Skip to main content
Erschienen in: Molecular and Cellular Pediatrics 1/2014

Open Access 01.12.2014 | Mini review

Perinatal programming - myths, fact, and future of research

Erschienen in: Molecular and Cellular Pediatrics | Ausgabe 1/2014

Abstract

Background and Findings

Perinatal programming, i.e., the (epigenetic) modification of (genetic) functions throughout lifetime, suffers from the notion of premature theories and difficult and extensive research strategies.

Conclusions

This mini review aims at depicting 9 current developments and discusses possible future research strategies.
Hinweise

Electronic supplementary material

The online version of this article (doi:https://​doi.​org/​10.​1186/​s40348-014-0002-2) contains supplementary material, which is available to authorized users.

Competing interests

The author declares that he has no competing interests.

Introduction

When, in 1991, thrifty phenotype hypothesis [1] was formulated, it appeared that an old concept was revived: the ability of an individual to react to environmental changes with an adaptive response, i.e., limits the supply to organs that are utmost importance and delays the development of systems not urgently needed. However, there is a price to pay: The neglected organs become insufficient later, and life and diseases such as diabetes mellitus type 2 become more prevalent in that group (Hales and Barker, [2]).
The initial discovery was followed by an extensive search for diseases more prevalent in persons who were born small for gestational age. Many conditions were found to be associated such as cardiovascular disease, metabolic syndrome, diabetes mellitus, renal disease, cancer, and even psychiatric disorders. The spectrum of intrauterine influences leading to postnatal alterations was increased; the influence of overnutrition in the womb, psychosocial stress, high salt intake, and many more were scrutinized; and a tremendous load of original and review publications was produced [3].
Almost 25 years after the first publications, the mini review will focus on three key issues:
1.
What are the current concepts of perinatal programming? Will it be possible to achieve a unifying concept?
 
2.
Do we have enough insight into potential mechanisms of perinatal programming?
 
3.
Where are the pitfalls of current research? Can we develop new strategies?
 

Current concepts of perinatal programming (Figure 1)

From the thrifty phenotype (Barker-) hypothesis to the mismatch hypothesis

Several criticisms were raised soon after the thrifty phenotype hypothesis was inaugurated: first, the increased risk for morbidity later in life after being born with a high birth weight had been neglected. This was soon corrected, and nowadays, intrauterine overfeeding is regarded as a major risk factor for cardiovascular and metabolic disease [4]. Second, the postnatal environment was found to be of utmost importance leading to the creating of the so-called mismatch hypothesis, indicating that the discrepancy between intrauterine and postnatal nutrition determines the later phenotype [5]. However, the mismatch hypothesis fails to explain why children with intrauterine overnutrition experience an increased later morbidity risk if they receive continuous overnutrition after birth [6].

Is there a unifying concept?

As a consequence Plagemann suggests an alternative, unifying concept arguing that perinatal programming should not be regarded as a coping strategy to actively compensate developmental conditions but rather a vegetative learning process leading to passive adaptations of the organism [6]. In detail, three key fields interact with each other and form the phenotype of perinatal programming and the developmental origins of health and disease. These are the following: (1) natural and social environment, (2) epigenomic plasticity, and (3) microstructural plasticity. In particular, these adaptations are not necessarily `aiming' at improving an organism situation in a teleologic sense [4].

Mechanisms of disease

It is now widely recognized that the mechanisms leading to perinatal programming are epigenetic in nature. Epigenetic changes are alterations of genomic function not modifying gene structure as such. Whether they all lead to DNA modifications will be discussed in this section.

Altered gene expression

Gene expression can be altered by several mechanisms influencing mRNA transcription. The most important ones are DNA methylation, histone modification, and noncoding RNAs, most of which is known from animal and cell culture studies [7]. In the last 5 years, at least 20 human studies have shown associations between in utero exposition and an altered DNA methylation of certain genes. In most cases, the effect of nutrient supplements such as folic acid was examined; however, several studies have addressed intrauterine deficiency (Tobi et al. [8],[9]). Overexposition as in maternal diabetes mellitus has also been shown to inflict changes in gene methylation [10]. Despite these progresses in understanding the potential mechanisms of perinatal programming, the exact effects of changes in gene methylation are not always easy to assess.

Other mechanisms?

The earliest mechanistic observations that were made were structural changes in organs that are altered by perinatal programming. One example in that context is the kidney, where already years ago, a reduction in nephron number was demonstrated after intrauterine growth restriction [3]. This was well in line with a study showing that reduced nephron number is associated with hypertension [11].
Another example for structural changes is the alteration of the hippocampal structure and function by perinatal programming in the context of stress and nutrition. As a consequence, memory, endocrine, and metabolic consequences emerge [12]. A classic experiment in that context showed that nerve fibers needed for energy and appetite regulation originating in the arcuate nucleus of the hypothalamus depend on the presence of leptin in a critical time window [13].
It is not entirely understood whether these structural changes are secondary to modifications in the function of developmental genes and how they are inflicted on a mechanistic basis.
Apart from structural alterations, endocrine adaptations are important in a mechanistic sense to explain the consequences of perinatal programming. The hypothalamic-pituitary-adrenal axis is probably the best characterized target. Others are the 11β hydoxysteroid dehydrogenase in the kidney and adipose tissue and the growth hormone insulin-like growth factor axis. The impact of these changes can be seen in an increased stress responsiveness, arterial hypertension, or generalized or local alterations of growth. Again, the link to epigenetic changes is obvious [14].

Potential research strategies

Limitations of actual research

There are several limitations and pitfalls in the research of perinatal programming.
Human studies suffer from the disadvantage that the exact intrauterine exposure to a programming event such as nutrient supply cannot easily be determined. Low or high birth weight is a poor surrogate of the exact intrauterine events. Documentation of intrauterine growth or placental function is better, however still far from an exact mechanistic insight. Therefore, huge cohorts have to be examined to achieve a study power high enough. Some epidemiological studies therefore have populations of several million participants [15]. In addition, most of the outcome parameters (such as diabetes mellitus type 2, coronary heart disease) only occur later in adult life. Not only this increases the study period to an almost impossible time, but also the number of confounders that may become apparent during a life span is immense. As a consequence, many studies use surrogate instead of hard end point parameters, always leading to the question whether the study is really valid.
Laboratory and animal studies apparently overcome those two major disadvantages. It is possible to differentiate various causes of surplus and deficit situations. As an example, protein deficiency (mimicking undernutrition in the developing countries) leads to a different endocrine phenotype than ligation of the uterine arteries, simulating placental insufficiency [16]. In addition, the outcome can be scrutinized more thoroughly than in clinical studies. Also animal experiments are very attractive with regard to the possibility to examine potential mechanisms in detail.
Nonetheless, apart from the well-known difficulties to transfer data to humans, some pitfalls have to be addressed: Frequently, male and female animals show a completely different phenotype. The exact causes of the gender influence are not well understood. Also, since usually not a single gene is responsible, the number of animals needed may be very high and it is even less certain, whether results may be transferred to humans than in diseases where a single gene or a well-defined mechanism is responsible.

Future research

Unanimously, therefore, most scientist advocate studies with larger human cohorts, starting early in pregnancy or even before, gain as much information as possible on the exact background and mechanism of the presumed programming event and an integration of bio sampling to address potential mechanisms [17],[18]. The disadvantage of the long study duration cannot be easily solved and demands large consortia and a potent and long-lasting financing situation. Possibly, a large number of additional secondary objectives may be integrated facilitating the emergence of a consortium [19].
As to animal studies, the choice of the appropriate species and intervention model is of utmost importance as depicted above [20]. A greater emphasis should be put on the use of transgenetic animals to get nearer to the underlying mechanisms of perinatal programming. Transgenic models could help to evaluate the significance of single genes or pathways in the evolvement of the programmed phenotype.

Conclusions

Research in the field of perinatal programming suffers from several drawbacks: some potentially premature theories that are presently being further developed and the need for extremely large and costly studies. Nonetheless, diseases having their origin in utero and leading to diseases only very much later in life bear the opportunity to be addressed during a critical time window. Therefore, research strategies should adapt to these needs.

Acknowledgements

I would like to thank my Research Groups and coworkers at the Universities of Erlangen and Cologne for fruitful collaboration.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Competing interests

The author declares that he has no competing interests.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Hales CN, Barker DJ: The thrifty phenotype hypothesis. Br Med Bull 2001, 60: 5–20. 10.1093/bmb/60.1.5CrossRef Hales CN, Barker DJ: The thrifty phenotype hypothesis. Br Med Bull 2001, 60: 5–20. 10.1093/bmb/60.1.5CrossRef
2.
Zurück zum Zitat Hales CN, Barker DJ: Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992, 35(7):595–601. 10.1007/BF00400248CrossRef Hales CN, Barker DJ: Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992, 35(7):595–601. 10.1007/BF00400248CrossRef
3.
Zurück zum Zitat Dötsch J, Plank C, Amann K: Fetal programming of renal function. Pediatr Nephrol 2012, 27(4):513–520. doi:10.1007/s00467–011–1781–5 10.1007/s00467-011-1781-5CrossRef Dötsch J, Plank C, Amann K: Fetal programming of renal function. Pediatr Nephrol 2012, 27(4):513–520. doi:10.1007/s00467–011–1781–5 10.1007/s00467-011-1781-5CrossRef
4.
Zurück zum Zitat Rother E, Kuschewski R, Alcazar MA, Oberthuer A, Bae-Gartz I, Vohlen C, Roth B, Dötsch J: Hypothalamic JNK1 and IKKβ activation and impaired early postnatal glucose metabolism after maternal perinatal high-fat feeding. Endocrinology 2012, 153(2):770–781. doi:10.1210/en.2011–1589. Epub 2011 Dec 6 10.1210/en.2011-1589CrossRef Rother E, Kuschewski R, Alcazar MA, Oberthuer A, Bae-Gartz I, Vohlen C, Roth B, Dötsch J: Hypothalamic JNK1 and IKKβ activation and impaired early postnatal glucose metabolism after maternal perinatal high-fat feeding. Endocrinology 2012, 153(2):770–781. doi:10.1210/en.2011–1589. Epub 2011 Dec 6 10.1210/en.2011-1589CrossRef
5.
Zurück zum Zitat Gluckman PD, Hanson MA, Cooper C, Thornburg KL: Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008, 359: 61–73. 10.1056/NEJMra0708473CrossRef Gluckman PD, Hanson MA, Cooper C, Thornburg KL: Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008, 359: 61–73. 10.1056/NEJMra0708473CrossRef
6.
Zurück zum Zitat Plagemann A: Toward a unifying concept on perinatal programming: vagetative imprinting b environment-dependent biocybernetogenesis. In Plagemann A. Peinatal programming. The State of Art. De Gruyter, Berlin/Boston; 2012:243–282. Plagemann A: Toward a unifying concept on perinatal programming: vagetative imprinting b environment-dependent biocybernetogenesis. In Plagemann A. Peinatal programming. The State of Art. De Gruyter, Berlin/Boston; 2012:243–282.
7.
Zurück zum Zitat Hogg K, Price EM, Hanna CW, Robinson WP: Prenatal and perinatal environmental influences on the human fetal and placental epigenome. Clin Pharmacol Ther 2012, 92(6):716–726. doi:10.1038/clpt.2012.141. Epub 2012 Oct 10. Review 10.1038/clpt.2012.141CrossRef Hogg K, Price EM, Hanna CW, Robinson WP: Prenatal and perinatal environmental influences on the human fetal and placental epigenome. Clin Pharmacol Ther 2012, 92(6):716–726. doi:10.1038/clpt.2012.141. Epub 2012 Oct 10. Review 10.1038/clpt.2012.141CrossRef
8.
Zurück zum Zitat Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT: DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009, 18(21):4046–4053. doi:10.1093/hmg/ddp353. Epub 2009 Aug 4 10.1093/hmg/ddp353CrossRef Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT: DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009, 18(21):4046–4053. doi:10.1093/hmg/ddp353. Epub 2009 Aug 4 10.1093/hmg/ddp353CrossRef
9.
Zurück zum Zitat Tobi EW, Slagboom PE, van Dongen J, Kremer D, Stein AD, Putter H, Heijmans BT, Lumey LH: Prenatal famine and genetic variation are independently and additively associated with DNA methylation at regulatory loci within IGF2/H19. PLoS One 2012, 7(5):e37933. doi:10.1371/journal.pone.0037933. Epub 2012 May 30 10.1371/journal.pone.0037933CrossRef Tobi EW, Slagboom PE, van Dongen J, Kremer D, Stein AD, Putter H, Heijmans BT, Lumey LH: Prenatal famine and genetic variation are independently and additively associated with DNA methylation at regulatory loci within IGF2/H19. PLoS One 2012, 7(5):e37933. doi:10.1371/journal.pone.0037933. Epub 2012 May 30 10.1371/journal.pone.0037933CrossRef
10.
Zurück zum Zitat Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, Rodford J, Slater-Jefferies JL, Garratt E, Crozier SR, Emerald BS, Gale CR, Inskip HM, Cooper C, Hanson MA: Epigenetic gene promoter methylation at birth is associated with child's later adiposity. Diabetes 2011, 60(5):1528–1534. doi:10.2337/db10–0979. Epub 2011 Apr 6 10.2337/db10-0979CrossRef Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, Rodford J, Slater-Jefferies JL, Garratt E, Crozier SR, Emerald BS, Gale CR, Inskip HM, Cooper C, Hanson MA: Epigenetic gene promoter methylation at birth is associated with child's later adiposity. Diabetes 2011, 60(5):1528–1534. doi:10.2337/db10–0979. Epub 2011 Apr 6 10.2337/db10-0979CrossRef
11.
Zurück zum Zitat Keller G, Zimmer G, Mall G, Ritz E, Amann K: Nephron number in patients with primary hypertension. N Engl J Med 2003, 348(2):101–108. 10.1056/NEJMoa020549CrossRef Keller G, Zimmer G, Mall G, Ritz E, Amann K: Nephron number in patients with primary hypertension. N Engl J Med 2003, 348(2):101–108. 10.1056/NEJMoa020549CrossRef
12.
Zurück zum Zitat Lucassen PJ, Naninck EF, van Goudoever JB, Fitzsimons C, Joels M, Korosi A: Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci 2013, 36(11):621–631. doi:10.1016/j.tins.2013.08.002. Epub 2013 Aug 30 10.1016/j.tins.2013.08.002CrossRef Lucassen PJ, Naninck EF, van Goudoever JB, Fitzsimons C, Joels M, Korosi A: Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci 2013, 36(11):621–631. doi:10.1016/j.tins.2013.08.002. Epub 2013 Aug 30 10.1016/j.tins.2013.08.002CrossRef
13.
Zurück zum Zitat Bouret SG, Draper SJ, Simerly RB: Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004, 304(5667):108–110. 10.1126/science.1095004CrossRef Bouret SG, Draper SJ, Simerly RB: Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004, 304(5667):108–110. 10.1126/science.1095004CrossRef
14.
Zurück zum Zitat Murgatroyd C, Spengler D: Epigenetic programming of the HPA axis: early life decides. Stress 2011, 14(6):581–589. doi: 10.3109/10253890.2011.602146. Epub 2011 Aug 19. ReviewCrossRef Murgatroyd C, Spengler D: Epigenetic programming of the HPA axis: early life decides. Stress 2011, 14(6):581–589. doi: 10.3109/10253890.2011.602146. Epub 2011 Aug 19. ReviewCrossRef
15.
Zurück zum Zitat Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM: Low birth weight increases risk for end-stage renal disease. J Am Soc Nephrol 2008, 19(1):151–157. Epub 2007 Dec 5 10.1681/ASN.2007020252CrossRef Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM: Low birth weight increases risk for end-stage renal disease. J Am Soc Nephrol 2008, 19(1):151–157. Epub 2007 Dec 5 10.1681/ASN.2007020252CrossRef
16.
Zurück zum Zitat Nüsken KD, Schneider H, Plank C, Trollmann R, Nüsken E, Rascher W, DÖtsch J: Fetal programming of gene expression in growth-restricted rats depends on the cause of low birth weight. Endocrinology 2011, 152(4):1327–1335. doi:10.1210/en.2010–1116. Epub 2011 Jan 25 10.1210/en.2010-1116CrossRef Nüsken KD, Schneider H, Plank C, Trollmann R, Nüsken E, Rascher W, DÖtsch J: Fetal programming of gene expression in growth-restricted rats depends on the cause of low birth weight. Endocrinology 2011, 152(4):1327–1335. doi:10.1210/en.2010–1116. Epub 2011 Jan 25 10.1210/en.2010-1116CrossRef
17.
Zurück zum Zitat Bouchard L: Epigenetics and fetal metabolic programming: a call for integrated research on larger cohorts. Diabetes 2013, 62(4):1026–1028. doi:10.2337/db12–1763 10.2337/db12-1763CrossRef Bouchard L: Epigenetics and fetal metabolic programming: a call for integrated research on larger cohorts. Diabetes 2013, 62(4):1026–1028. doi:10.2337/db12–1763 10.2337/db12-1763CrossRef
18.
Zurück zum Zitat Ruchat SM, Hivert MF, Bouchard L: Epigenetic programming of obesity and diabetes by in utero exposure to gestational diabetes mellitus. Nutr Rev 2013, 71(Suppl 1):S88-S94. doi:10.1111/nure.12057 10.1111/nure.12057CrossRef Ruchat SM, Hivert MF, Bouchard L: Epigenetic programming of obesity and diabetes by in utero exposure to gestational diabetes mellitus. Nutr Rev 2013, 71(Suppl 1):S88-S94. doi:10.1111/nure.12057 10.1111/nure.12057CrossRef
19.
Zurück zum Zitat Guttmacher AE, Hirschfeld S, Collins FS: The National Children's Study - a proposed plan. N Engl J Med 2013, 369(20):1873–1875. doi:10.1056/NEJMp1311150 10.1056/NEJMp1311150CrossRef Guttmacher AE, Hirschfeld S, Collins FS: The National Children's Study - a proposed plan. N Engl J Med 2013, 369(20):1873–1875. doi:10.1056/NEJMp1311150 10.1056/NEJMp1311150CrossRef
20.
Zurück zum Zitat Rabadán-Diehl C, Nathanielsz P: From mice to men: research models of developmental programming. J Dev Orig Health Dis 2013, 4(1):3–9. 10.1017/S2040174412000487CrossRef Rabadán-Diehl C, Nathanielsz P: From mice to men: research models of developmental programming. J Dev Orig Health Dis 2013, 4(1):3–9. 10.1017/S2040174412000487CrossRef
Metadaten
Titel
Perinatal programming - myths, fact, and future of research
Publikationsdatum
01.12.2014
Erschienen in
Molecular and Cellular Pediatrics / Ausgabe 1/2014
Elektronische ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-014-0002-2

Weitere Artikel der Ausgabe 1/2014

Molecular and Cellular Pediatrics 1/2014 Zur Ausgabe

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.