Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 4/2012

01.08.2012

Oxidative Stress, Nox Isoforms and Complications of Diabetes—Potential Targets for Novel Therapies

verfasst von: Mona Sedeek, Augusto C. Montezano, Richard L. Hebert, Stephen P. Gray, Elyse Di Marco, Jay C. Jha, Mark E. Cooper, Karin Jandeleit-Dahm, Ernesto L. Schiffrin, Jennifer L. Wilkinson-Berka, Rhian M. Touyz

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Abstract

Most diabetes-related complications and causes of death arise from cardiovascular disease and end-stage renal disease. Amongst the major complications of diabetes mellitus are retinopathy, neuropathy, nephropathy and accelerated atherosclerosis. Increased bioavailability of reactive oxygen species (ROS) (termed oxidative stress), derived in large part from the NADPH oxidase (Nox) family of free radical producing enzymes, has been demonstrated in experimental and clinical diabetes and has been implicated in the cardiovascular and renal complications of diabetes. The present review focuses on the role of Noxs and oxidative stress in some major complications of diabetes, including nephropathy, retinopathy and atherosclerosis. We also discuss Nox isoforms as potential targets for therapy.
Literatur
1.
Zurück zum Zitat Emerging Risk Factors Collaboration, Sarwar, N., Gao, P., Seshasai, S. R., Gobin, R., Kaptoge, S., et al. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet, 375, 2215–2222.PubMedCrossRef Emerging Risk Factors Collaboration, Sarwar, N., Gao, P., Seshasai, S. R., Gobin, R., Kaptoge, S., et al. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet, 375, 2215–2222.PubMedCrossRef
2.
Zurück zum Zitat Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, (2011). Atlanta: Department of Health and Human Services, Centers for Disease Control and Prevention. Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, (2011). Atlanta: Department of Health and Human Services, Centers for Disease Control and Prevention.
3.
Zurück zum Zitat Ismail-Beigi, F. (2012). Clinical practice. Glycemic management of type 2 diabetes mellitus. The New England Journal of Medicine, 366(14), 1319–1327.PubMedCrossRef Ismail-Beigi, F. (2012). Clinical practice. Glycemic management of type 2 diabetes mellitus. The New England Journal of Medicine, 366(14), 1319–1327.PubMedCrossRef
4.
Zurück zum Zitat Tikellis, C., Pickering, R.J., Tsorotes, D., Du, X.J., Kiriazis, H., Nguyen-Huu, T.P., Head, G.A., Cooper, M.E., Thomas, M.C. (2012) The interaction of diabetes and ACE2 in the pathogenesis of cardiovascular disease in experimental diabetes. Clinical Science (London) [Epub ahead of print]. Tikellis, C., Pickering, R.J., Tsorotes, D., Du, X.J., Kiriazis, H., Nguyen-Huu, T.P., Head, G.A., Cooper, M.E., Thomas, M.C. (2012) The interaction of diabetes and ACE2 in the pathogenesis of cardiovascular disease in experimental diabetes. Clinical Science (London) [Epub ahead of print].
5.
Zurück zum Zitat Huang, A., Yang, Y. M., Feher, A., Bagi, Z., Kaley, G., & Sun, D. (2012). Exacerbation of endothelial dysfunction during the progression of diabetes: role of oxidative stress. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 302(6), R674–R681.PubMedCrossRef Huang, A., Yang, Y. M., Feher, A., Bagi, Z., Kaley, G., & Sun, D. (2012). Exacerbation of endothelial dysfunction during the progression of diabetes: role of oxidative stress. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 302(6), R674–R681.PubMedCrossRef
6.
Zurück zum Zitat Chang, C.M., Hsieh, C.J., Huang, J.C., Huang, I.C. (2012). Acute and chronic fluctuations in blood glucose levels can increase oxidative stress in type 2 diabetes mellitus. Acta Diabetologia. 2012 May 1. [Epub ahead of print]. Chang, C.M., Hsieh, C.J., Huang, J.C., Huang, I.C. (2012). Acute and chronic fluctuations in blood glucose levels can increase oxidative stress in type 2 diabetes mellitus. Acta Diabetologia. 2012 May 1. [Epub ahead of print].
7.
Zurück zum Zitat Tang, W. H., Martin, K. A., & Hwa, J. (2012). Aldose reductase, oxidative stress, and diabetic mellitus. Frontiers in Pharmacology, 3, 87–90.PubMedCrossRef Tang, W. H., Martin, K. A., & Hwa, J. (2012). Aldose reductase, oxidative stress, and diabetic mellitus. Frontiers in Pharmacology, 3, 87–90.PubMedCrossRef
8.
Zurück zum Zitat Whaley-Connell, A., Sowers, J.R. (2012). Oxidative stress in the cardiorenal metabolic syndrome. Current Hypertension Reports. May 13. [Epub ahead of print]. Whaley-Connell, A., Sowers, J.R. (2012). Oxidative stress in the cardiorenal metabolic syndrome. Current Hypertension Reports. May 13. [Epub ahead of print].
9.
Zurück zum Zitat Coughlan, M. T., Patel, S. K., Jerums, G., Penfold, S. A., Nguyen, T. V., Sourris, K. C., et al. (2011). Advanced glycation urinary protein-bound biomarkers and severity of diabetic nephropathy in man. American Journal of Nephrology, 34(4), 347–355.PubMedCrossRef Coughlan, M. T., Patel, S. K., Jerums, G., Penfold, S. A., Nguyen, T. V., Sourris, K. C., et al. (2011). Advanced glycation urinary protein-bound biomarkers and severity of diabetic nephropathy in man. American Journal of Nephrology, 34(4), 347–355.PubMedCrossRef
10.
Zurück zum Zitat Jay, D., Hitomi, H., & Griendling, K. K. (2006). Oxidative stress and diabetic cardiovascular complications. Free Radical Biology & Medicine, 40(2), 183–192.CrossRef Jay, D., Hitomi, H., & Griendling, K. K. (2006). Oxidative stress and diabetic cardiovascular complications. Free Radical Biology & Medicine, 40(2), 183–192.CrossRef
11.
Zurück zum Zitat Luther, J. M., & Brown, N. (2011). The renin–angiotensin–aldosterone system and glucose homeostasis. Trends in Pharmacological Sciences, 32(12), 734–739.PubMedCrossRef Luther, J. M., & Brown, N. (2011). The renin–angiotensin–aldosterone system and glucose homeostasis. Trends in Pharmacological Sciences, 32(12), 734–739.PubMedCrossRef
12.
Zurück zum Zitat Shen, G. X. (2010). Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase. Canadian Journal of Physiology and Pharmacology, 88(3), 241–248.PubMedCrossRef Shen, G. X. (2010). Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase. Canadian Journal of Physiology and Pharmacology, 88(3), 241–248.PubMedCrossRef
13.
Zurück zum Zitat Thum, T., Fraccarollo, D., Schultheiss, M., Froese, S., Galuppo, P., Widder, J. D., et al. (2007). Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes, 56(3), 666–674.PubMedCrossRef Thum, T., Fraccarollo, D., Schultheiss, M., Froese, S., Galuppo, P., Widder, J. D., et al. (2007). Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes, 56(3), 666–674.PubMedCrossRef
14.
15.
Zurück zum Zitat Al Ghouleh, I., Khoo, N. K., Knaus, U. G., Griendling, K. K., Touyz, R. M., Thannickal, V. J., et al. (2011). Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radical Biology & Medicine, 1, 1271–1288.CrossRef Al Ghouleh, I., Khoo, N. K., Knaus, U. G., Griendling, K. K., Touyz, R. M., Thannickal, V. J., et al. (2011). Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radical Biology & Medicine, 1, 1271–1288.CrossRef
16.
Zurück zum Zitat Dworakowski, R., Alom-Ruiz, S. P., & Shah, A. M. (2008). NADPH oxidase-derived reactive oxygen species in the regulation of endothelial phenotype. Pharmacological Reports, 60(1), 21–28.PubMed Dworakowski, R., Alom-Ruiz, S. P., & Shah, A. M. (2008). NADPH oxidase-derived reactive oxygen species in the regulation of endothelial phenotype. Pharmacological Reports, 60(1), 21–28.PubMed
17.
Zurück zum Zitat Sirker, A., Zhang, M., & Shah, A. M. (2011). NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Research in Cardiology, 106(5), 735–4.PubMedCrossRef Sirker, A., Zhang, M., & Shah, A. M. (2011). NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Research in Cardiology, 106(5), 735–4.PubMedCrossRef
18.
Zurück zum Zitat Redmond, E. M., & Cahill, P. A. (2012). The NOX–ROS connection: targeting Nox1 control of N-cadherin shedding in vascular smooth muscle cells. Cardiovascular Research, 93(3), 386–390.PubMedCrossRef Redmond, E. M., & Cahill, P. A. (2012). The NOX–ROS connection: targeting Nox1 control of N-cadherin shedding in vascular smooth muscle cells. Cardiovascular Research, 93(3), 386–390.PubMedCrossRef
19.
Zurück zum Zitat Dikalova, A. E., Góngora, M. C., Harrison, D. G., Lambeth, J. D., Dikalov, S., & Griendling, K. K. (2010). Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. American Journal of Physiology—Heart and Circulatory Physiology, 299(3), H673–H679.PubMedCrossRef Dikalova, A. E., Góngora, M. C., Harrison, D. G., Lambeth, J. D., Dikalov, S., & Griendling, K. K. (2010). Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. American Journal of Physiology—Heart and Circulatory Physiology, 299(3), H673–H679.PubMedCrossRef
20.
Zurück zum Zitat Bayat, H., Schröder, K., Pimentel, D. R., Brandes, R. P., Verbeuren, T. J., Cohen, R. A., et al. (2012). Activation of thromboxane receptor modulates interleukin-1β-induced monocyte adhesion—a novel role of Nox1. Free Radical Biology & Medicine, 52(9), 1760–1766.CrossRef Bayat, H., Schröder, K., Pimentel, D. R., Brandes, R. P., Verbeuren, T. J., Cohen, R. A., et al. (2012). Activation of thromboxane receptor modulates interleukin-1β-induced monocyte adhesion—a novel role of Nox1. Free Radical Biology & Medicine, 52(9), 1760–1766.CrossRef
21.
Zurück zum Zitat Yogi, A., Mercure, C., Touyz, J., Callera, G. E., Montezano, A. C., Aranha, A. B., et al. (2008). Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension. Hypertension, 51(2), 500–506.PubMedCrossRef Yogi, A., Mercure, C., Touyz, J., Callera, G. E., Montezano, A. C., Aranha, A. B., et al. (2008). Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension. Hypertension, 51(2), 500–506.PubMedCrossRef
22.
Zurück zum Zitat Paik, Y. H., Iwaisako, K., Seki, E., Inokuchi, S., Schnabl, B., Osterreicher, C. H., et al. (2011). The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. Hepatology, 53(5), 1730–1741.PubMedCrossRef Paik, Y. H., Iwaisako, K., Seki, E., Inokuchi, S., Schnabl, B., Osterreicher, C. H., et al. (2011). The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. Hepatology, 53(5), 1730–1741.PubMedCrossRef
23.
Zurück zum Zitat Yasuda, M., Kato, S., Yamanaka, N., Iimori, M., Utsumi, D., Kitahara, Y., et al. (2012). Potential role of the NADPH oxidase NOX1 in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice. American Journal of Physiology—Gastrointestinal and Liver Physiology, 302(10), G1133–G1142.PubMedCrossRef Yasuda, M., Kato, S., Yamanaka, N., Iimori, M., Utsumi, D., Kitahara, Y., et al. (2012). Potential role of the NADPH oxidase NOX1 in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice. American Journal of Physiology—Gastrointestinal and Liver Physiology, 302(10), G1133–G1142.PubMedCrossRef
24.
Zurück zum Zitat Sheehan, A. L., Carrell, S., Johnson, B., Stanic, B., Banfi, B., & Miller, F. J., Jr. (2011). Role for Nox1 NADPH oxidase in atherosclerosis. Atherosclerosis, 216(2), 321–326.PubMedCrossRef Sheehan, A. L., Carrell, S., Johnson, B., Stanic, B., Banfi, B., & Miller, F. J., Jr. (2011). Role for Nox1 NADPH oxidase in atherosclerosis. Atherosclerosis, 216(2), 321–326.PubMedCrossRef
25.
Zurück zum Zitat Youn, J.Y., Gao, L., Cai, H. (2012). The p47(phox)- and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetologia 55, 2069–2079. Youn, J.Y., Gao, L., Cai, H. (2012). The p47(phox)- and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetologia 55, 2069–2079.
26.
Zurück zum Zitat Liu, J., Ormsby, A., Oja-Tebbe, N., & Pagano, P. J. (2004). Gene transfer of NAD(P)H oxidase inhibitor to the vascular adventitia attenuates medial smooth muscle hypertrophy. Circulation Research, 95(6), 587–594.PubMedCrossRef Liu, J., Ormsby, A., Oja-Tebbe, N., & Pagano, P. J. (2004). Gene transfer of NAD(P)H oxidase inhibitor to the vascular adventitia attenuates medial smooth muscle hypertrophy. Circulation Research, 95(6), 587–594.PubMedCrossRef
27.
Zurück zum Zitat Touyz, R. M., Mercure, C., He, Y., Javeshghani, D., Yao, G., & Reudelhuber, T. (2005). Angiotensin II-dependent chronic hypertension and cardiac hypertrophy in mice do not require gp91phox-containing NADPH oxidase. Hypertension, 45, 530–537.PubMedCrossRef Touyz, R. M., Mercure, C., He, Y., Javeshghani, D., Yao, G., & Reudelhuber, T. (2005). Angiotensin II-dependent chronic hypertension and cardiac hypertrophy in mice do not require gp91phox-containing NADPH oxidase. Hypertension, 45, 530–537.PubMedCrossRef
28.
Zurück zum Zitat Syed, I., Kyathanahalli, C. N., Jayaram, B., Govind, S., Rhodes, C. J., Kowluru, R. A., et al. (2011). Increased phagocyte-like NADPH oxidase and ROS generation in type 2 diabetic ZDF rat and human islets: role of Rac1-JNK1/2 signaling pathway in mitochondrial dysregulation in the diabetic islet. Diabetes, 60(11), 2843–2852.PubMedCrossRef Syed, I., Kyathanahalli, C. N., Jayaram, B., Govind, S., Rhodes, C. J., Kowluru, R. A., et al. (2011). Increased phagocyte-like NADPH oxidase and ROS generation in type 2 diabetic ZDF rat and human islets: role of Rac1-JNK1/2 signaling pathway in mitochondrial dysregulation in the diabetic islet. Diabetes, 60(11), 2843–2852.PubMedCrossRef
29.
Zurück zum Zitat Mukherjea, D., Jajoo, S., Sheehan, K., Kaur, T., Sheth, S., Bunch, J., et al. (2011). NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss. Antioxidants & Redox Signaling, 14(6), 999–1010.CrossRef Mukherjea, D., Jajoo, S., Sheehan, K., Kaur, T., Sheth, S., Bunch, J., et al. (2011). NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss. Antioxidants & Redox Signaling, 14(6), 999–1010.CrossRef
30.
Zurück zum Zitat Chen, G., Adeyemo, A. A., Zhou, J., Chen, Y., Doumatey, A., Lashley, K., et al. (2007). A genome-wide search for linkage to renal function phenotypes in West Africans with type 2 diabetes. American Journal of Kidney Diseases, 49(3), 394–400.PubMedCrossRef Chen, G., Adeyemo, A. A., Zhou, J., Chen, Y., Doumatey, A., Lashley, K., et al. (2007). A genome-wide search for linkage to renal function phenotypes in West Africans with type 2 diabetes. American Journal of Kidney Diseases, 49(3), 394–400.PubMedCrossRef
31.
Zurück zum Zitat Ye, S., Zhong, H., Yanamadala, S., & Campese, V. M. (2006). Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension. Hypertension, 48(2), 309–132.PubMedCrossRef Ye, S., Zhong, H., Yanamadala, S., & Campese, V. M. (2006). Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension. Hypertension, 48(2), 309–132.PubMedCrossRef
32.
Zurück zum Zitat Streeter, J., Thiel, W., Brieger, K., Miller, Jr F. J. (2012). Opportunity Nox: the future of NADPH oxidases as therapeutic targets in cardiovascular disease. Cardiovascular Therapeutics. doi: 10.1111. Streeter, J., Thiel, W., Brieger, K., Miller, Jr F. J. (2012). Opportunity Nox: the future of NADPH oxidases as therapeutic targets in cardiovascular disease. Cardiovascular Therapeutics. doi: 10.1111.
33.
Zurück zum Zitat Xi, G., Shen, X., Maile, L. A., Wai, C., Gollahon, K., & Clemmons, D. R. (2012). Hyperglycemia enhances IGF-I-stimulated Src activation via increasing Nox4-derived reactive oxygen species in a PKCζ-dependent manner in vascular smooth muscle cells. Diabetes, 61(1), 104–113.PubMedCrossRef Xi, G., Shen, X., Maile, L. A., Wai, C., Gollahon, K., & Clemmons, D. R. (2012). Hyperglycemia enhances IGF-I-stimulated Src activation via increasing Nox4-derived reactive oxygen species in a PKCζ-dependent manner in vascular smooth muscle cells. Diabetes, 61(1), 104–113.PubMedCrossRef
34.
Zurück zum Zitat Fulton, D. J. (2009). Nox5 and the regulation of cellular function. Antioxidants & Redox Signaling, 11(10), 2443–2452.CrossRef Fulton, D. J. (2009). Nox5 and the regulation of cellular function. Antioxidants & Redox Signaling, 11(10), 2443–2452.CrossRef
35.
Zurück zum Zitat Lyle, A. N., Deshpande, N. N., Taniyama, Y., Seidel-Rogol, B., Pounkova, L., Du, P., et al. (2009). Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circulation Research, 105(3), 249–259.PubMedCrossRef Lyle, A. N., Deshpande, N. N., Taniyama, Y., Seidel-Rogol, B., Pounkova, L., Du, P., et al. (2009). Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circulation Research, 105(3), 249–259.PubMedCrossRef
36.
Zurück zum Zitat Martin-Garrido, A., Brown, D. I., Lyle, A. N., Dikalova, A., Seidel-Rogol, B., Lassègue, B., et al. (2011). NADPH oxidase 4 mediates TGF-β-induced smooth muscle α-actin via p38MAPK and serum response factor. Free Radical Biology & Medicine, 50(2), 354–356.CrossRef Martin-Garrido, A., Brown, D. I., Lyle, A. N., Dikalova, A., Seidel-Rogol, B., Lassègue, B., et al. (2011). NADPH oxidase 4 mediates TGF-β-induced smooth muscle α-actin via p38MAPK and serum response factor. Free Radical Biology & Medicine, 50(2), 354–356.CrossRef
37.
Zurück zum Zitat Takac, I., Schröder, K., Zhang, L., Lardy, B., Anilkumar, N., Lambeth, J. D., et al. (2011). The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. Journal of Biological Chemistry, 286(15), 13304–13313.PubMedCrossRef Takac, I., Schröder, K., Zhang, L., Lardy, B., Anilkumar, N., Lambeth, J. D., et al. (2011). The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. Journal of Biological Chemistry, 286(15), 13304–13313.PubMedCrossRef
38.
Zurück zum Zitat Schröder, K., Zhang, M., Benkhoff, S., Mieth, A., Pliquett, R., Kosowski, J., et al. (2012). Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circulation Research, 110, 1217–1225.PubMedCrossRef Schröder, K., Zhang, M., Benkhoff, S., Mieth, A., Pliquett, R., Kosowski, J., et al. (2012). Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circulation Research, 110, 1217–1225.PubMedCrossRef
39.
Zurück zum Zitat Zhang, M., Brewer, A. C., Schröder, K., Santos, C. X., Grieve, D. J., Wang, M., et al. (2010). NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18121–18126.PubMedCrossRef Zhang, M., Brewer, A. C., Schröder, K., Santos, C. X., Grieve, D. J., Wang, M., et al. (2010). NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18121–18126.PubMedCrossRef
40.
Zurück zum Zitat Kuroda, J., Ago, T., Matsushima, S., Zhai, P., Schneider, M. D., & Sadoshima, J. (2010). NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15565–15570.PubMedCrossRef Kuroda, J., Ago, T., Matsushima, S., Zhai, P., Schneider, M. D., & Sadoshima, J. (2010). NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15565–15570.PubMedCrossRef
41.
Zurück zum Zitat Tong, X., Hou, X., Jourd’heuil, D., Weisbrod, R. M., & Cohen, R. A. (2010). Upregulation of Nox4 by TGF{beta}1 oxidizes SERCA and inhibits NO in arterial smooth muscle of the prediabetic Zucker rat. Circulation Research, 107, 975–983.PubMedCrossRef Tong, X., Hou, X., Jourd’heuil, D., Weisbrod, R. M., & Cohen, R. A. (2010). Upregulation of Nox4 by TGF{beta}1 oxidizes SERCA and inhibits NO in arterial smooth muscle of the prediabetic Zucker rat. Circulation Research, 107, 975–983.PubMedCrossRef
42.
Zurück zum Zitat Wu, X., & Williams, K. J. (2012). NOX4 pathway as a source of selective insulin resistance and responsiveness. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(5), 1236–1245.PubMedCrossRef Wu, X., & Williams, K. J. (2012). NOX4 pathway as a source of selective insulin resistance and responsiveness. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(5), 1236–1245.PubMedCrossRef
43.
Zurück zum Zitat Maalouf, R. M., Eid, A. A., Gorin, Y. C., Block, K., Escobar, G. P., Bailey, S., et al. (2012). Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. American Journal of Physiology. Cell Physiology, 302(3), C597–C604.PubMedCrossRef Maalouf, R. M., Eid, A. A., Gorin, Y. C., Block, K., Escobar, G. P., Bailey, S., et al. (2012). Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. American Journal of Physiology. Cell Physiology, 302(3), C597–C604.PubMedCrossRef
44.
Zurück zum Zitat Piwkowska, A., Rogacka, D., Audzeyenka, I., Jankowski, M., & Angielski, S. (2011). High glucose concentration affects the oxidant–antioxidant balance in cultured mouse podocytes. Journal of Cellular Biochemistry, 112(6), 1661–1672.PubMedCrossRef Piwkowska, A., Rogacka, D., Audzeyenka, I., Jankowski, M., & Angielski, S. (2011). High glucose concentration affects the oxidant–antioxidant balance in cultured mouse podocytes. Journal of Cellular Biochemistry, 112(6), 1661–1672.PubMedCrossRef
45.
Zurück zum Zitat Sedeek, M., Callera, G., Montezano, A., Gutsol, A., Heitz, F., Szyndralewiez, C., et al. (2010). Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. American Journal of Physiology. Renal Physiology, 299(6), F1348–F1358.PubMedCrossRef Sedeek, M., Callera, G., Montezano, A., Gutsol, A., Heitz, F., Szyndralewiez, C., et al. (2010). Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. American Journal of Physiology. Renal Physiology, 299(6), F1348–F1358.PubMedCrossRef
46.
Zurück zum Zitat Montezano, A. C., Buger, D., Ceravolo, G. S., Yusuf, H., Montero, M., & Touyz, R. M. (2011). Novel Noxes homologues in the vasculature: focusing on Nox4 and Nox5. Clinical Science, 120(4), 131–141.PubMedCrossRef Montezano, A. C., Buger, D., Ceravolo, G. S., Yusuf, H., Montero, M., & Touyz, R. M. (2011). Novel Noxes homologues in the vasculature: focusing on Nox4 and Nox5. Clinical Science, 120(4), 131–141.PubMedCrossRef
47.
Zurück zum Zitat Pandey, D., & Fulton, D. J. (2011). Molecular regulation of NADPH oxidase 5 via the MAPK pathway. American Journal of Physiology—Heart and Circulatory Physiology, 300(4), H1336–4.PubMedCrossRef Pandey, D., & Fulton, D. J. (2011). Molecular regulation of NADPH oxidase 5 via the MAPK pathway. American Journal of Physiology—Heart and Circulatory Physiology, 300(4), H1336–4.PubMedCrossRef
48.
Zurück zum Zitat Manea, A., Manea, S. A., Florea, I. C., Luca, C. M., & Raicu, M. (2012). Positive regulation of NADPH oxidase 5 by proinflammatory-related mechanisms in human aortic smooth muscle cells. Free Radical Biology & Medicine, 52(9), 1497–1507.CrossRef Manea, A., Manea, S. A., Florea, I. C., Luca, C. M., & Raicu, M. (2012). Positive regulation of NADPH oxidase 5 by proinflammatory-related mechanisms in human aortic smooth muscle cells. Free Radical Biology & Medicine, 52(9), 1497–1507.CrossRef
49.
Zurück zum Zitat Hahn, N. E., Meischl, C., Kawahara, T., Musters, R. J., Verhoef, V. M., van der Velden, J., et al. (2012). NOX5 expression is increased in intramyocardial blood vessels and cardiomyocytes after acute myocardial infarction in humans. American Journal of Pathology, 180(6), 2222–2229.PubMedCrossRef Hahn, N. E., Meischl, C., Kawahara, T., Musters, R. J., Verhoef, V. M., van der Velden, J., et al. (2012). NOX5 expression is increased in intramyocardial blood vessels and cardiomyocytes after acute myocardial infarction in humans. American Journal of Pathology, 180(6), 2222–2229.PubMedCrossRef
50.
Zurück zum Zitat Pandey, D., Patel, A., Patel, V., Chen, F., Qian, J., Wang, Y., Barman, S.A., Venema, R.C., Stepp, D.W., Rudic, R.D., Fulton, D.J. (2012). Expression and functional significance of NADPH oxidase 5 (Nox5) and its splice variants in human blood vessels. American Journal of Physiology—Heart and CirculatoryPhysiology, 302(10), H1919–28. Pandey, D., Patel, A., Patel, V., Chen, F., Qian, J., Wang, Y., Barman, S.A., Venema, R.C., Stepp, D.W., Rudic, R.D., Fulton, D.J. (2012). Expression and functional significance of NADPH oxidase 5 (Nox5) and its splice variants in human blood vessels. American Journal of Physiology—Heart and CirculatoryPhysiology, 302(10), H1919–28.
51.
Zurück zum Zitat Bhavani, N. (2011). Transient congenital hypothyroidism. Indian Journal of Endocrinology and Metabolism, 15(Suppl 2), S117–S120.PubMedCrossRef Bhavani, N. (2011). Transient congenital hypothyroidism. Indian Journal of Endocrinology and Metabolism, 15(Suppl 2), S117–S120.PubMedCrossRef
52.
Zurück zum Zitat Cooper, M. E. (1998). Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet, 352(9123), 213–219.PubMedCrossRef Cooper, M. E. (1998). Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet, 352(9123), 213–219.PubMedCrossRef
53.
Zurück zum Zitat Forbes, J. M., Coughlan, M. T., & Cooper, M. E. (2008). Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 57(6), 1446–1454.PubMedCrossRef Forbes, J. M., Coughlan, M. T., & Cooper, M. E. (2008). Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 57(6), 1446–1454.PubMedCrossRef
54.
Zurück zum Zitat Eid, A. A., Gorin, Y., Faff, B. M., Maalouf, R., Barnes, J. L., Block, K., et al. (2009). Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. Diabetes, 58(5), 1201–1211.PubMedCrossRef Eid, A. A., Gorin, Y., Faff, B. M., Maalouf, R., Barnes, J. L., Block, K., et al. (2009). Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. Diabetes, 58(5), 1201–1211.PubMedCrossRef
55.
Zurück zum Zitat Etoh, T., Inoguchi, T., Kakimoto, M., Sonoda, N., Kobayashi, K., Kuroda, J., et al. (2003). Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibility by interventive insulin treatment. Diabetologia, 46(10), 1428–1437.PubMedCrossRef Etoh, T., Inoguchi, T., Kakimoto, M., Sonoda, N., Kobayashi, K., Kuroda, J., et al. (2003). Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibility by interventive insulin treatment. Diabetologia, 46(10), 1428–1437.PubMedCrossRef
56.
Zurück zum Zitat Asaba, K., Tojo, A., Onozato, M. L., Goto, A., Quinn, M. T., Fujita, T., et al. (2005). Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney International, 67(5), 1890–1898.PubMedCrossRef Asaba, K., Tojo, A., Onozato, M. L., Goto, A., Quinn, M. T., Fujita, T., et al. (2005). Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney International, 67(5), 1890–1898.PubMedCrossRef
57.
Zurück zum Zitat Kitada, M., Koya, D., Sugimoto, T., Isono, M., Araki, S., Kashiwagi, A., et al. (2003). Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy. Diabetes, 52(10), 2603–2614.PubMedCrossRef Kitada, M., Koya, D., Sugimoto, T., Isono, M., Araki, S., Kashiwagi, A., et al. (2003). Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy. Diabetes, 52(10), 2603–2614.PubMedCrossRef
58.
Zurück zum Zitat Ohshiro, Y., Ma, R. C., Yasuda, Y., Hiraoka-Yamamoto, J., Clermont, A. C., Isshiki, K., et al. (2006). Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. Diabetes, 55(11), 3112–3120.PubMedCrossRef Ohshiro, Y., Ma, R. C., Yasuda, Y., Hiraoka-Yamamoto, J., Clermont, A. C., Isshiki, K., et al. (2006). Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. Diabetes, 55(11), 3112–3120.PubMedCrossRef
59.
Zurück zum Zitat Cai, W., Torreggiani, M., Zhu, L., Chen, X., He, J. C., Striker, G. E., et al. (2010). AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-delta: implications for vascular disease. American Journal of Physiology. Cell Physiology, 298(3), C624–C634.PubMedCrossRef Cai, W., Torreggiani, M., Zhu, L., Chen, X., He, J. C., Striker, G. E., et al. (2010). AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-delta: implications for vascular disease. American Journal of Physiology. Cell Physiology, 298(3), C624–C634.PubMedCrossRef
60.
Zurück zum Zitat Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of the American Society of Nephrology, 14(8 Suppl 3), S241–S245.PubMedCrossRef Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of the American Society of Nephrology, 14(8 Suppl 3), S241–S245.PubMedCrossRef
61.
Zurück zum Zitat Gorin, Y., Ricono, J. M., Kim, N. H., Bhandari, B., Choudhury, G. G., & Abboud, H. E. (2003). Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. American Journal of Physiology. Renal Physiology, 285(2), F219–F229.PubMed Gorin, Y., Ricono, J. M., Kim, N. H., Bhandari, B., Choudhury, G. G., & Abboud, H. E. (2003). Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. American Journal of Physiology. Renal Physiology, 285(2), F219–F229.PubMed
62.
Zurück zum Zitat Nava, M., Quiroz, Y., Vaziri, N., & Rodriguez-Iturbe, B. (2003). Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats. American Journal of Physiology. Renal Physiology, 284(3), F447–F454.PubMed Nava, M., Quiroz, Y., Vaziri, N., & Rodriguez-Iturbe, B. (2003). Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats. American Journal of Physiology. Renal Physiology, 284(3), F447–F454.PubMed
63.
Zurück zum Zitat Ha, H., Yu, M. R., Choi, Y. J., Kitamura, M., & Lee, H. B. (2002). Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. Journal of the American Society of Nephrology, 13(4), 894–902.PubMed Ha, H., Yu, M. R., Choi, Y. J., Kitamura, M., & Lee, H. B. (2002). Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. Journal of the American Society of Nephrology, 13(4), 894–902.PubMed
64.
Zurück zum Zitat Weigert, C., Sauer, U., Brodbeck, K., Pfeiffer, A., Häring, H. U., & Schleicher, E. D. (2000). AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-beta1 promoter in mesangial cells. Journal of the American Society of Nephrology, 11(11), 2007–2016.PubMed Weigert, C., Sauer, U., Brodbeck, K., Pfeiffer, A., Häring, H. U., & Schleicher, E. D. (2000). AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-beta1 promoter in mesangial cells. Journal of the American Society of Nephrology, 11(11), 2007–2016.PubMed
65.
Zurück zum Zitat Kim, N. H., Rincon-Choles, H., Bhandari, B., Choudhury, G. G., Abboud, H. E., & Gorin, Y. (2006). Redox dependence of glomerular epithelial cell hypertrophy in response to glucose. American Journal of Physiology. Renal Physiology, 290(3), F741–F751.PubMedCrossRef Kim, N. H., Rincon-Choles, H., Bhandari, B., Choudhury, G. G., Abboud, H. E., & Gorin, Y. (2006). Redox dependence of glomerular epithelial cell hypertrophy in response to glucose. American Journal of Physiology. Renal Physiology, 290(3), F741–F751.PubMedCrossRef
66.
Zurück zum Zitat Susztak, K., Raff, A. C., Schiffer, M., & Böttinger, E. P. (2006). Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes, 55(1), 225–233.PubMedCrossRef Susztak, K., Raff, A. C., Schiffer, M., & Böttinger, E. P. (2006). Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes, 55(1), 225–233.PubMedCrossRef
67.
Zurück zum Zitat Yau, J. W., Rogers, S. L., Kawasaki, R., Lamoureux, E. L., Kowalski, J. W., Bek, T., Wong, T. Y., & Meta-Analysis for Eye Disease (META-EYE) Study Group. (2012). Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 35(3), 556–564.PubMedCrossRef Yau, J. W., Rogers, S. L., Kawasaki, R., Lamoureux, E. L., Kowalski, J. W., Bek, T., Wong, T. Y., & Meta-Analysis for Eye Disease (META-EYE) Study Group. (2012). Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 35(3), 556–564.PubMedCrossRef
68.
Zurück zum Zitat Wilkinson, C. P., Ferris, F. L., 3rd, Klein, R. E., Lee, P. P., Agardh, C. D., Davis, M., et al. (2003). Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology, 110, 1677–1682.PubMedCrossRef Wilkinson, C. P., Ferris, F. L., 3rd, Klein, R. E., Lee, P. P., Agardh, C. D., Davis, M., et al. (2003). Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology, 110, 1677–1682.PubMedCrossRef
69.
Zurück zum Zitat Arden, G. B., & Sivaprasad, S. (2011). Hypoxia and oxidative stress in the causation of diabetic retinopathy. Current Diabetes Reviews, 7, 291–304.PubMed Arden, G. B., & Sivaprasad, S. (2011). Hypoxia and oxidative stress in the causation of diabetic retinopathy. Current Diabetes Reviews, 7, 291–304.PubMed
70.
Zurück zum Zitat Al-Shabrawey, M., Bartoli, M., El-Remessy, A. B., Ma, G., Matragoon, S., Lemtalsi, T., et al. (2008). Role of NADPH oxidase and Stat3 in statin-mediated protection against diabetic retinopathy. Investigative Ophthalmology and Visual Science, 49, 3231–3238.PubMedCrossRef Al-Shabrawey, M., Bartoli, M., El-Remessy, A. B., Ma, G., Matragoon, S., Lemtalsi, T., et al. (2008). Role of NADPH oxidase and Stat3 in statin-mediated protection against diabetic retinopathy. Investigative Ophthalmology and Visual Science, 49, 3231–3238.PubMedCrossRef
71.
Zurück zum Zitat Li, J., Wang, J. J., Yu, Q., Chen, K., Mahadev, K., & Zhang, S. X. (2010). Inhibition of reactive oxygen species by Lovastatin downregulates vascular endothelial growth factor expression and ameliorates blood–retinal barrier breakdown in db/db mice: role of NADPH oxidase 4. Diabetes, 59, 1528–1538.PubMedCrossRef Li, J., Wang, J. J., Yu, Q., Chen, K., Mahadev, K., & Zhang, S. X. (2010). Inhibition of reactive oxygen species by Lovastatin downregulates vascular endothelial growth factor expression and ameliorates blood–retinal barrier breakdown in db/db mice: role of NADPH oxidase 4. Diabetes, 59, 1528–1538.PubMedCrossRef
72.
Zurück zum Zitat Dvoriantchikova et al. (2012) Neuronal NAD(P)H oxidases contribute to ROS production and mediate RGC death after ischemia. Investigative Ophthalmology & Visual Science 53, 2823–2830. Dvoriantchikova et al. (2012) Neuronal NAD(P)H oxidases contribute to ROS production and mediate RGC death after ischemia. Investigative Ophthalmology & Visual Science 53, 2823–2830.
73.
Zurück zum Zitat Bhatt, L., Groeger, G., McDermott, K., & Cotter, T. G. (2010). Rod and cone photoreceptor cells produce ROS in response to stress in a live retinal explant system. Molecular Vision, 16, 283–293.PubMed Bhatt, L., Groeger, G., McDermott, K., & Cotter, T. G. (2010). Rod and cone photoreceptor cells produce ROS in response to stress in a live retinal explant system. Molecular Vision, 16, 283–293.PubMed
74.
Zurück zum Zitat Yokota, H., Narayanan, S. P., Zhang, W., Liu, H., Rojas, M., Xu, Z., et al. (2011). Neuroprotection from retinal ischemia/reperfusion injury by NOX2 NADPH oxidase deletion. Investigative Ophthalmology and Visual Science, 52(11), 8123–8131.PubMedCrossRef Yokota, H., Narayanan, S. P., Zhang, W., Liu, H., Rojas, M., Xu, Z., et al. (2011). Neuroprotection from retinal ischemia/reperfusion injury by NOX2 NADPH oxidase deletion. Investigative Ophthalmology and Visual Science, 52(11), 8123–8131.PubMedCrossRef
75.
Zurück zum Zitat Tang, J., & Kern, T. S. (2011). Inflammation in diabetic retinopathy. Progress in Retinal and Eye Research, 30, 343–358.PubMedCrossRef Tang, J., & Kern, T. S. (2011). Inflammation in diabetic retinopathy. Progress in Retinal and Eye Research, 30, 343–358.PubMedCrossRef
76.
Zurück zum Zitat Tarr, J. M., Ding, N., Kaul, K., Antonell, A., Perez-Jurado, L. A., & Chibber, R. (2012). Cellular crosstalk between TNF-alpha, NADPH oxidase, PKCbeta2, and C2GNT in human leukocytes. Cellular Signalling, 24, 873–878.PubMedCrossRef Tarr, J. M., Ding, N., Kaul, K., Antonell, A., Perez-Jurado, L. A., & Chibber, R. (2012). Cellular crosstalk between TNF-alpha, NADPH oxidase, PKCbeta2, and C2GNT in human leukocytes. Cellular Signalling, 24, 873–878.PubMedCrossRef
77.
Zurück zum Zitat Chen, P., Guo, A. M., Edwards, P. A., Trick, G., & Scicli, A. G. (2007). Role of NADPH oxidase and ANG II in diabetes-induced retinal leukostasis. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 293, R1619–R1629.PubMedCrossRef Chen, P., Guo, A. M., Edwards, P. A., Trick, G., & Scicli, A. G. (2007). Role of NADPH oxidase and ANG II in diabetes-induced retinal leukostasis. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 293, R1619–R1629.PubMedCrossRef
78.
Zurück zum Zitat Garrido-Urbani, S., Jemelin, S., Deffert, C., Carnesecchi, S., Basset, O., Szyndralewiez, C., et al. (2011). Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARalpha mediated mechanism. PLoS One, 6, e14665.PubMedCrossRef Garrido-Urbani, S., Jemelin, S., Deffert, C., Carnesecchi, S., Basset, O., Szyndralewiez, C., et al. (2011). Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARalpha mediated mechanism. PLoS One, 6, e14665.PubMedCrossRef
79.
Zurück zum Zitat Arbiser, J. L., Petros, J., Klafter, R., Govindajaran, B., McLaughlin, E. R., Brown, L. F., et al. (2002). Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 99, 715–720.PubMedCrossRef Arbiser, J. L., Petros, J., Klafter, R., Govindajaran, B., McLaughlin, E. R., Brown, L. F., et al. (2002). Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 99, 715–720.PubMedCrossRef
80.
Zurück zum Zitat Saito, Y., Geisen, P., Uppal, A., & Hartnett, M. E. (2007). Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity. Molecular Vision, 13, 840–853.PubMed Saito, Y., Geisen, P., Uppal, A., & Hartnett, M. E. (2007). Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity. Molecular Vision, 13, 840–853.PubMed
81.
Zurück zum Zitat Al-Shabrawey, M., Rojas, M., Sanders, T., Behzadian, A., El-Remessy, A., Bartoli, M., et al. (2008). Role of NADPH oxidase in retinal vascular inflammation. Investigative Ophthalmology and Visual Science, 49, 3239–3244.PubMedCrossRef Al-Shabrawey, M., Rojas, M., Sanders, T., Behzadian, A., El-Remessy, A., Bartoli, M., et al. (2008). Role of NADPH oxidase in retinal vascular inflammation. Investigative Ophthalmology and Visual Science, 49, 3239–3244.PubMedCrossRef
82.
Zurück zum Zitat Zhang, W., Rojas, M., Lilly, B., Tsai, N. T., Lemtalsi, T., Liou, G. I., et al. (2009). NAD(P)H oxidase-dependent regulation of CCL2 production during retinal inflammation. Investigative Ophthalmology and Visual Science, 50, 3033–3040.PubMedCrossRef Zhang, W., Rojas, M., Lilly, B., Tsai, N. T., Lemtalsi, T., Liou, G. I., et al. (2009). NAD(P)H oxidase-dependent regulation of CCL2 production during retinal inflammation. Investigative Ophthalmology and Visual Science, 50, 3033–3040.PubMedCrossRef
83.
Zurück zum Zitat Tawfik, A., Sanders, T., Kahook, K., AkeeL, S., Elmarakby, A., & Al-Shabrawey, M. (2009). Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. Investigative Ophthalmology and Visual Science, 50, 878–884.PubMedCrossRef Tawfik, A., Sanders, T., Kahook, K., AkeeL, S., Elmarakby, A., & Al-Shabrawey, M. (2009). Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. Investigative Ophthalmology and Visual Science, 50, 878–884.PubMedCrossRef
84.
Zurück zum Zitat Wilkinson-Berka, J. L., Heine, R., Tan, G., Cooper, M. E., Hatzopoulos, K. M., Fletcher, E. L., et al. (2010). RILLKKMPSV influences the vasculature, neurons and glia, and (pro)renin receptor expression in the retina. Hypertension, 55, 1454–1460.PubMedCrossRef Wilkinson-Berka, J. L., Heine, R., Tan, G., Cooper, M. E., Hatzopoulos, K. M., Fletcher, E. L., et al. (2010). RILLKKMPSV influences the vasculature, neurons and glia, and (pro)renin receptor expression in the retina. Hypertension, 55, 1454–1460.PubMedCrossRef
85.
Zurück zum Zitat Sarlos, S., & Wilkinson-Berka, J. L. (2005). The renin–angiotensin system and the developing retinal vasculature. Investigative Ophthalmology and Visual Science, 46, 1069–1077.PubMedCrossRef Sarlos, S., & Wilkinson-Berka, J. L. (2005). The renin–angiotensin system and the developing retinal vasculature. Investigative Ophthalmology and Visual Science, 46, 1069–1077.PubMedCrossRef
86.
Zurück zum Zitat Wilkinson-Berka, J. L. (2006). Angiotensin and diabetic retinopathy. The International Journal of Biochemistry & Cell Biology, 38, 752–765.CrossRef Wilkinson-Berka, J. L. (2006). Angiotensin and diabetic retinopathy. The International Journal of Biochemistry & Cell Biology, 38, 752–765.CrossRef
87.
Zurück zum Zitat Fukumoto, M., Takai, S., Ishizaki, E., Sugiyama, T., Oku, H., Jin, D., et al. (2008). Involvement of angiotensin II-dependent vascular endothelial growth factor gene expression via NADPH oxidase in the retina in a type 2 diabetic rat model. Current Eye Research, 33, 885–891.PubMedCrossRef Fukumoto, M., Takai, S., Ishizaki, E., Sugiyama, T., Oku, H., Jin, D., et al. (2008). Involvement of angiotensin II-dependent vascular endothelial growth factor gene expression via NADPH oxidase in the retina in a type 2 diabetic rat model. Current Eye Research, 33, 885–891.PubMedCrossRef
88.
Zurück zum Zitat Li, L., & Renier, G. (2006). Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Metabolism, 55, 1516–1523.PubMedCrossRef Li, L., & Renier, G. (2006). Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Metabolism, 55, 1516–1523.PubMedCrossRef
89.
Zurück zum Zitat Yamagishi, S., Nakamura, K., Matsui, T., Inagaki, Y., Takenaka, K., Jinnouchi, Y., et al. (2006). Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. Journal of Biological Chemistry, 281(29), 20213–20220.PubMedCrossRef Yamagishi, S., Nakamura, K., Matsui, T., Inagaki, Y., Takenaka, K., Jinnouchi, Y., et al. (2006). Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. Journal of Biological Chemistry, 281(29), 20213–20220.PubMedCrossRef
90.
Zurück zum Zitat Miller, A. G., Tan, G., Binger, K. J., Pickering, R. J., Thomas, M. C., Nagaraj, R. H., et al. (2010). Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function. Diabetes, 59, 3208–3215.PubMedCrossRef Miller, A. G., Tan, G., Binger, K. J., Pickering, R. J., Thomas, M. C., Nagaraj, R. H., et al. (2010). Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function. Diabetes, 59, 3208–3215.PubMedCrossRef
91.
Zurück zum Zitat Barry-Lane, P. A., Patterson, C., Van der Merwe, M., Hu, Z., Holland, S. M., Yeh, E. T. H., et al. (2001). p47phox is required for atherosclerotic lesion progression in ApoE−/− mice. Journal of Clinical Investigation, 108, 1513–1522.PubMed Barry-Lane, P. A., Patterson, C., Van der Merwe, M., Hu, Z., Holland, S. M., Yeh, E. T. H., et al. (2001). p47phox is required for atherosclerotic lesion progression in ApoE−/− mice. Journal of Clinical Investigation, 108, 1513–1522.PubMed
92.
Zurück zum Zitat Judkins, C. P., Diep, H., Broughton, B. R. S., Mast, A. E., Hooker, E. U., Miller, A. A., et al. (2010). Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. American Journal of Physiology—Heart and Circulatory Physiology, 298, H24–H32.PubMedCrossRef Judkins, C. P., Diep, H., Broughton, B. R. S., Mast, A. E., Hooker, E. U., Miller, A. A., et al. (2010). Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. American Journal of Physiology—Heart and Circulatory Physiology, 298, H24–H32.PubMedCrossRef
93.
Zurück zum Zitat Dikalova, A., Clempus, R., Lassegue, B., Cheng, G., Mccoy, J., Dikalov, S., et al. (2005). Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation, 112, 2668–2676.PubMedCrossRef Dikalova, A., Clempus, R., Lassegue, B., Cheng, G., Mccoy, J., Dikalov, S., et al. (2005). Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation, 112, 2668–2676.PubMedCrossRef
94.
Zurück zum Zitat Shimizu, H., Nakagawa, Y., Murakami, C., Aoki, N., Kim-Mitsuyama, S., & Miyazaki, H. (2010). Protein tyrosine phosphatase PTPepsilonM negatively regulates PDGF beta-receptor signaling induced by high glucose and PDGF in vascular smooth muscle cells. American Journal of Physiology. Cell Physiology, 299(5), C1144–C1145.PubMedCrossRef Shimizu, H., Nakagawa, Y., Murakami, C., Aoki, N., Kim-Mitsuyama, S., & Miyazaki, H. (2010). Protein tyrosine phosphatase PTPepsilonM negatively regulates PDGF beta-receptor signaling induced by high glucose and PDGF in vascular smooth muscle cells. American Journal of Physiology. Cell Physiology, 299(5), C1144–C1145.PubMedCrossRef
95.
Zurück zum Zitat Perrotta, I., Sciangula, A., Perrotta, E., Donato, G., & Cassese, M. (2011). Ultrastructural analysis and electron microscopic localization of Nox4 in healthy and atherosclerotic human aorta. Ultrastructural Pathology, 35(1), 1–6.PubMedCrossRef Perrotta, I., Sciangula, A., Perrotta, E., Donato, G., & Cassese, M. (2011). Ultrastructural analysis and electron microscopic localization of Nox4 in healthy and atherosclerotic human aorta. Ultrastructural Pathology, 35(1), 1–6.PubMedCrossRef
96.
Zurück zum Zitat Fenyo, I. M., Florea, I. C., Raicu, M., & Manea, A. (2011). Tyrphostin AG490 reduces NAPDH oxidase activity and expression in the aorta of hypercholesterolemic apolipoprotein E-deficient mice. Vascular Pharmacology, 54(3-6), 100–106.PubMedCrossRef Fenyo, I. M., Florea, I. C., Raicu, M., & Manea, A. (2011). Tyrphostin AG490 reduces NAPDH oxidase activity and expression in the aorta of hypercholesterolemic apolipoprotein E-deficient mice. Vascular Pharmacology, 54(3-6), 100–106.PubMedCrossRef
97.
Zurück zum Zitat Lassègue, B., & Griendling, K. K. (2010). NADPH oxidases: functions and pathologies in the vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 653–661.PubMedCrossRef Lassègue, B., & Griendling, K. K. (2010). NADPH oxidases: functions and pathologies in the vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 653–661.PubMedCrossRef
98.
Zurück zum Zitat Matsuno, K., Yamada, H., Iwata, K., Jin, D., Katsuyama, M., Matsuki, M., et al. (2005). Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation, 112, 2677–2685.PubMedCrossRef Matsuno, K., Yamada, H., Iwata, K., Jin, D., Katsuyama, M., Matsuki, M., et al. (2005). Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation, 112, 2677–2685.PubMedCrossRef
99.
Zurück zum Zitat Hart, B. A., Elferink, J. G., & Nibbering, P. H. (1992). Effect of apocynin on the induction of ulcerative lesions in rat skin injected with tubercle bacteria. International Journal of Immunopharmacology, 14(6), 953–961.PubMedCrossRef Hart, B. A., Elferink, J. G., & Nibbering, P. H. (1992). Effect of apocynin on the induction of ulcerative lesions in rat skin injected with tubercle bacteria. International Journal of Immunopharmacology, 14(6), 953–961.PubMedCrossRef
100.
Zurück zum Zitat Gatley, S. J., & Sherratt, H. A. S. (1976). The effects of diphenyleneiodonium on mitochondrial reactions. Relation of binding of diphenylene[125I]iodonium to mitochondria to the extent of inhibition of oxygen uptake. Biochemical Journal, 158, 307–315.PubMed Gatley, S. J., & Sherratt, H. A. S. (1976). The effects of diphenyleneiodonium on mitochondrial reactions. Relation of binding of diphenylene[125I]iodonium to mitochondria to the extent of inhibition of oxygen uptake. Biochemical Journal, 158, 307–315.PubMed
101.
Zurück zum Zitat Aldieri, E., Riganti, C., Polimeni, M., Gazzano, E., Lussiana, C., Campia, I., et al. (2008). Classical inhibitors of NOX NAD(P)H oxidases are not specific. Current Drug Metabolism, 9, 686–696.PubMedCrossRef Aldieri, E., Riganti, C., Polimeni, M., Gazzano, E., Lussiana, C., Campia, I., et al. (2008). Classical inhibitors of NOX NAD(P)H oxidases are not specific. Current Drug Metabolism, 9, 686–696.PubMedCrossRef
102.
Zurück zum Zitat Wind, S., Beuerlein, D., Eucker, T., Müller, H., Scheurer, P., Armitage, M. E., et al. (2010). Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. British Journal of Pharmacology, 161, 885–898.PubMedCrossRef Wind, S., Beuerlein, D., Eucker, T., Müller, H., Scheurer, P., Armitage, M. E., et al. (2010). Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. British Journal of Pharmacology, 161, 885–898.PubMedCrossRef
103.
Zurück zum Zitat Drummond, G. R., Selemidis, S., Griendling, K. K., & Sobey, C. G. (2011). Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nature Reviews. Drug Discovery, 10(6), 453–457.PubMedCrossRef Drummond, G. R., Selemidis, S., Griendling, K. K., & Sobey, C. G. (2011). Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nature Reviews. Drug Discovery, 10(6), 453–457.PubMedCrossRef
104.
Zurück zum Zitat Kim, J. A., Neupane, G. P., Lee, E. S., Jeong, B. S., Park, B. C., & Thapa, P. (2011). NADPH oxidase inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 21(8), 1147–1158.PubMedCrossRef Kim, J. A., Neupane, G. P., Lee, E. S., Jeong, B. S., Park, B. C., & Thapa, P. (2011). NADPH oxidase inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 21(8), 1147–1158.PubMedCrossRef
106.
Zurück zum Zitat Laleu, B., Gaggini, F., Orchard, M., Fioraso-Cartier, I., Cagnon, I., Houngninou-Molango, S., et al. (2010). First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. Journal of Medicinal Chemistry, 53, 7715–7730.PubMedCrossRef Laleu, B., Gaggini, F., Orchard, M., Fioraso-Cartier, I., Cagnon, I., Houngninou-Molango, S., et al. (2010). First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. Journal of Medicinal Chemistry, 53, 7715–7730.PubMedCrossRef
107.
Zurück zum Zitat Page, P., Orchard, M., Fioraso-Cartier, l., Mottironi, B. (2008). Pyrazolo pyridine derivatives as NADPH oxidase inhibitors, Patent WO 2008/113856 A1. Switzerland patent application. Page, P., Orchard, M., Fioraso-Cartier, l., Mottironi, B. (2008). Pyrazolo pyridine derivatives as NADPH oxidase inhibitors, Patent WO 2008/113856 A1. Switzerland patent application.
108.
Zurück zum Zitat Stielow, C., Catar, R. A., Muller, G., Wingler, K., Scheurer, P., Schmidt, H. H. H. W., et al. (2006). Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochemical and Biophysical Research Communications, 344, 200–205.PubMedCrossRef Stielow, C., Catar, R. A., Muller, G., Wingler, K., Scheurer, P., Schmidt, H. H. H. W., et al. (2006). Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochemical and Biophysical Research Communications, 344, 200–205.PubMedCrossRef
109.
Zurück zum Zitat Ten Freyhaus, H., Huntgeburth, M., Wingler, K., Schnitker, J., Bäumer, A. T., Vantler, M., et al. (2006). Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovascular Research, 71, 331–341.PubMedCrossRef Ten Freyhaus, H., Huntgeburth, M., Wingler, K., Schnitker, J., Bäumer, A. T., Vantler, M., et al. (2006). Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovascular Research, 71, 331–341.PubMedCrossRef
110.
Zurück zum Zitat Niethammer, P., Grabher, C., Look, A. T., & Mitchison, T. J. (2009). A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature, 459, 996–999.PubMedCrossRef Niethammer, P., Grabher, C., Look, A. T., & Mitchison, T. J. (2009). A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature, 459, 996–999.PubMedCrossRef
111.
Zurück zum Zitat Spychalowicz, A., Wilk, G., Sliwa, T., Ludew, D., Guzik, T.J. (2012). Novel therapeutic approaches in limiting oxidative stress and inflammation. Current Pharmaceutical Biotechnology. [Epub ahead of print]. Spychalowicz, A., Wilk, G., Sliwa, T., Ludew, D., Guzik, T.J. (2012). Novel therapeutic approaches in limiting oxidative stress and inflammation. Current Pharmaceutical Biotechnology. [Epub ahead of print].
112.
Zurück zum Zitat Bonner, M.Y., Arbiser, J.L., Targeting, N.A.D.P.H. (2012 May 13). oxidases for the treatment of cancer and inflammation. Cellular and Molecular Life Sciences. [Epub ahead of print]. Bonner, M.Y., Arbiser, J.L., Targeting, N.A.D.P.H. (2012 May 13). oxidases for the treatment of cancer and inflammation. Cellular and Molecular Life Sciences. [Epub ahead of print].
Metadaten
Titel
Oxidative Stress, Nox Isoforms and Complications of Diabetes—Potential Targets for Novel Therapies
verfasst von
Mona Sedeek
Augusto C. Montezano
Richard L. Hebert
Stephen P. Gray
Elyse Di Marco
Jay C. Jha
Mark E. Cooper
Karin Jandeleit-Dahm
Ernesto L. Schiffrin
Jennifer L. Wilkinson-Berka
Rhian M. Touyz
Publikationsdatum
01.08.2012
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 4/2012
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-012-9387-2

Weitere Artikel der Ausgabe 4/2012

Journal of Cardiovascular Translational Research 4/2012 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.