Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 5/2018

29.05.2018 | Research Article

Optimized partial-coverage functional analysis pipeline (OPFAP): a semi-automated pipeline for skull stripping and co-registration of partial-coverage, ultra-high-field functional images

verfasst von: Peter E. Yoo, Jon O. Cleary, Scott C. Kolbe, Roger J. Ordidge, Terence J. O’Brien, Nicholas L. Opie, Sam E. John, Thomas J. Oxley, Bradford A. Moffat

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Objective

Ultra-high-field functional MRI (UHF-fMRI) allows for higher spatiotemporal resolution imaging. However, higher-resolution imaging entails coverage limitations. Processing partial-coverage images using standard pipelines leads to sub-optimal results. We aimed to develop a simple, semi-automated pipeline for processing partial-coverage UHF-fMRI data using widely used image processing algorithms.

Materials and methods

We developed automated pipelines for optimized skull stripping and co-registration of partial-coverage UHF functional images, using built-in functions of the Centre for Functional Magnetic Resonance Imaging of the Brain's (FMRIB’s) Software library (FSL) and advanced normalization tools. We incorporated the pipelines into the FSL’s functional analysis pipeline and provide a semi-automated optimized partial-coverage functional analysis pipeline (OPFAP).

Results

Compared to the standard pipeline, the OPFAP yielded images with 15 and 30% greater volume of non-zero voxels after skull stripping the functional and anatomical images, respectively (all p = 0.0004), which reflected the conservation of cortical voxels lost when the standard pipeline was used. The OPFAP yielded the greatest Dice and Jaccard coefficients (87 and 80%, respectively; all p < 0.0001) between the co-registered participant gyri maps and the template gyri maps, demonstrating the goodness of the co-registration results. Furthermore, the greatest volume of group-level activation in the most number of functionally relevant regions was observed when the OPFAP was used. Importantly, group-level activations were not observed when using the standard pipeline.

Conclusion

These results suggest that the OPFAP should be used for processing partial-coverage UHF-fMRI data for detecting high-resolution macroscopic blood oxygenation level-dependent activations.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Yacoub E et al (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45(4):588–594CrossRefPubMed Yacoub E et al (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45(4):588–594CrossRefPubMed
2.
Zurück zum Zitat van der Zwaag W et al (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 47:1425–1434CrossRefPubMed van der Zwaag W et al (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 47:1425–1434CrossRefPubMed
3.
Zurück zum Zitat Duong TQ et al (2003) Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 49(6):1019–1027CrossRefPubMed Duong TQ et al (2003) Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 49(6):1019–1027CrossRefPubMed
4.
Zurück zum Zitat Gati JS et al (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38(2):296–302CrossRefPubMed Gati JS et al (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38(2):296–302CrossRefPubMed
5.
Zurück zum Zitat Geissler A et al (2007) Contrast-to-noise ratio (CNR) as a quality parameter in fMRI. J Magn Reson Imaging 25(6):1263–1270CrossRefPubMed Geissler A et al (2007) Contrast-to-noise ratio (CNR) as a quality parameter in fMRI. J Magn Reson Imaging 25(6):1263–1270CrossRefPubMed
6.
Zurück zum Zitat Okada T et al (2005) Magnetic field strength increase yields significantly greater contrast-to-noise ratio increase: measured using BOLD contrast in the primary visual area. Acad Radiol 12(2):142–147CrossRefPubMed Okada T et al (2005) Magnetic field strength increase yields significantly greater contrast-to-noise ratio increase: measured using BOLD contrast in the primary visual area. Acad Radiol 12(2):142–147CrossRefPubMed
7.
Zurück zum Zitat De Martino F et al (2011) Whole brain high-resolution functional imaging at ultra high magnetic fields: an application to the analysis of resting state networks. Neuroimage 57(3):1031–1044CrossRefPubMed De Martino F et al (2011) Whole brain high-resolution functional imaging at ultra high magnetic fields: an application to the analysis of resting state networks. Neuroimage 57(3):1031–1044CrossRefPubMed
8.
Zurück zum Zitat Vu AT et al (2016) Tradeoffs in pushing the spatial resolution of fMRI for the 7 T human connectome project. Neuroimage 154:23–32CrossRef Vu AT et al (2016) Tradeoffs in pushing the spatial resolution of fMRI for the 7 T human connectome project. Neuroimage 154:23–32CrossRef
9.
Zurück zum Zitat Triantafyllou C et al (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26(1):243–250CrossRefPubMed Triantafyllou C et al (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26(1):243–250CrossRefPubMed
10.
Zurück zum Zitat Yoo PE et al (2017) 7 T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution. Neuroimage 164:214–229CrossRefPubMed Yoo PE et al (2017) 7 T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution. Neuroimage 164:214–229CrossRefPubMed
11.
Zurück zum Zitat Polimeni JR et al (2010) Laminar analysis of 7 T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 52(4):1334–1346CrossRefPubMed Polimeni JR et al (2010) Laminar analysis of 7 T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 52(4):1334–1346CrossRefPubMed
12.
Zurück zum Zitat Huber L et al (2015) Cortical lamina-dependent blood volume changes in human brain at 7 T. Neuroimage 107:23–33CrossRefPubMed Huber L et al (2015) Cortical lamina-dependent blood volume changes in human brain at 7 T. Neuroimage 107:23–33CrossRefPubMed
13.
Zurück zum Zitat Siero JC et al (2015) Cortical depth dependence of the BOLD initial dip and poststimulus undershoot in human visual cortex at 7 Tesla. Magn Reson Med 73(6):2283–2295CrossRefPubMed Siero JC et al (2015) Cortical depth dependence of the BOLD initial dip and poststimulus undershoot in human visual cortex at 7 Tesla. Magn Reson Med 73(6):2283–2295CrossRefPubMed
14.
Zurück zum Zitat Siero JC et al (2014) BOLD matches neuronal activity at the mm scale: a combined 7 T fMRI and ECoG study in human sensorimotor cortex. Neuroimage 101C:177–184CrossRef Siero JC et al (2014) BOLD matches neuronal activity at the mm scale: a combined 7 T fMRI and ECoG study in human sensorimotor cortex. Neuroimage 101C:177–184CrossRef
15.
Zurück zum Zitat Yacoub E, Hu X (2001) Detection of the early decrease in fMRI signal in the motor area. Magn Reson Med 45(2):184–190CrossRefPubMed Yacoub E, Hu X (2001) Detection of the early decrease in fMRI signal in the motor area. Magn Reson Med 45(2):184–190CrossRefPubMed
16.
Zurück zum Zitat Yacoub E et al (2001) Investigation of the initial dip in fMRI at 7 Tesla. NMR Biomed 14(7–8):408–412CrossRefPubMed Yacoub E et al (2001) Investigation of the initial dip in fMRI at 7 Tesla. NMR Biomed 14(7–8):408–412CrossRefPubMed
17.
18.
Zurück zum Zitat Yoo PE et al (2018) Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals. Hum Brain Mapp 39(6):2635–2650CrossRefPubMedPubMedCentral Yoo PE et al (2018) Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals. Hum Brain Mapp 39(6):2635–2650CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Polimeni JR et al (2017) Analysis strategies for high-resolution UHF-fMRI data. Neuroimage 168:296–320CrossRefPubMed Polimeni JR et al (2017) Analysis strategies for high-resolution UHF-fMRI data. Neuroimage 168:296–320CrossRefPubMed
21.
Zurück zum Zitat Avants BB et al (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044CrossRefPubMed Avants BB et al (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044CrossRefPubMed
22.
Zurück zum Zitat Marques JP et al (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49(2):1271–1281CrossRefPubMed Marques JP et al (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49(2):1271–1281CrossRefPubMed
23.
Zurück zum Zitat Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2):870–888CrossRefPubMed Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2):870–888CrossRefPubMed
24.
Zurück zum Zitat Smith SM et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219CrossRefPubMed Smith SM et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219CrossRefPubMed
26.
Zurück zum Zitat Tustison NJ et al (2014) Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 99:166–179CrossRefPubMed Tustison NJ et al (2014) Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 99:166–179CrossRefPubMed
27.
Zurück zum Zitat Avants BB et al (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3):2033–2044CrossRefPubMed Avants BB et al (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3):2033–2044CrossRefPubMed
28.
Zurück zum Zitat Klein A et al (2010) Evaluation of volume-based and surface-based brain image registration methods. Neuroimage 51(1):214–220CrossRefPubMed Klein A et al (2010) Evaluation of volume-based and surface-based brain image registration methods. Neuroimage 51(1):214–220CrossRefPubMed
29.
Zurück zum Zitat Avants BB et al (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41CrossRefPubMed Avants BB et al (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41CrossRefPubMed
31.
Zurück zum Zitat Connolly JD, Andersen RA, Goodale MA (2003) FMRI evidence for a ‘parietal reach region’ in the human brain. Exp Brain Res 153(2):140–145CrossRefPubMed Connolly JD, Andersen RA, Goodale MA (2003) FMRI evidence for a ‘parietal reach region’ in the human brain. Exp Brain Res 153(2):140–145CrossRefPubMed
32.
Zurück zum Zitat Medendorp WP et al (2005) Integration of target and effector information in human posterior parietal cortex for the planning of action. J Neurophysiol 93(2):954–962CrossRefPubMed Medendorp WP et al (2005) Integration of target and effector information in human posterior parietal cortex for the planning of action. J Neurophysiol 93(2):954–962CrossRefPubMed
33.
Zurück zum Zitat Bremmer F et al (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296CrossRefPubMed Bremmer F et al (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296CrossRefPubMed
34.
Zurück zum Zitat Cunnington R et al (2006) The selection of intended actions and the observation of others’ actions: a time-resolved fMRI study. Neuroimage 29(4):1294–1302CrossRefPubMed Cunnington R et al (2006) The selection of intended actions and the observation of others’ actions: a time-resolved fMRI study. Neuroimage 29(4):1294–1302CrossRefPubMed
37.
Zurück zum Zitat Binkofski F et al (1999) A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128(1–2):210–213CrossRefPubMed Binkofski F et al (1999) A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128(1–2):210–213CrossRefPubMed
38.
Zurück zum Zitat Deecke L (1987) Bereitschaftspotential as an indicator of movement preparation in supplementary motor area and motor cortex. Ciba Found Symp 132:231–250PubMed Deecke L (1987) Bereitschaftspotential as an indicator of movement preparation in supplementary motor area and motor cortex. Ciba Found Symp 132:231–250PubMed
39.
Zurück zum Zitat Cunnington R, Bradshaw JL, Iansek R (1996) The role of the supplementary motor area in the control of voluntary movement. Hum Mov Sci 15:627–647CrossRef Cunnington R, Bradshaw JL, Iansek R (1996) The role of the supplementary motor area in the control of voluntary movement. Hum Mov Sci 15:627–647CrossRef
40.
Zurück zum Zitat Cunnington R et al (2002) The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage 15(2):373–385CrossRefPubMed Cunnington R et al (2002) The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage 15(2):373–385CrossRefPubMed
41.
42.
Zurück zum Zitat Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRef Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRef
43.
Zurück zum Zitat Wright GA, Hu BS, Macovski A (1991) 1991 I.I. Rabi Award. Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imaging 1(3):275–283CrossRefPubMed Wright GA, Hu BS, Macovski A (1991) 1991 I.I. Rabi Award. Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imaging 1(3):275–283CrossRefPubMed
44.
Zurück zum Zitat Triantafyllou C et al (2016) Coil-to-coil physiological noise correlations and their impact on functional MRI time-series signal-to-noise ratio. Magn Reson Med 76(6):1708–1719CrossRefPubMedPubMedCentral Triantafyllou C et al (2016) Coil-to-coil physiological noise correlations and their impact on functional MRI time-series signal-to-noise ratio. Magn Reson Med 76(6):1708–1719CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Felician O et al (2004) The role of human left superior parietal lobule in body part localization. Ann Neurol 55(5):749–751CrossRefPubMed Felician O et al (2004) The role of human left superior parietal lobule in body part localization. Ann Neurol 55(5):749–751CrossRefPubMed
46.
Zurück zum Zitat Gerstmann J (1942) Problem of imperception of disease and of impaired body territories with organic lesions. Arch Neurol Psychiatr 48:890–913CrossRef Gerstmann J (1942) Problem of imperception of disease and of impaired body territories with organic lesions. Arch Neurol Psychiatr 48:890–913CrossRef
47.
Zurück zum Zitat Guariglia C et al (2002) Is autotopoagnosia real? EC says yes. Neuropsychologia 40(10):1744–1749CrossRefPubMed Guariglia C et al (2002) Is autotopoagnosia real? EC says yes. Neuropsychologia 40(10):1744–1749CrossRefPubMed
48.
Zurück zum Zitat Felician O et al (2003) Pointing to body parts: a double dissociation study. Neuropsychologia 41(10):1307–1316CrossRefPubMed Felician O et al (2003) Pointing to body parts: a double dissociation study. Neuropsychologia 41(10):1307–1316CrossRefPubMed
Metadaten
Titel
Optimized partial-coverage functional analysis pipeline (OPFAP): a semi-automated pipeline for skull stripping and co-registration of partial-coverage, ultra-high-field functional images
verfasst von
Peter E. Yoo
Jon O. Cleary
Scott C. Kolbe
Roger J. Ordidge
Terence J. O’Brien
Nicholas L. Opie
Sam E. John
Thomas J. Oxley
Bradford A. Moffat
Publikationsdatum
29.05.2018
Verlag
Springer International Publishing
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 5/2018
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-018-0690-z

Weitere Artikel der Ausgabe 5/2018

Magnetic Resonance Materials in Physics, Biology and Medicine 5/2018 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.