMedPubMedCentral
41.
Zurück zum Zitat Jiang Y, Cao W, Wu K, Qin X, Wang X, Li Y, et al. LncRNA LINC00460 promotes EMT in head and neck squamous cell carcinoma by facilitating peroxiredoxin-1 into the nucleus. J Exp Clin Cancer Res. 2019;38(1):365.PubMedPubMedCentralCrossRef Jiang Y, Cao W, Wu K, Qin X, Wang X, Li Y, et al. LncRNA LINC00460 promotes EMT in head and neck squamous cell carcinoma by facilitating peroxiredoxin-1 into the nucleus. J Exp Clin Cancer Res. 2019;38(1):365.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Xue K, Li J, Nan S, Zhao X, Xu C. Downregulation of LINC00460 decreases STC2 and promotes autophagy of head and neck squamous cell carcinoma by up-regulating microRNA-206. Life Sci. 2019;231:116459.PubMedCrossRef Xue K, Li J, Nan S, Zhao X, Xu C. Downregulation of LINC00460 decreases STC2 and promotes autophagy of head and neck squamous cell carcinoma by up-regulating microRNA-206. Life Sci. 2019;231:116459.PubMedCrossRef
43.
Zurück zum Zitat Hong H, Sui C, Qian T, Xu X, Zhu X, Fei Q, et al. Long noncoding RNA LINC00460 conduces to tumor growth and metastasis of hepatocellular carcinoma through miR-342-3p-dependent AGR2 up-regulation. Aging. 2020;12(11):10544–55.PubMedPubMedCentralCrossRef Hong H, Sui C, Qian T, Xu X, Zhu X, Fei Q, et al. Long noncoding RNA LINC00460 conduces to tumor growth and metastasis of hepatocellular carcinoma through miR-342-3p-dependent AGR2 up-regulation. Aging. 2020;12(11):10544–55.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Tu J, Zhao Z, Xu M, Chen M, Weng Q, Ji J. LINC00460 promotes hepatocellular carcinoma development through sponging miR-485-5p to up-regulate PAK1. Biomed Pharmacother. 2019;118:109213.PubMedCrossRef Tu J, Zhao Z, Xu M, Chen M, Weng Q, Ji J. LINC00460 promotes hepatocellular carcinoma development through sponging miR-485-5p to up-regulate PAK1. Biomed Pharmacother. 2019;118:109213.PubMedCrossRef
45.
Zurück zum Zitat Yang J, Li K, Chen J, Hu X, Wang H, Zhu X. Long noncoding RNA LINC00460 promotes hepatocellular carcinoma progression via regulation of miR-342-3p/AGR2 axis. Onco Targets Ther. 2020;13:1979–91.PubMedPubMedCentralCrossRef Yang J, Li K, Chen J, Hu X, Wang H, Zhu X. Long noncoding RNA LINC00460 promotes hepatocellular carcinoma progression via regulation of miR-342-3p/AGR2 axis. Onco Targets Ther. 2020;13:1979–91.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Ge SS, Wu YY, Gao W, Zhang CM, Hou J, Wen SX, et al. [Expression of long non-coding RNA LINC00460 in laryngeal squamous cell carcinoma tissue and its clinical significance]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2018;32(1):18–22.PubMed Ge SS, Wu YY, Gao W, Zhang CM, Hou J, Wen SX, et al. [Expression of long non-coding RNA LINC00460 in laryngeal squamous cell carcinoma tissue and its clinical significance]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2018;32(1):18–22.PubMed
47.
Zurück zum Zitat Xing H, Wang S, Li Q, Ma Y, Sun P. Long noncoding RNA LINC00460 targets miR-539/MMP-9 to promote meningioma progression and metastasis. Biomed Pharmacother. 2018;105:677–82.PubMedCrossRef Xing H, Wang S, Li Q, Ma Y, Sun P. Long noncoding RNA LINC00460 targets miR-539/MMP-9 to promote meningioma progression and metastasis. Biomed Pharmacother. 2018;105:677–82.PubMedCrossRef
48.
Zurück zum Zitat Kong YG, Cui M, Chen SM, Xu Y, Tao ZZ. LncRNA-LINC00460 facilitates nasopharyngeal carcinoma tumorigenesis through sponging miR-149-5p to up-regulate IL6. Gene. 2018;639:77–84.PubMedCrossRef Kong YG, Cui M, Chen SM, Xu Y, Tao ZZ. LncRNA-LINC00460 facilitates nasopharyngeal carcinoma tumorigenesis through sponging miR-149-5p to up-regulate IL6. Gene. 2018;639:77–84.PubMedCrossRef
49.
Zurück zum Zitat Lian H, Xie P, Yin N, Zhang J, Zhang X, Li J, et al. Linc00460 promotes osteosarcoma progression via miR-1224-5p/FADS1 axis. Life Sci. 2019;233:116757.PubMedCrossRef Lian H, Xie P, Yin N, Zhang J, Zhang X, Li J, et al. Linc00460 promotes osteosarcoma progression via miR-1224-5p/FADS1 axis. Life Sci. 2019;233:116757.PubMedCrossRef
50.
Zurück zum Zitat Zhang J, Ding L, Sun G, Ning H, Huang R. Suppression of LINC00460 mediated the sensitization of HCT116 cells to ionizing radiation by inhibiting epithelial-mesenchymal transition. Toxicol Res (Camb). 2020;9(2):107–16.CrossRef Zhang J, Ding L, Sun G, Ning H, Huang R. Suppression of LINC00460 mediated the sensitization of HCT116 cells to ionizing radiation by inhibiting epithelial-mesenchymal transition. Toxicol Res (Camb). 2020;9(2):107–16.CrossRef
51.
Zurück zum Zitat Nakano Y, Isobe K, Kobayashi H, Kaburaki K, Isshiki T, Sakamoto S, et al. Clinical importance of long noncoding RNA LINC00460 expression in EGFRmutant lung adenocarcinoma. Int J Oncol. 2020;56(1):243–57.PubMed Nakano Y, Isobe K, Kobayashi H, Kaburaki K, Isshiki T, Sakamoto S, et al. Clinical importance of long noncoding RNA LINC00460 expression in EGFRmutant lung adenocarcinoma. Int J Oncol. 2020;56(1):243–57.PubMed
53.
Zurück zum Zitat Wang F, Liang S, Liu X, Han L, Wang J, Du Q. LINC00460 modulates KDM2A to promote cell proliferation and migration by targeting miR-342-3p in gastric cancer. Onco Targets Ther. 2018;11:6383–94.PubMedPubMedCentralCrossRef Wang F, Liang S, Liu X, Han L, Wang J, Du Q. LINC00460 modulates KDM2A to promote cell proliferation and migration by targeting miR-342-3p in gastric cancer. Onco Targets Ther. 2018;11:6383–94.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Jiang JJ, Wang FC, Han LP. Long intergenic nonprotein coding RNA 00460 predicts a poor prognosis and promotes tumorigenesis of human osteosarcoma. Mol Med Rep. 2020;21(2):649–58.PubMed Jiang JJ, Wang FC, Han LP. Long intergenic nonprotein coding RNA 00460 predicts a poor prognosis and promotes tumorigenesis of human osteosarcoma. Mol Med Rep. 2020;21(2):649–58.PubMed
56.
Zurück zum Zitat Seyrek K, Richter M, Lavrik IN. Decoding the sweet regulation of apoptosis: the role of glycosylation and galectins in apoptotic signaling pathways. Cell Death Differ. 2019;26(6):981–93.PubMedPubMedCentralCrossRef Seyrek K, Richter M, Lavrik IN. Decoding the sweet regulation of apoptosis: the role of glycosylation and galectins in apoptotic signaling pathways. Cell Death Differ. 2019;26(6):981–93.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Mowers EE, Sharifi MN, Macleod KF. Autophagy in cancer metastasis. Oncogene. 2017;36(12):1619–30.PubMedCrossRef Mowers EE, Sharifi MN, Macleod KF. Autophagy in cancer metastasis. Oncogene. 2017;36(12):1619–30.PubMedCrossRef
58.
Zurück zum Zitat Yang H, Gao S, Chen J, Lou W. UBE2I promotes metastasis and correlates with poor prognosis in hepatocellular carcinoma. Cancer Cell Int. 2020;20:234.PubMedPubMedCentralCrossRef Yang H, Gao S, Chen J, Lou W. UBE2I promotes metastasis and correlates with poor prognosis in hepatocellular carcinoma. Cancer Cell Int. 2020;20:234.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Chen W, Wang L, Li X, Zhao C, Shi L, Zhao H, et al. LncRNA SNHG17 regulates cell proliferation and invasion by targeting miR-338-3p/SOX4 axis in esophageal squamous cell carcinoma. Cell Death Dis. 2021;12(9):806.PubMedPubMedCentralCrossRef Chen W, Wang L, Li X, Zhao C, Shi L, Zhao H, et al. LncRNA SNHG17 regulates cell proliferation and invasion by targeting miR-338-3p/SOX4 axis in esophageal squamous cell carcinoma. Cell Death Dis. 2021;12(9):806.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Yuan B, Yang J, Gu H, Ma C. Down-regulation of LINC00460 represses metastasis of colorectal cancer via WWC2. Dig Dis Sci. 2020;65(2):442–56.PubMedCrossRef Yuan B, Yang J, Gu H, Ma C. Down-regulation of LINC00460 represses metastasis of colorectal cancer via WWC2. Dig Dis Sci. 2020;65(2):442–56.PubMedCrossRef
61.
Zurück zum Zitat Cui Y, Zhang C, Lian H, Xie L, Xue J, Yin N, et al. LncRNA linc00460 sponges miR-1224-5p to promote esophageal cancer metastatic potential and epithelial-mesenchymal transition. Pathol Res Pract. 2020;216(7):153026.PubMedCrossRef Cui Y, Zhang C, Lian H, Xie L, Xue J, Yin N, et al. LncRNA linc00460 sponges miR-1224-5p to promote esophageal cancer metastatic potential and epithelial-mesenchymal transition. Pathol Res Pract. 2020;216(7):153026.PubMedCrossRef
62.
Zurück zum Zitat Hu X, Liu W, Jiang X, Wang B, Li L, Wang J, et al. Long noncoding RNA LINC00460 aggravates invasion and metastasis by targeting miR-30a-3p/Rap1A in nasopharyngeal carcinoma. Hum Cell. 2019;32(4):465–76.PubMedCrossRef Hu X, Liu W, Jiang X, Wang B, Li L, Wang J, et al. Long noncoding RNA LINC00460 aggravates invasion and metastasis by targeting miR-30a-3p/Rap1A in nasopharyngeal carcinoma. Hum Cell. 2019;32(4):465–76.PubMedCrossRef
64.
Zurück zum Zitat Meng X, Sun W, Yu J, Zhou Y, Gu Y, Han J, et al. LINC00460-miR-149-5p/miR-150-5p-Mutant p53 feedback loop promotes oxaliplatin resistance in colorectal cancer. Mol Ther Nucleic Acids. 2020;22:1004–15.PubMedPubMedCentralCrossRef Meng X, Sun W, Yu J, Zhou Y, Gu Y, Han J, et al. LINC00460-miR-149-5p/miR-150-5p-Mutant p53 feedback loop promotes oxaliplatin resistance in colorectal cancer. Mol Ther Nucleic Acids. 2020;22:1004–15.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Tahover E, Bar-Shalom R, Sapir E, Pfeffer R, Nemirovsky I, Turner Y, et al. Chemo-radiotherapy of oligometastases of colorectal cancer with pegylated liposomal mitomycin-C Prodrug (Promitil): mechanistic basis and preliminary clinical experience. Front Oncol. 2018;8:544.PubMedPubMedCentralCrossRef Tahover E, Bar-Shalom R, Sapir E, Pfeffer R, Nemirovsky I, Turner Y, et al. Chemo-radiotherapy of oligometastases of colorectal cancer with pegylated liposomal mitomycin-C Prodrug (Promitil): mechanistic basis and preliminary clinical experience. Front Oncol. 2018;8:544.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Wisdom AJ, Hong CS, Lin AJ, Xiang Y, Cooper DE, Zhang J, et al. Neutrophils promote tumor resistance to radiation therapy. Proc Natl Acad Sci U S A. 2019;116(37):18584–9.PubMedPubMedCentralCrossRef Wisdom AJ, Hong CS, Lin AJ, Xiang Y, Cooper DE, Zhang J, et al. Neutrophils promote tumor resistance to radiation therapy. Proc Natl Acad Sci U S A. 2019;116(37):18584–9.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Shi L, Yang Y, Li M, Li C, Zhou Z, Tang G, et al. LncRNA IFITM4P promotes immune escape by up-regulating PD-L1 via dual mechanism in oral carcinogenesis. Mol Ther. 2022;30(4):1564–77.PubMedCrossRef Shi L, Yang Y, Li M, Li C, Zhou Z, Tang G, et al. LncRNA IFITM4P promotes immune escape by up-regulating PD-L1 via dual mechanism in oral carcinogenesis. Mol Ther. 2022;30(4):1564–77.PubMedCrossRef
69.
Zurück zum Zitat An L, Yu R, Han Y, Zhou Z. Decoding the intercellular communication network during tumorigenesis. Cancer Biol Med. 2021;19(3):265–72.PubMedCentral An L, Yu R, Han Y, Zhou Z. Decoding the intercellular communication network during tumorigenesis. Cancer Biol Med. 2021;19(3):265–72.PubMedCentral
70.
Zurück zum Zitat Chen Y, Zitello E, Guo R, Deng Y. The function of LncRNAs and their role in the prediction, diagnosis, and prognosis of lung cancer. Clin Transl Med. 2021;11(4):e367.PubMedPubMedCentral Chen Y, Zitello E, Guo R, Deng Y. The function of LncRNAs and their role in the prediction, diagnosis, and prognosis of lung cancer. Clin Transl Med. 2021;11(4):e367.PubMedPubMedCentral
71.
Zurück zum Zitat Xu Z, Wang C, Xiang X, Li J, Huang J. Characterization of mRNA expression and endogenous RNA profiles in bladder cancer based on the cancer genome atlas (TCGA) database. Med Sci Monit. 2019;25:3041–60.PubMedPubMedCentralCrossRef Xu Z, Wang C, Xiang X, Li J, Huang J. Characterization of mRNA expression and endogenous RNA profiles in bladder cancer based on the cancer genome atlas (TCGA) database. Med Sci Monit. 2019;25:3041–60.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Huang GW, Xue YJ, Wu ZY, Xu XE, Wu JY, Cao HH, et al. A three-lncRNA signature predicts overall survival and disease-free survival in patients with esophageal squamous cell carcinoma. BMC Cancer. 2018;18(1):147.PubMedPubMedCentralCrossRef Huang GW, Xue YJ, Wu ZY, Xu XE, Wu JY, Cao HH, et al. A three-lncRNA signature predicts overall survival and disease-free survival in patients with esophageal squamous cell carcinoma. BMC Cancer. 2018;18(1):147.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Cao W, Liu JN, Liu Z, Wang X, Han ZG, Ji T, et al. A three-lncRNA signature derived from the Atlas of ncRNA in cancer (TANRIC) database predicts the survival of patients with head and neck squamous cell carcinoma. Oral Oncol. 2017;65:94–101.PubMedCrossRef Cao W, Liu JN, Liu Z, Wang X, Han ZG, Ji T, et al. A three-lncRNA signature derived from the Atlas of ncRNA in cancer (TANRIC) database predicts the survival of patients with head and neck squamous cell carcinoma. Oral Oncol. 2017;65:94–101.PubMedCrossRef
74.
Zurück zum Zitat Zhang D, Zeng S, Hu X. Identification of a three-long noncoding RNA prognostic model involved competitive endogenous RNA in kidney renal clear cell carcinoma. Cancer Cell Int. 2020;20:319.PubMedPubMedCentralCrossRef Zhang D, Zeng S, Hu X. Identification of a three-long noncoding RNA prognostic model involved competitive endogenous RNA in kidney renal clear cell carcinoma. Cancer Cell Int. 2020;20:319.PubMedPubMedCentralCrossRef
Metadaten
Titel
Oncogenic roles of the lncRNA LINC00460 in human cancers
verfasst von
Min Su
Jinming Tang
Desong Yang
Zhining Wu
Qianjin Liao
Hui Wang
Yuhang Xiao
Wenxiang Wang
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Cancer Cell International / Ausgabe 1/2022
Elektronische ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02655-2

Weitere Artikel der Ausgabe 1/2022

Cancer Cell International 1/2022 Zur Ausgabe

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Viel pflanzliche Nahrung, seltener Prostata-Ca.-Progression

12.05.2024 Prostatakarzinom Nachrichten

Ein hoher Anteil pflanzlicher Nahrung trägt möglicherweise dazu bei, das Progressionsrisiko von Männern mit Prostatakarzinomen zu senken. In einer US-Studie war das Risiko bei ausgeprägter pflanzlicher Ernährung in etwa halbiert.

Alter verschlechtert Prognose bei Endometriumkarzinom

11.05.2024 Endometriumkarzinom Nachrichten

Ein höheres Alter bei der Diagnose eines Endometriumkarzinoms ist mit aggressiveren Tumorcharakteristika assoziiert, scheint aber auch unabhängig von bekannten Risikofaktoren die Prognose der Erkrankung zu verschlimmern.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.