Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 4/2012

01.08.2012

Proteomics and Systems Biology for Understanding Diabetic Nephropathy

verfasst von: Jonathan M. Starkey, Ronald G. Tilton

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Abstract

Like many diseases, diabetic nephropathy is defined in a histopathological context and studied using reductionist approaches that attempt to ameliorate structural changes. Novel technologies in mass spectrometry-based proteomics have the ability to provide a deeper understanding of the disease beyond classical histopathology, redefine the characteristics of the disease state, and identify novel approaches to reduce renal failure. The goal is to translate these new definitions into improved patient outcomes through diagnostic, prognostic, and therapeutic tools. Here, we review progress made in studying the proteomics of diabetic nephropathy and provide an introduction to the informatics tools used in the analysis of systems biology data, while pointing out statistical issues for consideration. Novel bioinformatics methods may increase biomarker identification, and other tools, including selective reaction monitoring, may hasten clinical validation.
Literatur
1.
Zurück zum Zitat The Diabetes Control and Complications Trial Research Group (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The New England Journal of Medicine, 329, 977–986. The Diabetes Control and Complications Trial Research Group (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The New England Journal of Medicine, 329, 977–986.
2.
Zurück zum Zitat Welsh, G. I., Hale, L. J., Eremina, V., Jeansson, M., Maezawa, Y., Lennon, R., et al. (2010). Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metabolism, 12, 329–340.PubMed Welsh, G. I., Hale, L. J., Eremina, V., Jeansson, M., Maezawa, Y., Lennon, R., et al. (2010). Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metabolism, 12, 329–340.PubMed
3.
Zurück zum Zitat Oates, P. J., & Mylari, B. L. (1999). Aldose reductase inhibitors: therapeutic implications for diabetic complications. Expert Opinion on Investigational Drugs, 8, 2095–2119.PubMed Oates, P. J., & Mylari, B. L. (1999). Aldose reductase inhibitors: therapeutic implications for diabetic complications. Expert Opinion on Investigational Drugs, 8, 2095–2119.PubMed
4.
Zurück zum Zitat Brownlee, M., Cerami, A., & Vlassara, H. (1988). Advanced products of nonenzymatic glycosylation and the pathogenesis of diabetic vascular disease. Diabetes/Metabolism Reviews, 4, 437–451.PubMed Brownlee, M., Cerami, A., & Vlassara, H. (1988). Advanced products of nonenzymatic glycosylation and the pathogenesis of diabetic vascular disease. Diabetes/Metabolism Reviews, 4, 437–451.PubMed
5.
Zurück zum Zitat Bucala, R., & Vlassara, H. (1995). Advanced glycosylation end products in diabetic renal and vascular disease. American Journal of Kidney Diseases, 26, 875–888.PubMed Bucala, R., & Vlassara, H. (1995). Advanced glycosylation end products in diabetic renal and vascular disease. American Journal of Kidney Diseases, 26, 875–888.PubMed
6.
Zurück zum Zitat Singh, R., Barden, A., Mori, T., & Beilin, L. (2001). Advanced glycation end-products: a review. Diabetologia, 44, 129–146.PubMed Singh, R., Barden, A., Mori, T., & Beilin, L. (2001). Advanced glycation end-products: a review. Diabetologia, 44, 129–146.PubMed
7.
Zurück zum Zitat Schmidt, A. M., Hori, O., Chen, J. X., Li, J. F., Crandall, J., Zhang, J., et al. (1995). Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. Journal of Clinical Investigation, 96, 1395–1403.PubMed Schmidt, A. M., Hori, O., Chen, J. X., Li, J. F., Crandall, J., Zhang, J., et al. (1995). Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. Journal of Clinical Investigation, 96, 1395–1403.PubMed
8.
Zurück zum Zitat Bierhaus, A., Schiekofer, S., Schwaninger, M., Andrassy, M., Humpert, P. M., Chen, J., et al. (2001). Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes, 50, 2792–2808.PubMed Bierhaus, A., Schiekofer, S., Schwaninger, M., Andrassy, M., Humpert, P. M., Chen, J., et al. (2001). Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes, 50, 2792–2808.PubMed
9.
Zurück zum Zitat Craven, P. A., Studer, R. K., Negrete, H., & DeRubertis, F. R. (1995). Protein kinase C in diabetic nephropathy. Journal of Diabetes and its Complications, 9, 241–245.PubMed Craven, P. A., Studer, R. K., Negrete, H., & DeRubertis, F. R. (1995). Protein kinase C in diabetic nephropathy. Journal of Diabetes and its Complications, 9, 241–245.PubMed
10.
Zurück zum Zitat DeRubertis, F. R., & Craven, P. A. (1994). Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes, 43, 1–8.PubMed DeRubertis, F. R., & Craven, P. A. (1994). Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes, 43, 1–8.PubMed
11.
Zurück zum Zitat Koya, D., & King, G. L. (1998). Protein kinase C activation and the development of diabetic complications. Diabetes, 47, 859–866.PubMed Koya, D., & King, G. L. (1998). Protein kinase C activation and the development of diabetic complications. Diabetes, 47, 859–866.PubMed
12.
Zurück zum Zitat Baynes, J. W., & Thorpe, S. R. (1999). Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes, 48, 1–9.PubMed Baynes, J. W., & Thorpe, S. R. (1999). Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes, 48, 1–9.PubMed
13.
Zurück zum Zitat Szabo, C. (2005). Roles of poly(ADP-ribose) polymerase activation in the pathogenesis of diabetes mellitus and its complications. Pharmacological Research, 52, 60–71.PubMed Szabo, C. (2005). Roles of poly(ADP-ribose) polymerase activation in the pathogenesis of diabetes mellitus and its complications. Pharmacological Research, 52, 60–71.PubMed
14.
Zurück zum Zitat Harding, H. P., & Ron, D. (2002). Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes, 51(Suppl 3), S455–S461.PubMed Harding, H. P., & Ron, D. (2002). Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes, 51(Suppl 3), S455–S461.PubMed
15.
Zurück zum Zitat Araki, E., Oyadomari, S., & Mori, M. (2003). Endoplasmic reticulum stress and diabetes mellitus. Internal Medicine, 42, 7–14.PubMed Araki, E., Oyadomari, S., & Mori, M. (2003). Endoplasmic reticulum stress and diabetes mellitus. Internal Medicine, 42, 7–14.PubMed
16.
Zurück zum Zitat Wolf, G. (1998). Molecular mechanisms of angiotensin II in the kidney: emerging role in the progression of renal disease: beyond haemodynamics. Nephrology, Dialysis, Transplantation, 13, 1131–1142.PubMed Wolf, G. (1998). Molecular mechanisms of angiotensin II in the kidney: emerging role in the progression of renal disease: beyond haemodynamics. Nephrology, Dialysis, Transplantation, 13, 1131–1142.PubMed
17.
Zurück zum Zitat Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404, 787–790.PubMed Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404, 787–790.PubMed
18.
Zurück zum Zitat Hammes, H. P., Du, X., Edelstein, D., Taguchi, T., Matsumura, T., Ju, Q., et al. (2003). Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nature Medicine, 9, 294–299.PubMed Hammes, H. P., Du, X., Edelstein, D., Taguchi, T., Matsumura, T., Ju, Q., et al. (2003). Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nature Medicine, 9, 294–299.PubMed
19.
Zurück zum Zitat Williamson, J. R., Chang, K., Frangos, M., Hasan, K. S., Ido, Y., Kawamura, T., et al. (1993). Hyperglycemic pseudohypoxia and diabetic complications. Diabetes, 42, 801–813.PubMed Williamson, J. R., Chang, K., Frangos, M., Hasan, K. S., Ido, Y., Kawamura, T., et al. (1993). Hyperglycemic pseudohypoxia and diabetic complications. Diabetes, 42, 801–813.PubMed
20.
Zurück zum Zitat Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422, 198–207.PubMed Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422, 198–207.PubMed
21.
Zurück zum Zitat Domon, B., & Aebersold, R. (2006). Mass spectrometry and protein analysis. Science, 312, 212–217.PubMed Domon, B., & Aebersold, R. (2006). Mass spectrometry and protein analysis. Science, 312, 212–217.PubMed
22.
Zurück zum Zitat Cox, J., & Mann, M. (2011). Quantitative, high-resolution proteomics for data-driven systems biology. Annual Review of Biochemistry, 80, 273–299.PubMed Cox, J., & Mann, M. (2011). Quantitative, high-resolution proteomics for data-driven systems biology. Annual Review of Biochemistry, 80, 273–299.PubMed
23.
Zurück zum Zitat Schordan, S., Schordan, E., Endlich, N., Lindenmeyer, M. T., Meyer-Schwesinger, C., Meyer, T. N., et al. (2009). Alterations of the podocyte proteome in response to high glucose concentrations. Proteomics, 9, 4519–4528.PubMed Schordan, S., Schordan, E., Endlich, N., Lindenmeyer, M. T., Meyer-Schwesinger, C., Meyer, T. N., et al. (2009). Alterations of the podocyte proteome in response to high glucose concentrations. Proteomics, 9, 4519–4528.PubMed
24.
Zurück zum Zitat Li, Z., Zhang, H., Dong, X., Burczynski, F. J., Choy, P., Yang, F., et al. (2010). Proteomic profile of primary isolated rat mesangial cells in high-glucose culture condition and decreased expression of PSMA6 in renal cortex of diabetic rats. Biochemical Cell Biology, 88, 635–648. Li, Z., Zhang, H., Dong, X., Burczynski, F. J., Choy, P., Yang, F., et al. (2010). Proteomic profile of primary isolated rat mesangial cells in high-glucose culture condition and decreased expression of PSMA6 in renal cortex of diabetic rats. Biochemical Cell Biology, 88, 635–648.
25.
Zurück zum Zitat Tilton, R. G., Haidacher, S. J., LeJeune, W. S., Zhao, Y., Kurosky, A., Brasier, A. R., et al. (2007). Diabetes-induced changes in the renal cortical proteome assessed with two-dimensional gel electrophoresis and mass spectrometry. Proteomics, 7, 1729–1742.PubMed Tilton, R. G., Haidacher, S. J., LeJeune, W. S., Zhao, Y., Kurosky, A., Brasier, A. R., et al. (2007). Diabetes-induced changes in the renal cortical proteome assessed with two-dimensional gel electrophoresis and mass spectrometry. Proteomics, 7, 1729–1742.PubMed
26.
Zurück zum Zitat Zhang, D., Yang, H., Kong, X., Wang, K., Mao, X., Yan, X., et al. (2011). Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes. American Journal of Physiology. Endocrinology and Metabolism, 300, E287–E295.PubMed Zhang, D., Yang, H., Kong, X., Wang, K., Mao, X., Yan, X., et al. (2011). Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes. American Journal of Physiology. Endocrinology and Metabolism, 300, E287–E295.PubMed
27.
Zurück zum Zitat Thongboonkerd, V., Barati, M. T., McLeish, K. R., Benarafa, C., Remold-O'Donnell, E., Zheng, S., et al. (2004). Alterations in the renal elastin-elastase system in type 1 diabetic nephropathy identified by proteomic analysis. Journal of the American Society of Nephrology, 15, 650–662.PubMed Thongboonkerd, V., Barati, M. T., McLeish, K. R., Benarafa, C., Remold-O'Donnell, E., Zheng, S., et al. (2004). Alterations in the renal elastin-elastase system in type 1 diabetic nephropathy identified by proteomic analysis. Journal of the American Society of Nephrology, 15, 650–662.PubMed
28.
Zurück zum Zitat Miyamoto, M., Yoshida, Y., Taguchi, I., Nagasaka, Y., Tasaki, M., Zhang, Y., et al. (2007). In-depth proteomic profiling of the normal human kidney glomerulus using two-dimensional protein prefractionation in combination with liquid chromatography-tandem mass spectrometry. Journal of Proteome Research, 6, 3680–3690.PubMed Miyamoto, M., Yoshida, Y., Taguchi, I., Nagasaka, Y., Tasaki, M., Zhang, Y., et al. (2007). In-depth proteomic profiling of the normal human kidney glomerulus using two-dimensional protein prefractionation in combination with liquid chromatography-tandem mass spectrometry. Journal of Proteome Research, 6, 3680–3690.PubMed
29.
Zurück zum Zitat Almeida, J. S., Stanislaus, R., Krug, E., & Arthur, J. M. (2005). Normalization and analysis of residual variation in two-dimensional gel electrophoresis for quantitative differential proteomics. Proteomics, 5, 1242–1249.PubMed Almeida, J. S., Stanislaus, R., Krug, E., & Arthur, J. M. (2005). Normalization and analysis of residual variation in two-dimensional gel electrophoresis for quantitative differential proteomics. Proteomics, 5, 1242–1249.PubMed
30.
Zurück zum Zitat Merril, C. R., Creed, G. J., Joy, J., & Olson, A. D. (1993). Identification and use of constitutive proteins for the normalization of high resolution electrophoretograms. Applied and Theoretical Electrophoresis, 3, 329–333.PubMed Merril, C. R., Creed, G. J., Joy, J., & Olson, A. D. (1993). Identification and use of constitutive proteins for the normalization of high resolution electrophoretograms. Applied and Theoretical Electrophoresis, 3, 329–333.PubMed
31.
Zurück zum Zitat Nishihara, J. C., & Champion, K. M. (2002). Quantitative evaluation of proteins in one- and two-dimensional polyacrylamide gels using a fluorescent stain. Electrophoresis, 23, 2203–2215.PubMed Nishihara, J. C., & Champion, K. M. (2002). Quantitative evaluation of proteins in one- and two-dimensional polyacrylamide gels using a fluorescent stain. Electrophoresis, 23, 2203–2215.PubMed
32.
Zurück zum Zitat Molloy, M. P., Herbert, B. R., Walsh, B. J., Tyler, M. I., Traini, M., Sanchez, J. C., et al. (1998). Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis, 19, 837–844.PubMed Molloy, M. P., Herbert, B. R., Walsh, B. J., Tyler, M. I., Traini, M., Sanchez, J. C., et al. (1998). Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis, 19, 837–844.PubMed
33.
Zurück zum Zitat Marouga, R., David, S., & Hawkins, E. (2005). The development of the DIGE system: 2D fluorescence difference gel analysis technology. Analytical and Bioanalytical Chemistry, 382, 669–678.PubMed Marouga, R., David, S., & Hawkins, E. (2005). The development of the DIGE system: 2D fluorescence difference gel analysis technology. Analytical and Bioanalytical Chemistry, 382, 669–678.PubMed
34.
Zurück zum Zitat Friedman, D. B., & Lilley, K. S. (2008). Optimizing the difference gel electrophoresis (DIGE) technology. Methods in Molecular Biology, 428, 93–124.PubMed Friedman, D. B., & Lilley, K. S. (2008). Optimizing the difference gel electrophoresis (DIGE) technology. Methods in Molecular Biology, 428, 93–124.PubMed
35.
Zurück zum Zitat Tao, W. A., & Aebersold, R. (2003). Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Current Opinion in Biotechnology, 14, 110–118.PubMed Tao, W. A., & Aebersold, R. (2003). Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Current Opinion in Biotechnology, 14, 110–118.PubMed
36.
Zurück zum Zitat Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., & Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology, 17, 994–999.PubMed Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., & Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology, 17, 994–999.PubMed
37.
Zurück zum Zitat Heller, M., Mattou, H., Menzel, C., & Yao, X. (2003). Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers. Journal of the American Society for Mass Spectrometry, 14, 704–718.PubMed Heller, M., Mattou, H., Menzel, C., & Yao, X. (2003). Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers. Journal of the American Society for Mass Spectrometry, 14, 704–718.PubMed
38.
Zurück zum Zitat Kostiainen, R., Kotiaho, T., Kuuranne, T., & Auriola, S. (2003). Liquid chromatography/atmospheric pressure ionization-mass spectrometry in drug metabolism studies. Journal of Mass Spectrometry, 38, 357–372.PubMed Kostiainen, R., Kotiaho, T., Kuuranne, T., & Auriola, S. (2003). Liquid chromatography/atmospheric pressure ionization-mass spectrometry in drug metabolism studies. Journal of Mass Spectrometry, 38, 357–372.PubMed
39.
Zurück zum Zitat Yost, R. A., & Enke, C. G. (1979). Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Analytical Chemistry, 51, 1251–1264.PubMed Yost, R. A., & Enke, C. G. (1979). Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Analytical Chemistry, 51, 1251–1264.PubMed
40.
Zurück zum Zitat Gallien, S., Duriez, E., & Domon, B. (2011). Selected reaction monitoring applied to proteomics. Journal of Mass Spectrometry, 46, 298–312.PubMed Gallien, S., Duriez, E., & Domon, B. (2011). Selected reaction monitoring applied to proteomics. Journal of Mass Spectrometry, 46, 298–312.PubMed
41.
Zurück zum Zitat Lange, V., Picotti, P., Domon, B., & Aebersold, R. (2008). Selected reaction monitoring for quantitative proteomics: a tutorial. Molecular Systems Biology, 4, 222.PubMed Lange, V., Picotti, P., Domon, B., & Aebersold, R. (2008). Selected reaction monitoring for quantitative proteomics: a tutorial. Molecular Systems Biology, 4, 222.PubMed
42.
Zurück zum Zitat Cutillas, P. R., Biber, J., Marks, J., Jacob, R., Stieger, B., Cramer, R., et al. (2005). Proteomic analysis of plasma membrane vesicles isolated from the rat renal cortex. Proteomics, 5, 101–112.PubMed Cutillas, P. R., Biber, J., Marks, J., Jacob, R., Stieger, B., Cramer, R., et al. (2005). Proteomic analysis of plasma membrane vesicles isolated from the rat renal cortex. Proteomics, 5, 101–112.PubMed
43.
Zurück zum Zitat Magni, F., Sarto, C., Valsecchi, C., Casellato, S., Bogetto, S. F., Bosari, S., et al. (2005). Expanding the proteome two-dimensional gel electrophoresis reference map of human renal cortex by peptide mass fingerprinting. Proteomics, 5, 816–825.PubMed Magni, F., Sarto, C., Valsecchi, C., Casellato, S., Bogetto, S. F., Bosari, S., et al. (2005). Expanding the proteome two-dimensional gel electrophoresis reference map of human renal cortex by peptide mass fingerprinting. Proteomics, 5, 816–825.PubMed
44.
Zurück zum Zitat Yoshida, Y., Miyazaki, K., Kamiie, J., Sato, M., Okuizumi, S., Kenmochi, A., et al. (2005). Two-dimensional electrophoretic profiling of normal human kidney glomerulus proteome and construction of an extensible markup language (XML)-based database. Proteomics, 5, 1083–1096.PubMed Yoshida, Y., Miyazaki, K., Kamiie, J., Sato, M., Okuizumi, S., Kenmochi, A., et al. (2005). Two-dimensional electrophoretic profiling of normal human kidney glomerulus proteome and construction of an extensible markup language (XML)-based database. Proteomics, 5, 1083–1096.PubMed
45.
Zurück zum Zitat Barile, M., Pisitkun, T., Yu, M. J., Chou, C. L., Verbalis, M. J., Shen, R. F., et al. (2005). Large scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Molecular & Cellular Proteomics, 4, 1095–1106. Barile, M., Pisitkun, T., Yu, M. J., Chou, C. L., Verbalis, M. J., Shen, R. F., et al. (2005). Large scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Molecular & Cellular Proteomics, 4, 1095–1106.
46.
Zurück zum Zitat Dihazi, H., Asif, A. R., Agarwal, N. K., Doncheva, Y., & Muller, G. A. (2005). Proteomic analysis of cellular response to osmotic stress in thick ascending limb of Henle's loop (TALH) cells. Molecular & Cellular Proteomics, 4, 1445–1458. Dihazi, H., Asif, A. R., Agarwal, N. K., Doncheva, Y., & Muller, G. A. (2005). Proteomic analysis of cellular response to osmotic stress in thick ascending limb of Henle's loop (TALH) cells. Molecular & Cellular Proteomics, 4, 1445–1458.
47.
Zurück zum Zitat Pieper, R., Gatlin, C. L., McGrath, A. M., Makusky, A. J., Mondal, M., Seonarain, M., et al. (2004). Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics, 4, 1159–1174.PubMed Pieper, R., Gatlin, C. L., McGrath, A. M., Makusky, A. J., Mondal, M., Seonarain, M., et al. (2004). Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics, 4, 1159–1174.PubMed
48.
Zurück zum Zitat Oh, J., Pyo, J. H., Jo, E. H., Hwang, S. I., Kang, S. C., Jung, J. H., et al. (2004). Establishment of a near-standard two-dimensional human urine proteomic map. Proteomics, 4, 3485–3497.PubMed Oh, J., Pyo, J. H., Jo, E. H., Hwang, S. I., Kang, S. C., Jung, J. H., et al. (2004). Establishment of a near-standard two-dimensional human urine proteomic map. Proteomics, 4, 3485–3497.PubMed
49.
Zurück zum Zitat Thongboonkerd, V., McLeish, K. R., Arthur, J. M., & Klein, J. B. (2002). Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney International, 62, 1461–1469.PubMed Thongboonkerd, V., McLeish, K. R., Arthur, J. M., & Klein, J. B. (2002). Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney International, 62, 1461–1469.PubMed
50.
Zurück zum Zitat Castagna, A., Cecconi, D., Sennels, L., Rappsilber, J., Guerrier, L., Fortis, F., et al. (2005). Exploring the hidden human urinary proteome via ligand library beads. Journal of Proteome Research, 4, 1917–1930.PubMed Castagna, A., Cecconi, D., Sennels, L., Rappsilber, J., Guerrier, L., Fortis, F., et al. (2005). Exploring the hidden human urinary proteome via ligand library beads. Journal of Proteome Research, 4, 1917–1930.PubMed
51.
Zurück zum Zitat Adachi, J., Kumar, C., Zhang, Y., Olsen, J. V., & Mann, M. (2006). The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biology, 7, R80.PubMed Adachi, J., Kumar, C., Zhang, Y., Olsen, J. V., & Mann, M. (2006). The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biology, 7, R80.PubMed
52.
Zurück zum Zitat Hewitt, S. M., Dear, J., & Star, R. A. (2004). Discovery of protein biomarkers for renal diseases. Journal of the American Society of Nephrology, 15, 1677–1689.PubMed Hewitt, S. M., Dear, J., & Star, R. A. (2004). Discovery of protein biomarkers for renal diseases. Journal of the American Society of Nephrology, 15, 1677–1689.PubMed
53.
Zurück zum Zitat He, J. C., Chuang, P. Y., Ma'ayan, A., & Iyengar, R. (2012). Systems biology of kidney diseases. Kidney International, 81, 22–39.PubMed He, J. C., Chuang, P. Y., Ma'ayan, A., & Iyengar, R. (2012). Systems biology of kidney diseases. Kidney International, 81, 22–39.PubMed
54.
Zurück zum Zitat Barati, M. T., Merchant, M. L., Kain, A. B., Jevans, A. W., McLeish, K. R., & Klein, J. B. (2007). Proteomic analysis defines altered cellular redox pathways and advanced glycation end-product metabolism in glomeruli of db/db diabetic mice. American Journal of Physiology. Renal Physiology, 293, F1157–F1165.PubMed Barati, M. T., Merchant, M. L., Kain, A. B., Jevans, A. W., McLeish, K. R., & Klein, J. B. (2007). Proteomic analysis defines altered cellular redox pathways and advanced glycation end-product metabolism in glomeruli of db/db diabetic mice. American Journal of Physiology. Renal Physiology, 293, F1157–F1165.PubMed
55.
Zurück zum Zitat Thongboonkerd, V., Zheng, S., McLeish, K. R., Epstein, P. N., & Klein, J. B. (2005). Proteomic identification and immunolocalization of increased renal calbindin-D28k expression in OVE26 diabetic mice. The Review of Diabetic Studies, 2, 19–26.PubMed Thongboonkerd, V., Zheng, S., McLeish, K. R., Epstein, P. N., & Klein, J. B. (2005). Proteomic identification and immunolocalization of increased renal calbindin-D28k expression in OVE26 diabetic mice. The Review of Diabetic Studies, 2, 19–26.PubMed
56.
Zurück zum Zitat Cummins, T. D., Barati, M. T., Coventry, S. C., Salyer, S. A., Klein, J. B., & Powell, D. W. (2010). Quantitative mass spectrometry of diabetic kidney tubules identifies GRAP as a novel regulator of TGF-beta signaling. Biochimica et Biophysica Acta, 1804, 653–661.PubMed Cummins, T. D., Barati, M. T., Coventry, S. C., Salyer, S. A., Klein, J. B., & Powell, D. W. (2010). Quantitative mass spectrometry of diabetic kidney tubules identifies GRAP as a novel regulator of TGF-beta signaling. Biochimica et Biophysica Acta, 1804, 653–661.PubMed
57.
Zurück zum Zitat Chougale, A. D., Bhat, S. P., Bhujbal, S. V., Zambare, M. R., Puntambekar, S., Somani, R. S., et al. (2012). Proteomic analysis of glycated proteins from streptozotocin-induced diabetic rat kidney. Molecular Biotechnology, 50, 28–38.PubMed Chougale, A. D., Bhat, S. P., Bhujbal, S. V., Zambare, M. R., Puntambekar, S., Somani, R. S., et al. (2012). Proteomic analysis of glycated proteins from streptozotocin-induced diabetic rat kidney. Molecular Biotechnology, 50, 28–38.PubMed
58.
Zurück zum Zitat Sharma, K., Lee, S., Han, S., Lee, S., Francos, B., McCue, P., et al. (2005). Two-dimensional fluorescence difference gel electrophoresis analysis of the urine proteome in human diabetic nephropathy. Proteomics, 5, 2648–2655.PubMed Sharma, K., Lee, S., Han, S., Lee, S., Francos, B., McCue, P., et al. (2005). Two-dimensional fluorescence difference gel electrophoresis analysis of the urine proteome in human diabetic nephropathy. Proteomics, 5, 2648–2655.PubMed
59.
Zurück zum Zitat Meier, M., Kaiser, T., Herrmann, A., Knueppel, S., Hillmann, M., Koester, P., et al. (2005). Identification of urinary protein pattern in type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis. Journal of Diabetes and its Complications, 19, 223–232.PubMed Meier, M., Kaiser, T., Herrmann, A., Knueppel, S., Hillmann, M., Koester, P., et al. (2005). Identification of urinary protein pattern in type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis. Journal of Diabetes and its Complications, 19, 223–232.PubMed
60.
Zurück zum Zitat Dihazi, H., Muller, G. A., Lindner, S., Meyer, M., Asif, A. R., Oellerich, M., et al. (2007). Characterization of diabetic nephropathy by urinary proteomic analysis: identification of a processed ubiquitin form as a differentially excreted protein in diabetic nephropathy patients. Clinical Chemistry, 53, 1636–1645.PubMed Dihazi, H., Muller, G. A., Lindner, S., Meyer, M., Asif, A. R., Oellerich, M., et al. (2007). Characterization of diabetic nephropathy by urinary proteomic analysis: identification of a processed ubiquitin form as a differentially excreted protein in diabetic nephropathy patients. Clinical Chemistry, 53, 1636–1645.PubMed
61.
Zurück zum Zitat Rossing, K., Mischak, H., Rossing, P., Schanstra, J. P., Wiseman, A., & Maahs, D. M. (2008). The urinary proteome in diabetes and diabetes-associated complications: New ways to assess disease progression and evaluate therapy. Proteomics. Clinical Applications, 2, 997–1007.PubMed Rossing, K., Mischak, H., Rossing, P., Schanstra, J. P., Wiseman, A., & Maahs, D. M. (2008). The urinary proteome in diabetes and diabetes-associated complications: New ways to assess disease progression and evaluate therapy. Proteomics. Clinical Applications, 2, 997–1007.PubMed
62.
Zurück zum Zitat Wolkow, P. P., Niewczas, M. A., Perkins, B., Ficociello, L. H., Lipinski, B., Warram, J. H., et al. (2008). Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. Journal of the American Society of Nephrology, 19, 789–797.PubMed Wolkow, P. P., Niewczas, M. A., Perkins, B., Ficociello, L. H., Lipinski, B., Warram, J. H., et al. (2008). Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. Journal of the American Society of Nephrology, 19, 789–797.PubMed
63.
Zurück zum Zitat Otu, H. H., Can, H., Spentzos, D., Nelson, R. G., Hanson, R. L., Looker, H. C., et al. (2007). Prediction of diabetic nephropathy using urine proteomic profiling 10 years prior to development of nephropathy. Diabetes Care, 30, 638–643.PubMed Otu, H. H., Can, H., Spentzos, D., Nelson, R. G., Hanson, R. L., Looker, H. C., et al. (2007). Prediction of diabetic nephropathy using urine proteomic profiling 10 years prior to development of nephropathy. Diabetes Care, 30, 638–643.PubMed
64.
Zurück zum Zitat Rao, P. V., Lu, X., Standley, M., Pattee, P., Neelima, G., Girisesh, G., et al. (2007). Proteomic identification of urinary biomarkers of diabetic nephropathy. Diabetes Care, 30, 629–637.PubMed Rao, P. V., Lu, X., Standley, M., Pattee, P., Neelima, G., Girisesh, G., et al. (2007). Proteomic identification of urinary biomarkers of diabetic nephropathy. Diabetes Care, 30, 629–637.PubMed
65.
Zurück zum Zitat Jiang, H., Guan, G., Zhang, R., Liu, G., Cheng, J., Hou, X., et al. (2009). Identification of urinary soluble E-cadherin as a novel biomarker for diabetic nephropathy. Diabetes/Metabolism Research and Reviews, 25, 232–241.PubMed Jiang, H., Guan, G., Zhang, R., Liu, G., Cheng, J., Hou, X., et al. (2009). Identification of urinary soluble E-cadherin as a novel biomarker for diabetic nephropathy. Diabetes/Metabolism Research and Reviews, 25, 232–241.PubMed
66.
Zurück zum Zitat Papale, M., Di, P. S., Magistroni, R., Lamacchia, O., Di Palma, A. M., De, M. A., et al. (2010). Urine proteome analysis may allow noninvasive differential diagnosis of diabetic nephropathy. Diabetes Care, 33, 2409–2415.PubMed Papale, M., Di, P. S., Magistroni, R., Lamacchia, O., Di Palma, A. M., De, M. A., et al. (2010). Urine proteome analysis may allow noninvasive differential diagnosis of diabetic nephropathy. Diabetes Care, 33, 2409–2415.PubMed
67.
Zurück zum Zitat Ben, A. R., Molina, L., Bolvin, C., Kifagi, C., Jarraya, F., Ayadi, H., et al. (2010). Proteomic approaches for discovering biomarkers of diabetic nephropathy. Nephrology, Dialysis, Transplantation, 25, 2866–2875. Ben, A. R., Molina, L., Bolvin, C., Kifagi, C., Jarraya, F., Ayadi, H., et al. (2010). Proteomic approaches for discovering biomarkers of diabetic nephropathy. Nephrology, Dialysis, Transplantation, 25, 2866–2875.
68.
Zurück zum Zitat Zhi, W., Purohit, S., Carey, C., Wang, M., & She, J. X. (2010). Proteomic technologies for the discovery of type 1 diabetes biomarkers. Journal of Diabetes Science and Technology, 4, 993–1002.PubMed Zhi, W., Purohit, S., Carey, C., Wang, M., & She, J. X. (2010). Proteomic technologies for the discovery of type 1 diabetes biomarkers. Journal of Diabetes Science and Technology, 4, 993–1002.PubMed
69.
Zurück zum Zitat Alkhalaf, A., Zurbig, P., Bakker, S. J., Bilo, H. J., Cerna, M., Fischer, C., et al. (2010). Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy. PLoS One, 5, e13421.PubMed Alkhalaf, A., Zurbig, P., Bakker, S. J., Bilo, H. J., Cerna, M., Fischer, C., et al. (2010). Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy. PLoS One, 5, e13421.PubMed
70.
Zurück zum Zitat Maahs, D. M., Siwy, J., Argiles, A., Cerna, M., Delles, C., Dominiczak, A. F., et al. (2010). Urinary collagen fragments are significantly altered in diabetes: a link to pathophysiology. PLoS One, 5, e13051.PubMed Maahs, D. M., Siwy, J., Argiles, A., Cerna, M., Delles, C., Dominiczak, A. F., et al. (2010). Urinary collagen fragments are significantly altered in diabetes: a link to pathophysiology. PLoS One, 5, e13051.PubMed
71.
Zurück zum Zitat Parving, H. H., Oxenboll, B., Svendsen, P. A., Christiansen, J. S., & Andersen, A. R. (1982). Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh), 100, 550–555. Parving, H. H., Oxenboll, B., Svendsen, P. A., Christiansen, J. S., & Andersen, A. R. (1982). Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh), 100, 550–555.
72.
Zurück zum Zitat Viberti, G. C., Jarrett, R. J., & Keen, H. (1982). Microalbuminuria as prediction of nephropathy in diabetics. Lancet, 2, 611.PubMed Viberti, G. C., Jarrett, R. J., & Keen, H. (1982). Microalbuminuria as prediction of nephropathy in diabetics. Lancet, 2, 611.PubMed
73.
Zurück zum Zitat Mogensen, C. E., & Christensen, C. K. (1984). Predicting diabetic nephropathy in insulin-dependent patients. The New England Journal of Medicine, 311, 89–93.PubMed Mogensen, C. E., & Christensen, C. K. (1984). Predicting diabetic nephropathy in insulin-dependent patients. The New England Journal of Medicine, 311, 89–93.PubMed
74.
Zurück zum Zitat Mogensen, C. E. (1984). Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. The New England Journal of Medicine, 310, 356–360.PubMed Mogensen, C. E. (1984). Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. The New England Journal of Medicine, 310, 356–360.PubMed
75.
Zurück zum Zitat Weir, M. R., & Bakris, G. L. (2010). Editorial perspective. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? American Journal of Nephrology, 31, 469–470.PubMed Weir, M. R., & Bakris, G. L. (2010). Editorial perspective. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? American Journal of Nephrology, 31, 469–470.PubMed
76.
Zurück zum Zitat Lambers Heerspink, H. J., & de Zeeuw, D. (2010). Debate: PRO position. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? American Journal of Nephrology, 31, 458–461.PubMed Lambers Heerspink, H. J., & de Zeeuw, D. (2010). Debate: PRO position. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? American Journal of Nephrology, 31, 458–461.PubMed
77.
Zurück zum Zitat Glassock, R. J. (2010). Debate: CON position. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? American Journal of Nephrology, 31, 462–465.PubMed Glassock, R. J. (2010). Debate: CON position. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? American Journal of Nephrology, 31, 462–465.PubMed
78.
Zurück zum Zitat Perkins, B. A., Ficociello, L. H., Silva, K. H., Finkelstein, D. M., Warram, J. H., & Krolewski, A. S. (2003). Regression of microalbuminuria in type 1 diabetes. The New England Journal of Medicine, 348, 2285–2293.PubMed Perkins, B. A., Ficociello, L. H., Silva, K. H., Finkelstein, D. M., Warram, J. H., & Krolewski, A. S. (2003). Regression of microalbuminuria in type 1 diabetes. The New England Journal of Medicine, 348, 2285–2293.PubMed
79.
Zurück zum Zitat Perkins, B. A., Ficociello, L. H., Ostrander, B. E., Silva, K. H., Weinberg, J., Warram, J. H., et al. (2007). Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. Journal of the American Society of Nephrology, 18, 1353–1361.PubMed Perkins, B. A., Ficociello, L. H., Ostrander, B. E., Silva, K. H., Weinberg, J., Warram, J. H., et al. (2007). Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. Journal of the American Society of Nephrology, 18, 1353–1361.PubMed
80.
Zurück zum Zitat Thongboonkerd, V., Songtawee, N., & Sritippayawan, S. (2007). Urinary proteome profiling using microfluidic technology on a chip. Journal of Proteome Research, 6, 2011–2018.PubMed Thongboonkerd, V., Songtawee, N., & Sritippayawan, S. (2007). Urinary proteome profiling using microfluidic technology on a chip. Journal of Proteome Research, 6, 2011–2018.PubMed
81.
Zurück zum Zitat Thongboonkerd, V. (2007). Recent progress in urinary proteomics. Proteomics. Clinical Applications, 1, 780–791.PubMed Thongboonkerd, V. (2007). Recent progress in urinary proteomics. Proteomics. Clinical Applications, 1, 780–791.PubMed
82.
Zurück zum Zitat Coon, J. J., Ueberheide, B., Syka, J. E., Dryhurst, D. D., Ausio, J., Shabanowitz, J., et al. (2005). Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 102, 9463–9468.PubMed Coon, J. J., Ueberheide, B., Syka, J. E., Dryhurst, D. D., Ausio, J., Shabanowitz, J., et al. (2005). Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 102, 9463–9468.PubMed
83.
Zurück zum Zitat Zerefos, P., Prados, J., Kossida, S., Kalousis, A., & Vlahou, A. (2007). Sample preparation and bioinformatics in MALDI profiling of urinary proteins. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 853, 20–30.PubMed Zerefos, P., Prados, J., Kossida, S., Kalousis, A., & Vlahou, A. (2007). Sample preparation and bioinformatics in MALDI profiling of urinary proteins. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 853, 20–30.PubMed
84.
Zurück zum Zitat Zerefos, P. G., Vougas, K., Dimitraki, P., Kossida, S., Petrolekas, A., Stravodimos, K., et al. (2006). Characterization of the human urine proteome by preparative electrophoresis in combination with 2-DE. Proteomics, 6, 4346–4355.PubMed Zerefos, P. G., Vougas, K., Dimitraki, P., Kossida, S., Petrolekas, A., Stravodimos, K., et al. (2006). Characterization of the human urine proteome by preparative electrophoresis in combination with 2-DE. Proteomics, 6, 4346–4355.PubMed
85.
Zurück zum Zitat Kushnir, M. M., Mrozinski, P., Rockwood, A. L., & Crockett, D. K. (2009). A depletion strategy for improved detection of human proteins from urine. Journal of Biomolecular Techniques, 20, 101–108.PubMed Kushnir, M. M., Mrozinski, P., Rockwood, A. L., & Crockett, D. K. (2009). A depletion strategy for improved detection of human proteins from urine. Journal of Biomolecular Techniques, 20, 101–108.PubMed
86.
Zurück zum Zitat Kolch, W., Neususs, C., Pelzing, M., & Mischak, H. (2005). Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrometry Reviews, 24, 959–977.PubMed Kolch, W., Neususs, C., Pelzing, M., & Mischak, H. (2005). Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrometry Reviews, 24, 959–977.PubMed
87.
Zurück zum Zitat Fliser, D., Novak, J., Thongboonkerd, V., Argiles, A., Jankowski, V., Girolami, M. A., et al. (2007). Advances in urinary proteome analysis and biomarker discovery. Journal of the American Society of Nephrology, 18, 1057–1071.PubMed Fliser, D., Novak, J., Thongboonkerd, V., Argiles, A., Jankowski, V., Girolami, M. A., et al. (2007). Advances in urinary proteome analysis and biomarker discovery. Journal of the American Society of Nephrology, 18, 1057–1071.PubMed
88.
Zurück zum Zitat Mischak, H., Julian, B. A., & Novak, J. (2007). High-resolution proteome/peptidome analysis of peptides and low-molecular-weight proteins in urine. Proteomics Clinical Applications, 1, 792.PubMed Mischak, H., Julian, B. A., & Novak, J. (2007). High-resolution proteome/peptidome analysis of peptides and low-molecular-weight proteins in urine. Proteomics Clinical Applications, 1, 792.PubMed
89.
Zurück zum Zitat Gilbert, R. E., & Cooper, M. E. (1999). The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney International, 56, 1627–1637.PubMed Gilbert, R. E., & Cooper, M. E. (1999). The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney International, 56, 1627–1637.PubMed
90.
Zurück zum Zitat Bohle, A., Wehrmann, M., Bogenschutz, O., Batz, C., Muller, C. A., & Muller, G. A. (1991). The pathogenesis of chronic renal failure in diabetic nephropathy. Investigation of 488 cases of diabetic glomerulosclerosis. Pathology, Research and Practice, 187, 251–259.PubMed Bohle, A., Wehrmann, M., Bogenschutz, O., Batz, C., Muller, C. A., & Muller, G. A. (1991). The pathogenesis of chronic renal failure in diabetic nephropathy. Investigation of 488 cases of diabetic glomerulosclerosis. Pathology, Research and Practice, 187, 251–259.PubMed
91.
Zurück zum Zitat Wada, T., Furuichi, K., Sakai, N., Iwata, Y., Yoshimoto, K., Shimizu, M., et al. (2000). Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney International, 58, 1492–1499.PubMed Wada, T., Furuichi, K., Sakai, N., Iwata, Y., Yoshimoto, K., Shimizu, M., et al. (2000). Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney International, 58, 1492–1499.PubMed
92.
Zurück zum Zitat Merchant, M. L., Perkins, B. A., Boratyn, G. M., Ficociello, L. H., Wilkey, D. W., Barati, M. T., et al. (2009). Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. Journal of the American Society of Nephrology, 20, 2065–2074.PubMed Merchant, M. L., Perkins, B. A., Boratyn, G. M., Ficociello, L. H., Wilkey, D. W., Barati, M. T., et al. (2009). Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. Journal of the American Society of Nephrology, 20, 2065–2074.PubMed
93.
Zurück zum Zitat Bernstam, E. V., Smith, J. W., & Johnson, T. R. (2010). What is biomedical informatics? Journal of Biomedical Informatics, 43, 104–110.PubMed Bernstam, E. V., Smith, J. W., & Johnson, T. R. (2010). What is biomedical informatics? Journal of Biomedical Informatics, 43, 104–110.PubMed
94.
Zurück zum Zitat Nesvizhskii, A. I. (2010). A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. Journal of Proteomics, 73, 2092–2123.PubMed Nesvizhskii, A. I. (2010). A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. Journal of Proteomics, 73, 2092–2123.PubMed
95.
Zurück zum Zitat Nagaraj, N., & Mann, M. (2011). Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. Journal of Proteome Research, 10, 637–645.PubMed Nagaraj, N., & Mann, M. (2011). Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. Journal of Proteome Research, 10, 637–645.PubMed
96.
Zurück zum Zitat Hunt, S. M., Thomas, M. R., Sebastian, L. T., Pedersen, S. K., Harcourt, R. L., Sloane, A. J., et al. (2005). Optimal replication and the importance of experimental design for gel-based quantitative proteomics. Journal of Proteome Research, 4, 809–819.PubMed Hunt, S. M., Thomas, M. R., Sebastian, L. T., Pedersen, S. K., Harcourt, R. L., Sloane, A. J., et al. (2005). Optimal replication and the importance of experimental design for gel-based quantitative proteomics. Journal of Proteome Research, 4, 809–819.PubMed
97.
Zurück zum Zitat Levin, Y. (2011). The role of statistical power analysis in quantitative proteomics. Proteomics, 11, 2565–2567.PubMed Levin, Y. (2011). The role of statistical power analysis in quantitative proteomics. Proteomics, 11, 2565–2567.PubMed
98.
Zurück zum Zitat Moore, C. G., Carter, R. E., Nietert, P. J., & Stewart, P. W. (2011). Recommendations for planning pilot studies in clinical and translational research. Clinical and Translational Science, 4, 332–337.PubMed Moore, C. G., Carter, R. E., Nietert, P. J., & Stewart, P. W. (2011). Recommendations for planning pilot studies in clinical and translational research. Clinical and Translational Science, 4, 332–337.PubMed
99.
Zurück zum Zitat Martens, L., Hermjakob, H., Jones, P., Adamski, M., Taylor, C., States, D., et al. (2005). PRIDE: the proteomics identifications database. Proteomics, 5, 3537–3545.PubMed Martens, L., Hermjakob, H., Jones, P., Adamski, M., Taylor, C., States, D., et al. (2005). PRIDE: the proteomics identifications database. Proteomics, 5, 3537–3545.PubMed
100.
Zurück zum Zitat Kolker, E., Higdon, R., Haynes, W., Welch, D., Broomall, W., Lancet, D., et al. (2012). MOPED: Model Organism Protein Expression Database. Nucleic Acids Research, 40, D1093–D1099.PubMed Kolker, E., Higdon, R., Haynes, W., Welch, D., Broomall, W., Lancet, D., et al. (2012). MOPED: Model Organism Protein Expression Database. Nucleic Acids Research, 40, D1093–D1099.PubMed
101.
Zurück zum Zitat Orchard, S., & Hermjakob, H. (2008). The HUPO proteomics standards initiative–easing communication and minimizing data loss in a changing world. Briefings in Bioinformatics, 9, 166–173.PubMed Orchard, S., & Hermjakob, H. (2008). The HUPO proteomics standards initiative–easing communication and minimizing data loss in a changing world. Briefings in Bioinformatics, 9, 166–173.PubMed
102.
Zurück zum Zitat DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7, 177–188.PubMed DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7, 177–188.PubMed
103.
Zurück zum Zitat Jorge, I., Navarro, P., Martinez-Acedo, P., Nunez, E., Serrano, H., Alfranca, A., et al. (2009). Statistical model to analyze quantitative proteomics data obtained by 18O/16O labeling and linear ion trap mass spectrometry: application to the study of vascular endothelial growth factor-induced angiogenesis in endothelial cells. Molecular & Cellular Proteomics, 8, 1130–1149. Jorge, I., Navarro, P., Martinez-Acedo, P., Nunez, E., Serrano, H., Alfranca, A., et al. (2009). Statistical model to analyze quantitative proteomics data obtained by 18O/16O labeling and linear ion trap mass spectrometry: application to the study of vascular endothelial growth factor-induced angiogenesis in endothelial cells. Molecular & Cellular Proteomics, 8, 1130–1149.
104.
Zurück zum Zitat Bonzon-Kulichenko, E., Martinez-Martinez, S., Trevisan-Herraz, M., Navarro, P., Redondo, J. M., & Vazquez, J. (2011). Quantitative in-depth analysis of the dynamic secretome of activated Jurkat T-cells. Journal of Proteomics, 75, 561–571.PubMed Bonzon-Kulichenko, E., Martinez-Martinez, S., Trevisan-Herraz, M., Navarro, P., Redondo, J. M., & Vazquez, J. (2011). Quantitative in-depth analysis of the dynamic secretome of activated Jurkat T-cells. Journal of Proteomics, 75, 561–571.PubMed
105.
Zurück zum Zitat Fogle, R. L., Hollenbeak, C. S., Stanley, B. A., Vary, T. C., Kimball, S. R., & Lynch, C. J. (2011). Functional proteomic analysis reveals sex-dependent differences in structural and energy-producing myocardial proteins in rat model of alcoholic cardiomyopathy. Physiological Genomics, 43, 346–356.PubMed Fogle, R. L., Hollenbeak, C. S., Stanley, B. A., Vary, T. C., Kimball, S. R., & Lynch, C. J. (2011). Functional proteomic analysis reveals sex-dependent differences in structural and energy-producing myocardial proteins in rat model of alcoholic cardiomyopathy. Physiological Genomics, 43, 346–356.PubMed
106.
Zurück zum Zitat Carbon, S., Ireland, A., Mungall, C. J., Shu, S., Marshall, B., & Lewis, S. (2009). AmiGO: online access to ontology and annotation data. Bioinformatics, 25, 288–289.PubMed Carbon, S., Ireland, A., Mungall, C. J., Shu, S., Marshall, B., & Lewis, S. (2009). AmiGO: online access to ontology and annotation data. Bioinformatics, 25, 288–289.PubMed
107.
Zurück zum Zitat Zhao, Y., Denner, L., Haidacher, S. J., LeJeune, W. S., & Tilton, R. G. (2008). Comprehensive analysis of the mouse renal cortex using two-dimensional HPLC - tandem mass spectrometry. Proteome Sci, 6, 15.PubMed Zhao, Y., Denner, L., Haidacher, S. J., LeJeune, W. S., & Tilton, R. G. (2008). Comprehensive analysis of the mouse renal cortex using two-dimensional HPLC - tandem mass spectrometry. Proteome Sci, 6, 15.PubMed
108.
Zurück zum Zitat Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.PubMed Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.PubMed
109.
Zurück zum Zitat Cline, M. S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C., et al. (2007). Integration of biological networks and gene expression data using Cytoscape. Nature Protocols, 2, 2366–2382.PubMed Cline, M. S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C., et al. (2007). Integration of biological networks and gene expression data using Cytoscape. Nature Protocols, 2, 2366–2382.PubMed
110.
Zurück zum Zitat Hu, Z., Hung, J. H., Wang, Y., Chang, Y. C., Huang, C. L., Huyck, M., et al. (2009). VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Research, 37, W115–W121.PubMed Hu, Z., Hung, J. H., Wang, Y., Chang, Y. C., Huang, C. L., Huyck, M., et al. (2009). VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Research, 37, W115–W121.PubMed
111.
Zurück zum Zitat Vidal, M., Cusick, M. E., & Barabasi, A. L. (2011). Interactome networks and human disease. Cell, 144, 986–998.PubMed Vidal, M., Cusick, M. E., & Barabasi, A. L. (2011). Interactome networks and human disease. Cell, 144, 986–998.PubMed
112.
Zurück zum Zitat Pflieger, D., Gonnet, F., de la Fuente van Bentem, S., Hirt, H., & de la FA, A. (2011). Linking the proteins–elucidation of proteome-scale networks using mass spectrometry. Mass Spectrometry Reviews, 30, 268–297.PubMed Pflieger, D., Gonnet, F., de la Fuente van Bentem, S., Hirt, H., & de la FA, A. (2011). Linking the proteins–elucidation of proteome-scale networks using mass spectrometry. Mass Spectrometry Reviews, 30, 268–297.PubMed
113.
Zurück zum Zitat Starkey, J. M., Zhao, Y., Sadygov, R. G., Haidacher, S. J., LeJeune, W. S., Dey, N., et al. (2010). Altered retinoic acid metabolism in diabetic mouse kidney identified by O isotopic labeling and 2D mass spectrometry. PLoS One, 5, e11095.PubMed Starkey, J. M., Zhao, Y., Sadygov, R. G., Haidacher, S. J., LeJeune, W. S., Dey, N., et al. (2010). Altered retinoic acid metabolism in diabetic mouse kidney identified by O isotopic labeling and 2D mass spectrometry. PLoS One, 5, e11095.PubMed
114.
Zurück zum Zitat Overgaard, A. J., Thingholm, T. E., Larsen, M. R., Tarnow, L., Rossing, P., McGuire, J. N., et al. (2010). Quantitative iTRAQ-based proteomic identification of candidate biomarkers for diabetic nephropathy in plasma of type 1 diabetic patients. Clin Proteomics, 6, 105–114.PubMed Overgaard, A. J., Thingholm, T. E., Larsen, M. R., Tarnow, L., Rossing, P., McGuire, J. N., et al. (2010). Quantitative iTRAQ-based proteomic identification of candidate biomarkers for diabetic nephropathy in plasma of type 1 diabetic patients. Clin Proteomics, 6, 105–114.PubMed
Metadaten
Titel
Proteomics and Systems Biology for Understanding Diabetic Nephropathy
verfasst von
Jonathan M. Starkey
Ronald G. Tilton
Publikationsdatum
01.08.2012
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 4/2012
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-012-9372-9

Weitere Artikel der Ausgabe 4/2012

Journal of Cardiovascular Translational Research 4/2012 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.