Skip to main content
Erschienen in: Journal of Bone and Mineral Metabolism 3/2022

23.02.2022 | Original Article

p53 deficiency promotes bone regeneration by functional regulation of mesenchymal stromal cells and osteoblasts

verfasst von: Toshimichi Nagashima, Tadashi Ninomiya, Yoshiki Nakamura, Shirabe Nishimura, Akiko Ohashi, Junya Aoki, Toshihide Mizoguchi, Morio Tonogi, Tomihisa Takahashi

Erschienen in: Journal of Bone and Mineral Metabolism | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

Introduction

The detailed mechanism of the process during bone healing of drill-hole injury has been elucidated, but a crucial factor in regulating drill-hole healing has not been identified. The transcription factor p53 suppresses osteoblast differentiation through inhibition of osterix expression. In present study, we demonstrate the effects of p53 deficiency on the capacity of MSCs and osteoblasts during drill-hole healing.

Materials and methods

Mesenchymal stromal cells (MSCs) and osteoblasts were collected from bone marrow and calvaria of p53 knockout (KO) mice, respectively. The activities of cell mobility, cell proliferation, osteoblast differentiation, and wound healing of MSCs and/or osteoblasts were determined by in vitro experiments. In addition, bone healing of drill-hole injury in KO mice was examined by micro-CT and immunohistological analysis using anti-osterix, Runx2, and sclerostin antibodies.

Results

KO MSCs stimulated cell mobility, cell proliferation, and osteoblast differentiation. Likewise, KO osteoblasts enhanced cell proliferation and wound healing. KO MSCs and osteoblasts showed high potency in the inflammation and callus formation phases compared to those from wild-type (WT) mice. In addition, increased expression of osterix and Runx2 was observed in KO MSCs and osteoblasts that migrated in the drill-hole. Conversely, sclerostin expression was inhibited in KO mice. Eventually, KO mice exhibited high repairability of drill-hole injury, suggesting a novel role of p53 in MSCs and osteoblasts in improving bone healing.

Conclusion

p53 Deficiency promotes bone healing of drill-hole injury by enhancing the bone-regenerative ability of MSCs and osteoblasts.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Einhorn TA, Gerstenfeld LC (2015) Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11:45–54CrossRef Einhorn TA, Gerstenfeld LC (2015) Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11:45–54CrossRef
2.
Zurück zum Zitat Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A (2017) Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep 6:87–100CrossRef Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A (2017) Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep 6:87–100CrossRef
3.
Zurück zum Zitat Shapiro F (2008) Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cells Mater 15:53–76CrossRef Shapiro F (2008) Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cells Mater 15:53–76CrossRef
4.
Zurück zum Zitat Orr AW, Elzie CA, Kucik DF, Murphy-Ullrich JE (2003) Thrombospondin signaling through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration. J Cell Sci 116:2917–2927CrossRef Orr AW, Elzie CA, Kucik DF, Murphy-Ullrich JE (2003) Thrombospondin signaling through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration. J Cell Sci 116:2917–2927CrossRef
5.
Zurück zum Zitat Bertoli C, Skotheim JM, De Bruin RAM (2013) Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol 14:518–528CrossRef Bertoli C, Skotheim JM, De Bruin RAM (2013) Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol 14:518–528CrossRef
6.
Zurück zum Zitat Pérez-Campo FM, Santurtún A, García-Ibarbia C, Pascual MA, Valero C, Garcés C, Sañudo C, Zarrabeitia MT, Riancho JA (2016) Osterix and Runx2 are transcriptional regulators of sclerostin in human bone. Calcif Tissue Int 99:302–309CrossRef Pérez-Campo FM, Santurtún A, García-Ibarbia C, Pascual MA, Valero C, Garcés C, Sañudo C, Zarrabeitia MT, Riancho JA (2016) Osterix and Runx2 are transcriptional regulators of sclerostin in human bone. Calcif Tissue Int 99:302–309CrossRef
7.
Zurück zum Zitat Tanaka S, Matsumoto T (2021) Sclerostin: from bench to bedside. J Bone Miner Metab 39:332–340CrossRef Tanaka S, Matsumoto T (2021) Sclerostin: from bench to bedside. J Bone Miner Metab 39:332–340CrossRef
8.
Zurück zum Zitat Hafner A, Bulyk ML, Jambhekar A, Lahav G (2019) The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 20:199–210CrossRef Hafner A, Bulyk ML, Jambhekar A, Lahav G (2019) The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 20:199–210CrossRef
9.
Zurück zum Zitat Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Sang HP, Thompson T, Karsenty G, Bradley A, Donehower LA (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53CrossRef Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Sang HP, Thompson T, Karsenty G, Bradley A, Donehower LA (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53CrossRef
10.
Zurück zum Zitat Velletri T, Huang Y, Wang Y, Li Q, Hu M, Xie N, Yang Q, Chen X, Chen Q, Shou P, Gan Y, Candi E, Margherita AP, Agostini M, Yang H, Melino G, Shi Y, Wang Y (2021) Loss of p53 in mesenchymal stem cells promotes alteration of bone remodeling through negative regulation of osteoprotegerin. Cell Death Differ 28:156–169CrossRef Velletri T, Huang Y, Wang Y, Li Q, Hu M, Xie N, Yang Q, Chen X, Chen Q, Shou P, Gan Y, Candi E, Margherita AP, Agostini M, Yang H, Melino G, Shi Y, Wang Y (2021) Loss of p53 in mesenchymal stem cells promotes alteration of bone remodeling through negative regulation of osteoprotegerin. Cell Death Differ 28:156–169CrossRef
11.
Zurück zum Zitat Artigas N, Gámez B, Cubillos-Rojas M, Sánchez-De Diego C, Valer JA, Pons G, Rosa JL, Ventura F (2017) p53 inhibits sp7/osterix activity in the transcriptional program of osteoblast differentiation. Cell Death Differ 24:2022–2031CrossRef Artigas N, Gámez B, Cubillos-Rojas M, Sánchez-De Diego C, Valer JA, Pons G, Rosa JL, Ventura F (2017) p53 inhibits sp7/osterix activity in the transcriptional program of osteoblast differentiation. Cell Death Differ 24:2022–2031CrossRef
12.
Zurück zum Zitat Hojo H, Ohba S, He X, Lai LP, McMahon AP (2016) Sp7/osterix is restricted to bone-forming vertebrates where it acts as a Dlx co-factor in osteoblast specification. Dev Cell 37:238–253CrossRef Hojo H, Ohba S, He X, Lai LP, McMahon AP (2016) Sp7/osterix is restricted to bone-forming vertebrates where it acts as a Dlx co-factor in osteoblast specification. Dev Cell 37:238–253CrossRef
13.
Zurück zum Zitat Zhou X, Beilter A, Xu Z, Gao R, Xiong S, Paulucci-Holthauzen A, Lozano G, de Crombrugghe B, Gorlick R (2021) Wnt/ß-catenin-mediated p53 suppression is indispensable for osteogenesis of mesenchymal progenitor cells. Cell Death Dis 12:521CrossRef Zhou X, Beilter A, Xu Z, Gao R, Xiong S, Paulucci-Holthauzen A, Lozano G, de Crombrugghe B, Gorlick R (2021) Wnt/ß-catenin-mediated p53 suppression is indispensable for osteogenesis of mesenchymal progenitor cells. Cell Death Dis 12:521CrossRef
14.
Zurück zum Zitat Tsukada T, Tomooka Y, Takai S, Ueda Y, Nishikawa S, Yagi T, Tokunaga T, Takeda N, Suda Y, Abe S, Matsuo I, Ikawa Y, Aizawa S (1993) Enhanced proliferative potential in culture of cells from p53-deficient mice. Oncogene 8:3313–3322PubMed Tsukada T, Tomooka Y, Takai S, Ueda Y, Nishikawa S, Yagi T, Tokunaga T, Takeda N, Suda Y, Abe S, Matsuo I, Ikawa Y, Aizawa S (1993) Enhanced proliferative potential in culture of cells from p53-deficient mice. Oncogene 8:3313–3322PubMed
15.
Zurück zum Zitat Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317CrossRef Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317CrossRef
16.
Zurück zum Zitat Ninomiya T, Hiraga T, Hosoya A, Ohnuma K, Ito Y, Takahashi M, Ito S, Asashima M, Nakamura H (2014) Enhanced bone-forming activity of side population cells in the periodontal ligament. Cell Transplant 23:691–701CrossRef Ninomiya T, Hiraga T, Hosoya A, Ohnuma K, Ito Y, Takahashi M, Ito S, Asashima M, Nakamura H (2014) Enhanced bone-forming activity of side population cells in the periodontal ligament. Cell Transplant 23:691–701CrossRef
17.
Zurück zum Zitat Li G, Wang M, Hao L, Loo WT, Jin L, Cheung MNB, Chow LWC, Ng ELY (2014) Angiotensin II induces mitochondrial dysfunction and promotes apoptosis via JNK signalling pathway in primary mouse calvaria osteoblast. Arch Oral Biol 59:513–523CrossRef Li G, Wang M, Hao L, Loo WT, Jin L, Cheung MNB, Chow LWC, Ng ELY (2014) Angiotensin II induces mitochondrial dysfunction and promotes apoptosis via JNK signalling pathway in primary mouse calvaria osteoblast. Arch Oral Biol 59:513–523CrossRef
18.
Zurück zum Zitat Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408CrossRef Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408CrossRef
19.
Zurück zum Zitat Nakamura H, Yukita A, Ninomiya T, Hosoya A, Hiraga T, Ozawa H (2010) Localization of Thy-1-positive cells in the perichondrium during endochondral ossification. J Histochem Cytochem 58:455–462CrossRef Nakamura H, Yukita A, Ninomiya T, Hosoya A, Hiraga T, Ozawa H (2010) Localization of Thy-1-positive cells in the perichondrium during endochondral ossification. J Histochem Cytochem 58:455–462CrossRef
20.
Zurück zum Zitat Tanaka K, Tanaka S, Sakai A, Ninomiya T, Arai Y, Nakamura T (2010) Deficiency of vitamin A delays bone healing process in association with reduced BMP2 expression after drill-hole injury in mice. Bone 47:1006–1012CrossRef Tanaka K, Tanaka S, Sakai A, Ninomiya T, Arai Y, Nakamura T (2010) Deficiency of vitamin A delays bone healing process in association with reduced BMP2 expression after drill-hole injury in mice. Bone 47:1006–1012CrossRef
21.
Zurück zum Zitat Ninomiya T, Hosoya A, Hiraga T, Koide M, Yamaguchi K, Oida H, Arai Y, Sahara N, Nakamura H, Ozawa H (2011) Prostaglandin E2 receptor EP4-selective agonist (ONO-4819) increases bone formation by modulating mesenchymal cell differentiation. Eur J Pharmacol 650:396–402CrossRef Ninomiya T, Hosoya A, Hiraga T, Koide M, Yamaguchi K, Oida H, Arai Y, Sahara N, Nakamura H, Ozawa H (2011) Prostaglandin E2 receptor EP4-selective agonist (ONO-4819) increases bone formation by modulating mesenchymal cell differentiation. Eur J Pharmacol 650:396–402CrossRef
22.
Zurück zum Zitat Shalehin N, Hosoya A, Takebe H, Hasan MR, Irie K (2020) Boric acid inhibits alveolar bone loss in rat experimental periodontitis through diminished bone resorption and enhanced osteoblast formation. J Dent Sci 15:437–444CrossRef Shalehin N, Hosoya A, Takebe H, Hasan MR, Irie K (2020) Boric acid inhibits alveolar bone loss in rat experimental periodontitis through diminished bone resorption and enhanced osteoblast formation. J Dent Sci 15:437–444CrossRef
23.
Zurück zum Zitat Koide M, Yamashita T, Murakami K, Uehara S, Nakamura K, Nakamura M, Matsushita M, Ara T, Yasuda H, Penninger JM, Takahashi N, Udagawa N, Kobayashi Y (2020) Sclerostin expression in trabecular bone is downregulated by osteoclasts. Sci Rep 10:1–15CrossRef Koide M, Yamashita T, Murakami K, Uehara S, Nakamura K, Nakamura M, Matsushita M, Ara T, Yasuda H, Penninger JM, Takahashi N, Udagawa N, Kobayashi Y (2020) Sclerostin expression in trabecular bone is downregulated by osteoclasts. Sci Rep 10:1–15CrossRef
24.
Zurück zum Zitat Wood DJ, Endicott JA (2018) Structural insights into the functional diversity of the CDK–cyclin family. Open Biol 8:180112CrossRef Wood DJ, Endicott JA (2018) Structural insights into the functional diversity of the CDK–cyclin family. Open Biol 8:180112CrossRef
25.
Zurück zum Zitat Xue Y, Li Z, Wang Y, Zhu X, Hu R, Xu W (2020) Role of the HIF-1α/SDF-1/CXCR4 signaling axis in accelerated fracture healing after craniocerebral injury. Mol Med Rep 22:2767–2774PubMedPubMedCentral Xue Y, Li Z, Wang Y, Zhu X, Hu R, Xu W (2020) Role of the HIF-1α/SDF-1/CXCR4 signaling axis in accelerated fracture healing after craniocerebral injury. Mol Med Rep 22:2767–2774PubMedPubMedCentral
26.
Zurück zum Zitat Yellowley C (2013) CXCL12/CXCR4 signaling and other recruitment and homing pathways in fracture repair. Bonekey Rep 2:1–9CrossRef Yellowley C (2013) CXCL12/CXCR4 signaling and other recruitment and homing pathways in fracture repair. Bonekey Rep 2:1–9CrossRef
27.
Zurück zum Zitat Mehta SA, Christopherson KW, Bhat-Nakshatri P, Goulet RJ, Broxmeyer HE, Kopelovich L, Nakshatri H (2007) Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells: Implications of p53 mutation or isoform expression on breast cancer cell invasion. Oncogene 26:3329–3337CrossRef Mehta SA, Christopherson KW, Bhat-Nakshatri P, Goulet RJ, Broxmeyer HE, Kopelovich L, Nakshatri H (2007) Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells: Implications of p53 mutation or isoform expression on breast cancer cell invasion. Oncogene 26:3329–3337CrossRef
28.
Zurück zum Zitat Cascales HS, Burdova K, Middleton A, Kuzin V, Müllers E, Stoy H, Baranello L, Macurek L, Lindqvist A (2021) Cyclin A2 localises in the cytoplasm at the S/G2 transition to activate PLK1. Life Sci Alliance 4:1–15 Cascales HS, Burdova K, Middleton A, Kuzin V, Müllers E, Stoy H, Baranello L, Macurek L, Lindqvist A (2021) Cyclin A2 localises in the cytoplasm at the S/G2 transition to activate PLK1. Life Sci Alliance 4:1–15
29.
Zurück zum Zitat Yang Y, Xue K, Li Z, Zheng W, Dong W, Song J, Sun S, Ma T, Li W (2018) c-Myc regulates the CDK1/cyclin B1 dependent-G2/M cell cycle progression by histone H4 acetylation in Raji cells. Int J Mol Med 41:3366–3378PubMedPubMedCentral Yang Y, Xue K, Li Z, Zheng W, Dong W, Song J, Sun S, Ma T, Li W (2018) c-Myc regulates the CDK1/cyclin B1 dependent-G2/M cell cycle progression by histone H4 acetylation in Raji cells. Int J Mol Med 41:3366–3378PubMedPubMedCentral
30.
Zurück zum Zitat Chen R, Chen Y, Yuan Y, Zou X, Sun Q, Lin H, Chen X, Liu M, Deng Z, Yao Y, Guo D, Zhang Y (2020) Cx43 and AKAP95 regulate G1/S conversion by competitively binding to cyclin E1/E2 in lung cancer cells. Thorac Cancer 11:1594–1602CrossRef Chen R, Chen Y, Yuan Y, Zou X, Sun Q, Lin H, Chen X, Liu M, Deng Z, Yao Y, Guo D, Zhang Y (2020) Cx43 and AKAP95 regulate G1/S conversion by competitively binding to cyclin E1/E2 in lung cancer cells. Thorac Cancer 11:1594–1602CrossRef
31.
Zurück zum Zitat Lengner CJ, Steinman HA, Gagnon J, Smith TW, Henderson JE, Kream BE, Stein GS, Lian JB, Jones SN (2006) Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol 172:909–921CrossRef Lengner CJ, Steinman HA, Gagnon J, Smith TW, Henderson JE, Kream BE, Stein GS, Lian JB, Jones SN (2006) Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol 172:909–921CrossRef
32.
Zurück zum Zitat Li X, Ominsky MS, Niu QT, Sun N, Daugherty B et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869CrossRef Li X, Ominsky MS, Niu QT, Sun N, Daugherty B et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869CrossRef
33.
Zurück zum Zitat Li X, Ominsky MS, Warmington KS, Morony S, Gong J et al (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24:578–588CrossRef Li X, Ominsky MS, Warmington KS, Morony S, Gong J et al (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24:578–588CrossRef
34.
Zurück zum Zitat Sardh E, Harper P, Balwani M, Stein P, Rees D et al (2019) Phase 1 Trial of an RNA interference therapy for acute intermittent porphyria. N Engl J Med 380:549–558CrossRef Sardh E, Harper P, Balwani M, Stein P, Rees D et al (2019) Phase 1 Trial of an RNA interference therapy for acute intermittent porphyria. N Engl J Med 380:549–558CrossRef
Metadaten
Titel
p53 deficiency promotes bone regeneration by functional regulation of mesenchymal stromal cells and osteoblasts
verfasst von
Toshimichi Nagashima
Tadashi Ninomiya
Yoshiki Nakamura
Shirabe Nishimura
Akiko Ohashi
Junya Aoki
Toshihide Mizoguchi
Morio Tonogi
Tomihisa Takahashi
Publikationsdatum
23.02.2022
Verlag
Springer Nature Singapore
Erschienen in
Journal of Bone and Mineral Metabolism / Ausgabe 3/2022
Print ISSN: 0914-8779
Elektronische ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-022-01314-w

Weitere Artikel der Ausgabe 3/2022

Journal of Bone and Mineral Metabolism 3/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.