Skip to main content
Erschienen in: Lasers in Medical Science 6/2019

02.01.2019 | Original Article

Pattern analysis of 532- and 1064-nm microlens array-type, picosecond-domain laser-induced tissue reactions in ex vivo human skin

verfasst von: Hye Jin Chung, Hee Chul Lee, Jinyoung Park, James Childs, Jumi Hong, Heesu Kim, Sung Bin Cho

Erschienen in: Lasers in Medical Science | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

Optical pulses from picosecond lasers can be delivered to the skin using microlens array (MLA) optics or a diffractive beam splitter to generate multiple, focused, high-intensity, micro-injury zones in the epidermis and dermis. The aim of our study was to histopathologically and immunohistochemically evaluate the patterns of 532- and 1064-nm MLA-type, picosecond laser-induced tissue reactions in human skin immediately after treatment. Picosecond neodymium:yttrium–aluminum–garnet (Nd:YAG) laser treatment using an MLA-type beam at the wavelengths of 532 nm and 1064 nm was delivered ex vivo to human skin. Irradiated skin specimens were then microscopically analyzed after hematoxylin and eosin staining and CD31 and Melan-A immunostaining. A single pulse of 532-nm MLA-type, picosecond laser treatment elicited cystic cavitation lesions at sizes of 83.4 ± 16.5 μm × 70.2 ± 17.3 μm (31-mm distance step) and 91.0 ± 44.7 μm × 81.2 ± 36.3 μm (48-mm distance step) in the epidermis and papillary dermis. Meanwhile, a single pulse of 1064-nm laser treatment generated cystic cavitation lesions at sizes of 107.0 ± 18.1 μm × 83.3 ± 37.4 μm (single-pulse mode) and 100.8 ± 40.4 μm × 83.1 ± 29.4 μm (dual-pulse mode) throughout the lower epidermis and upper papillary dermis. Lining epithelial cells in cystic cavitation lesions in the epidermis showed Melan-A-positive immunoreactivity, while cystic cavitation lesions in the dermis exhibited CD31-positive or CD31-negative/Melan-A-negative immunoreactivity. The present data can be used to predict 532- and 1064-nm MLA-type, picosecond-domain laser-induced tissue reactions in human skin.
Literatur
1.
Zurück zum Zitat Balu M, Lentsch G, Korta DZ, König K, Kelly KM, Tromberg BJ, Zachary CB (2017) In vivo multiphoton-microscopy of picosecond-laser-induced optical breakdown in human skin. Lasers Surg Med 49:555–562CrossRefPubMedCentralPubMed Balu M, Lentsch G, Korta DZ, König K, Kelly KM, Tromberg BJ, Zachary CB (2017) In vivo multiphoton-microscopy of picosecond-laser-induced optical breakdown in human skin. Lasers Surg Med 49:555–562CrossRefPubMedCentralPubMed
2.
Zurück zum Zitat Tanghetti EA (2016) The histology of skin treated with a picosecond alexandrite laser and a fractional lens array. Lasers Surg Med 48:646–652CrossRefPubMed Tanghetti EA (2016) The histology of skin treated with a picosecond alexandrite laser and a fractional lens array. Lasers Surg Med 48:646–652CrossRefPubMed
3.
Zurück zum Zitat Tanghetti E, Jennings J (2018) A comparative study with a 755 nm picosecond alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic. Lasers Surg Med 50:37–44CrossRef Tanghetti E, Jennings J (2018) A comparative study with a 755 nm picosecond alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic. Lasers Surg Med 50:37–44CrossRef
4.
Zurück zum Zitat Brauer JA, Kazlouskaya V, Alabdulrazzaq H, Bae YS, Bernstein LJ, Anolik R, Heller PA, Geronemus RG (2015) Use of a picosecond pulse duration laser with specialized optic for treatment of facial acne scarring. JAMA Dermatol 151:278–284CrossRefPubMed Brauer JA, Kazlouskaya V, Alabdulrazzaq H, Bae YS, Bernstein LJ, Anolik R, Heller PA, Geronemus RG (2015) Use of a picosecond pulse duration laser with specialized optic for treatment of facial acne scarring. JAMA Dermatol 151:278–284CrossRefPubMed
5.
Zurück zum Zitat Werner S, Krieg T, Smola H (2007) Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 127:998–1008CrossRefPubMed Werner S, Krieg T, Smola H (2007) Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 127:998–1008CrossRefPubMed
6.
Zurück zum Zitat Orringer JS, Rittié L, Hamilton T, Karimipour DJ, Voorhees JJ, Fisher GJ (2011) Intraepidermal erbium: YAG laser resurfacing: impact on the dermal matrix. J Am Acad Dermatol 64:119–128CrossRefPubMed Orringer JS, Rittié L, Hamilton T, Karimipour DJ, Voorhees JJ, Fisher GJ (2011) Intraepidermal erbium: YAG laser resurfacing: impact on the dermal matrix. J Am Acad Dermatol 64:119–128CrossRefPubMed
7.
Zurück zum Zitat Bernstein EF, Schomacker KT, Basilavecchio LD, Plugis JM, Bhawalkar JD (2017) Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter. Lasers Surg Med 49:796–802CrossRefPubMedCentralPubMed Bernstein EF, Schomacker KT, Basilavecchio LD, Plugis JM, Bhawalkar JD (2017) Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter. Lasers Surg Med 49:796–802CrossRefPubMedCentralPubMed
8.
Zurück zum Zitat Varghese B, Bonito V, Jurna M, Palero J, Verhagen MH (2015) Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown. Biomed Opt Express 6:1234–1240CrossRefPubMedCentralPubMed Varghese B, Bonito V, Jurna M, Palero J, Verhagen MH (2015) Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown. Biomed Opt Express 6:1234–1240CrossRefPubMedCentralPubMed
9.
Zurück zum Zitat Lee HC, Chang DW, Lee EJ, Yoon HW (2017) High-energy, sub-nanosecond linearly polarized passively Q-switched MOPA laser system. Opt Laser Technol 95:81–85CrossRef Lee HC, Chang DW, Lee EJ, Yoon HW (2017) High-energy, sub-nanosecond linearly polarized passively Q-switched MOPA laser system. Opt Laser Technol 95:81–85CrossRef
10.
Zurück zum Zitat Goo BL, Kang JS, Cho SB (2015) Treatment of early-stage erythematotelangiectatic rosacea with a Q-switched 595-nm Nd:YAG laser. J Cosmet Laser Ther 17:139–142CrossRefPubMed Goo BL, Kang JS, Cho SB (2015) Treatment of early-stage erythematotelangiectatic rosacea with a Q-switched 595-nm Nd:YAG laser. J Cosmet Laser Ther 17:139–142CrossRefPubMed
11.
Zurück zum Zitat Kim BW, Lee MH, Chang SE, Yun WJ, Won CH, Lee MW, Choi JH, Moon KC (2013) Clinical efficacy of the dual-pulsed Q-switched neodymium:yttrium-aluminum-garnet laser: comparison with conservative mode. J Cosmet Laser Ther 15:340–341CrossRefPubMed Kim BW, Lee MH, Chang SE, Yun WJ, Won CH, Lee MW, Choi JH, Moon KC (2013) Clinical efficacy of the dual-pulsed Q-switched neodymium:yttrium-aluminum-garnet laser: comparison with conservative mode. J Cosmet Laser Ther 15:340–341CrossRefPubMed
12.
Zurück zum Zitat Ahn KJ, Kim BJ, Cho SB (2017) Simulation of laser-tattoo pigment interaction in a tissue-mimicking phantom using Q-switched and long-pulsed lasers. Skin Res Technol 23:376–383CrossRefPubMed Ahn KJ, Kim BJ, Cho SB (2017) Simulation of laser-tattoo pigment interaction in a tissue-mimicking phantom using Q-switched and long-pulsed lasers. Skin Res Technol 23:376–383CrossRefPubMed
13.
Zurück zum Zitat Vogel A, Busch S, Jungnickel K, Birngruber R (1994) Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses. Lasers Surg Med 15:32–43CrossRef Vogel A, Busch S, Jungnickel K, Birngruber R (1994) Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses. Lasers Surg Med 15:32–43CrossRef
14.
Zurück zum Zitat Docchio F (1988) Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration. Europhys Lett 6:407–412CrossRef Docchio F (1988) Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration. Europhys Lett 6:407–412CrossRef
Metadaten
Titel
Pattern analysis of 532- and 1064-nm microlens array-type, picosecond-domain laser-induced tissue reactions in ex vivo human skin
verfasst von
Hye Jin Chung
Hee Chul Lee
Jinyoung Park
James Childs
Jumi Hong
Heesu Kim
Sung Bin Cho
Publikationsdatum
02.01.2019
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 6/2019
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-018-02711-2

Weitere Artikel der Ausgabe 6/2019

Lasers in Medical Science 6/2019 Zur Ausgabe