Skip to main content
Erschienen in: The International Journal of Cardiovascular Imaging 12/2020

10.08.2020 | Review Paper

Physiology and coronary artery disease: emerging insights from computed tomography imaging based computational modeling

verfasst von: Parastou Eslami, Vikas Thondapu, Julia Karady, Eline M. J. Hartman, Zexi Jin, Mazen Albaghdadi, Michael Lu, Jolanda J. Wentzel, Udo Hoffmann

Erschienen in: The International Journal of Cardiovascular Imaging | Ausgabe 12/2020

Einloggen, um Zugang zu erhalten

Abstract

Improvements in spatial and temporal resolution now permit robust high quality characterization of presence, morphology and composition of coronary atherosclerosis in computed tomography (CT). These characteristics include high risk features such as large plaque volume, low CT attenuation, napkin-ring sign, spotty calcification and positive remodeling. Because of the high image quality, principles of patient-specific computational fluid dynamics modeling of blood flow through the coronary arteries can now be applied to CT and allow the calculation of local lesion-specific hemodynamics such as endothelial shear stress, fractional flow reserve and axial plaque stress. This review examines recent advances in coronary CT image-based computational modeling and discusses the opportunity to identify lesions at risk for rupture much earlier than today through the combination of anatomic and hemodynamic information.
Literatur
1.
Zurück zum Zitat Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U (2014) Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol 11:390–402PubMed Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U (2014) Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol 11:390–402PubMed
2.
Zurück zum Zitat WHO (2019) Cardiovascular diseases (CVDs). WHO, Geneva WHO (2019) Cardiovascular diseases (CVDs). WHO, Geneva
3.
Zurück zum Zitat Khavjou O, Phelps D, Leib A (2016) Projections of cardiovascular disease prevalence and costs: 2015–2035. RTI Int. 38:1–54 Khavjou O, Phelps D, Leib A (2016) Projections of cardiovascular disease prevalence and costs: 2015–2035. RTI Int. 38:1–54
4.
Zurück zum Zitat Hadamitzky M et al (2013) Optimized prognostic score for coronary computed tomographic angiography: results from the CONFIRM registry (COronary CT angiography evaluation for clinical outcomes: An international multicenter registry). J Am Coll Cardiol 62:468–476PubMed Hadamitzky M et al (2013) Optimized prognostic score for coronary computed tomographic angiography: results from the CONFIRM registry (COronary CT angiography evaluation for clinical outcomes: An international multicenter registry). J Am Coll Cardiol 62:468–476PubMed
5.
Zurück zum Zitat Hoffmann U et al (2017) Prognostic value of noninvasive cardiovascular testing in patients with stable chest pain: insights from the PROMISE Trial (Prospective Multicenter Imaging Study for Evaluation of Chest Pain). Circulation 135:2320–2332PubMedPubMedCentral Hoffmann U et al (2017) Prognostic value of noninvasive cardiovascular testing in patients with stable chest pain: insights from the PROMISE Trial (Prospective Multicenter Imaging Study for Evaluation of Chest Pain). Circulation 135:2320–2332PubMedPubMedCentral
6.
Zurück zum Zitat Ferencik M et al (2018) Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the promise randomized clinical trial. JAMA Cardiol 3:144–152PubMedPubMedCentral Ferencik M et al (2018) Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the promise randomized clinical trial. JAMA Cardiol 3:144–152PubMedPubMedCentral
7.
Zurück zum Zitat Williams MC et al (2019) Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART study. J Am Coll Cardiol 73:291–301PubMedPubMedCentral Williams MC et al (2019) Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART study. J Am Coll Cardiol 73:291–301PubMedPubMedCentral
8.
Zurück zum Zitat Chang HJ et al (2018) Coronary atherosclerotic precursors of acute coronary syndromes. J Am Coll Cardiol 71:2511–2522PubMedPubMedCentral Chang HJ et al (2018) Coronary atherosclerotic precursors of acute coronary syndromes. J Am Coll Cardiol 71:2511–2522PubMedPubMedCentral
9.
Zurück zum Zitat Wentzel JJ et al (2012) Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc Res 96:234–243PubMed Wentzel JJ et al (2012) Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc Res 96:234–243PubMed
10.
Zurück zum Zitat Thondapu V et al (2017) Basic science for the clinician: biomechanical stress in coronary atherosclerosis: Emerging insights from computational modelling. Eur Heart J 38:81–92PubMed Thondapu V et al (2017) Basic science for the clinician: biomechanical stress in coronary atherosclerosis: Emerging insights from computational modelling. Eur Heart J 38:81–92PubMed
11.
Zurück zum Zitat Ford TJ et al (2017) Physiological predictors of acute coronary syndromes: emerging insights from the plaque to the vulnerable patient. JACC Cardiovasc Interv 10:2539–2547PubMed Ford TJ et al (2017) Physiological predictors of acute coronary syndromes: emerging insights from the plaque to the vulnerable patient. JACC Cardiovasc Interv 10:2539–2547PubMed
12.
Zurück zum Zitat Loewe C, Stadler A (2014) Computed tomography assessment of hemodynamic significance of coronary artery disease: CT perfusion, contrast gradients by coronary CTA, and fractional flow reserve review. J Thorac Imaging 29:163–172PubMed Loewe C, Stadler A (2014) Computed tomography assessment of hemodynamic significance of coronary artery disease: CT perfusion, contrast gradients by coronary CTA, and fractional flow reserve review. J Thorac Imaging 29:163–172PubMed
13.
Zurück zum Zitat Pijls NHJ et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334:1703–1708PubMed Pijls NHJ et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334:1703–1708PubMed
14.
Zurück zum Zitat Tonino PA et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:333–340 Tonino PA et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:333–340
15.
Zurück zum Zitat Melikian N et al (2010) Fractional flow reserve and myocardial perfusion imaging in patients with angiographic multivessel coronary artery disease. JACC Cardiovasc Interv 3:307–314PubMed Melikian N et al (2010) Fractional flow reserve and myocardial perfusion imaging in patients with angiographic multivessel coronary artery disease. JACC Cardiovasc Interv 3:307–314PubMed
16.
Zurück zum Zitat Johnson NP, Kirkeeide RL, Gould KL (2013) Coronary anatomy to predict physiology fundamental limits. Circ Cardiovasc Imaging 6:817–832PubMed Johnson NP, Kirkeeide RL, Gould KL (2013) Coronary anatomy to predict physiology fundamental limits. Circ Cardiovasc Imaging 6:817–832PubMed
18.
Zurück zum Zitat Stone PH et al (2012) Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION study. Circulation 126:172–181PubMed Stone PH et al (2012) Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION study. Circulation 126:172–181PubMed
19.
Zurück zum Zitat Stone PH et al (2018) Role of low endothelial shear stress and plaque characteristics in the prediction of nonculprit major adverse cardiac events: the PROSPECT study. JACC Cardiovasc Imaging 11:462–471PubMed Stone PH et al (2018) Role of low endothelial shear stress and plaque characteristics in the prediction of nonculprit major adverse cardiac events: the PROSPECT study. JACC Cardiovasc Imaging 11:462–471PubMed
20.
Zurück zum Zitat Samady H et al (2011) Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124:779–788PubMed Samady H et al (2011) Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124:779–788PubMed
22.
Zurück zum Zitat Choi G et al (2015) Coronary artery axial plaque stress and its relationship with lesion geometry application of computational fluid dynamics to coronary CT angiography. JACC Cardiovasc Imaging 8:1156–1166PubMed Choi G et al (2015) Coronary artery axial plaque stress and its relationship with lesion geometry application of computational fluid dynamics to coronary CT angiography. JACC Cardiovasc Imaging 8:1156–1166PubMed
23.
Zurück zum Zitat Wong DTL et al (2013) Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve. J Am Coll Cardiol 61:1271–1279PubMed Wong DTL et al (2013) Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve. J Am Coll Cardiol 61:1271–1279PubMed
24.
Zurück zum Zitat Lardo AC et al (2015) Estimating coronary blood flow using CT transluminal attenuation flow encoding: formulation, preclinical validation, and clinical feasibility. J Cardiovasc Comput Tomogr 9:559–566PubMed Lardo AC et al (2015) Estimating coronary blood flow using CT transluminal attenuation flow encoding: formulation, preclinical validation, and clinical feasibility. J Cardiovasc Comput Tomogr 9:559–566PubMed
26.
Zurück zum Zitat Park JB et al (2016) Computational fluid dynamic measures of wall shear stress are related to coronary lesion characteristics. Heart 102:1655–1661PubMed Park JB et al (2016) Computational fluid dynamic measures of wall shear stress are related to coronary lesion characteristics. Heart 102:1655–1661PubMed
27.
Zurück zum Zitat Nørgaard BL et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: The NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 63:1145–1155PubMed Nørgaard BL et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: The NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 63:1145–1155PubMed
28.
Zurück zum Zitat Pijls NHJ et al (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis. 5-Year follow-up of the DEFER study. J Am Coll Cardiol 49:2105–2111PubMed Pijls NHJ et al (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis. 5-Year follow-up of the DEFER study. J Am Coll Cardiol 49:2105–2111PubMed
29.
Zurück zum Zitat Gould KL (1978) Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ Res 43:242–253PubMed Gould KL (1978) Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ Res 43:242–253PubMed
30.
Zurück zum Zitat Xing Z, Pei J, Huang J, Hu X, Gao S (2019) Diagnostic performance of QFR for the evaluation of intermediate coronary artery stenosis confirmed by fractional flow reserve. Braz J Cardiovasc Surg 34:165–172PubMedPubMedCentral Xing Z, Pei J, Huang J, Hu X, Gao S (2019) Diagnostic performance of QFR for the evaluation of intermediate coronary artery stenosis confirmed by fractional flow reserve. Braz J Cardiovasc Surg 34:165–172PubMedPubMedCentral
31.
Zurück zum Zitat Westra J et al (2018) Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: the WIFI II study (Wire-Free Functional Imaging II). Circ Cardiovasc Imaging 11:1–8 Westra J et al (2018) Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: the WIFI II study (Wire-Free Functional Imaging II). Circ Cardiovasc Imaging 11:1–8
32.
Zurück zum Zitat Baumann S et al (2018) Instantaneous wave-free ratio (iFR®) to determine hemodynamically significant coronary stenosis: a comprehensive review. World J Cardiol 10:267–277PubMedPubMedCentral Baumann S et al (2018) Instantaneous wave-free ratio (iFR®) to determine hemodynamically significant coronary stenosis: a comprehensive review. World J Cardiol 10:267–277PubMedPubMedCentral
33.
Zurück zum Zitat Götberg M et al (2017) Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med 376:1813–1823PubMed Götberg M et al (2017) Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med 376:1813–1823PubMed
34.
Zurück zum Zitat Davies JE et al (2017) Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med 376:1824–1834PubMed Davies JE et al (2017) Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med 376:1824–1834PubMed
35.
Zurück zum Zitat Johnson NP et al (2013) Does the instantaneous wave-free ratio approximate the fractional flow reserve? J Am Coll Cardiol 61:1428–1435PubMed Johnson NP et al (2013) Does the instantaneous wave-free ratio approximate the fractional flow reserve? J Am Coll Cardiol 61:1428–1435PubMed
36.
Zurück zum Zitat Lee JM et al (2018) Prognostic implication of thermodilution coronary flow reserve in patients undergoing fractional flow reserve measurement. JACC Cardiovasc Interv 11:1423–1433PubMed Lee JM et al (2018) Prognostic implication of thermodilution coronary flow reserve in patients undergoing fractional flow reserve measurement. JACC Cardiovasc Interv 11:1423–1433PubMed
37.
Zurück zum Zitat Gaur S et al (2014) Fractional flow reserve derived from coronary CT angiography: variation of repeated analyses. J Cardiovasc Comput Tomogr 8:307–314PubMed Gaur S et al (2014) Fractional flow reserve derived from coronary CT angiography: variation of repeated analyses. J Cardiovasc Comput Tomogr 8:307–314PubMed
38.
Zurück zum Zitat National Institute for Health and Care Excellence (NICE) (2017) HeartFlow FFRCT for estimating fractional flow reserve from coronary CT angiography. Medical technologies guidance, vol 32. NICE, London National Institute for Health and Care Excellence (NICE) (2017) HeartFlow FFRCT for estimating fractional flow reserve from coronary CT angiography. Medical technologies guidance, vol 32. NICE, London
39.
Zurück zum Zitat National Institute for Health and Care Excellence (NICE) (2016) Chest pain of recent onset: assessment and diagnosis. NICE, London National Institute for Health and Care Excellence (NICE) (2016) Chest pain of recent onset: assessment and diagnosis. NICE, London
40.
Zurück zum Zitat Eshtehardi P et al (2012) Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J Am Heart Assoc 1:e002543–e002543PubMedPubMedCentral Eshtehardi P et al (2012) Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J Am Heart Assoc 1:e002543–e002543PubMedPubMedCentral
41.
Zurück zum Zitat Chatzizisis YS et al (2009) Attenuation of inflammation and expansive remodeling by Valsartan alone or in combination with Simvastatin in high-risk coronary atherosclerotic plaques. Atherosclerosis 203:387–394PubMed Chatzizisis YS et al (2009) Attenuation of inflammation and expansive remodeling by Valsartan alone or in combination with Simvastatin in high-risk coronary atherosclerotic plaques. Atherosclerosis 203:387–394PubMed
42.
Zurück zum Zitat Fry DL (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 22:165–197PubMed Fry DL (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 22:165–197PubMed
43.
Zurück zum Zitat Caro CG, Fitz-Gerald JM, Schroter RC (1971) Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B 177:109–159PubMed Caro CG, Fitz-Gerald JM, Schroter RC (1971) Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B 177:109–159PubMed
44.
Zurück zum Zitat Ha CH et al (2013) Inhibitory effect of soluble RAGE in disturbed flow-induced atherogenesis. Int J Mol Med 32:373–380PubMed Ha CH et al (2013) Inhibitory effect of soluble RAGE in disturbed flow-induced atherogenesis. Int J Mol Med 32:373–380PubMed
45.
Zurück zum Zitat Gimbrone MA (1999) Endothelial dysfunction, hemodynamic forces, and atherosclerosis. Thromb Haemost 82:722–726PubMed Gimbrone MA (1999) Endothelial dysfunction, hemodynamic forces, and atherosclerosis. Thromb Haemost 82:722–726PubMed
46.
Zurück zum Zitat Gimbrone MAG, García-Cardeña G (2015) Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol 22:9–15 Gimbrone MAG, García-Cardeña G (2015) Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol 22:9–15
47.
Zurück zum Zitat Gijsen FJH et al (2008) Strain distribution over plaques in human coronary arteries relates to shear stress. Am J Physiol Hear Circ Physiol 295:1608–1614 Gijsen FJH et al (2008) Strain distribution over plaques in human coronary arteries relates to shear stress. Am J Physiol Hear Circ Physiol 295:1608–1614
48.
Zurück zum Zitat Chatzizisis YS et al (2011) Augmented expression and activity of extracellular matrix-degrading enzymes in regions of low endothelial shear stress colocalize with coronary atheromata with thin fibrous caps in pigs. Circulation 123:621–630PubMedPubMedCentral Chatzizisis YS et al (2011) Augmented expression and activity of extracellular matrix-degrading enzymes in regions of low endothelial shear stress colocalize with coronary atheromata with thin fibrous caps in pigs. Circulation 123:621–630PubMedPubMedCentral
49.
Zurück zum Zitat Chatzizisis YS et al (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. Molecular, cellular, and vascular behavior. J Am Coll Cardiol 49:2379–2393PubMed Chatzizisis YS et al (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. Molecular, cellular, and vascular behavior. J Am Coll Cardiol 49:2379–2393PubMed
50.
Zurück zum Zitat Stone PH et al (2003) Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation 108:438–444PubMed Stone PH et al (2003) Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation 108:438–444PubMed
51.
Zurück zum Zitat Stone PH et al (2007) Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Eur Heart J 28:705–710PubMed Stone PH et al (2007) Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Eur Heart J 28:705–710PubMed
52.
Zurück zum Zitat Kumar A et al (2018) High coronary shear stress in patients with coronary artery disease predicts myocardial infarction. J Am Coll Cardiol 72:1926–1935PubMed Kumar A et al (2018) High coronary shear stress in patients with coronary artery disease predicts myocardial infarction. J Am Coll Cardiol 72:1926–1935PubMed
53.
Zurück zum Zitat Lee JM et al (2019) Identification of high-risk plaques destined to cause acute coronary syndrome using coronary computed tomographic angiography and computational fluid dynamics. JACC Cardiovasc Imaging 12:1032–1043PubMed Lee JM et al (2019) Identification of high-risk plaques destined to cause acute coronary syndrome using coronary computed tomographic angiography and computational fluid dynamics. JACC Cardiovasc Imaging 12:1032–1043PubMed
54.
Zurück zum Zitat Han D et al (2016) Relationship between endothelial wall shear stress and high-risk atherosclerotic plaque characteristics for identification of coronary lesions that cause ischemia: a direct comparison with fractional flow reserve. J Am Heart Assoc 5:1–9 Han D et al (2016) Relationship between endothelial wall shear stress and high-risk atherosclerotic plaque characteristics for identification of coronary lesions that cause ischemia: a direct comparison with fractional flow reserve. J Am Heart Assoc 5:1–9
55.
Zurück zum Zitat Bech GJW et al (2001) Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 103:2928–2934PubMed Bech GJW et al (2001) Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 103:2928–2934PubMed
56.
Zurück zum Zitat Parikh NI et al (2010) Long-term trends in myocardial infarction incidence and case-fatality in the national heart. Lung Blood Inst Framingham Heart Study 119:1203–1210 Parikh NI et al (2010) Long-term trends in myocardial infarction incidence and case-fatality in the national heart. Lung Blood Inst Framingham Heart Study 119:1203–1210
57.
Zurück zum Zitat Olgac U, Poulikakos D, Saur SC, Alkadhi H, Kurtcuoglu V (2009) Patient-specific three-dimensional simulation of LDL accumulation in a human left coronary artery in its healthy and atherosclerotic states. Am. J. Physiol. Hear. Circ. Physiol. 296:H1969–H1982 Olgac U, Poulikakos D, Saur SC, Alkadhi H, Kurtcuoglu V (2009) Patient-specific three-dimensional simulation of LDL accumulation in a human left coronary artery in its healthy and atherosclerotic states. Am. J. Physiol. Hear. Circ. Physiol. 296:H1969–H1982
58.
Zurück zum Zitat Parodi O et al (2012) Patient-specific prediction of coronary plaque growth from CTA angiography: a multiscale model for plaque formation and progression. IEEE Trans Inf Technol Biomed 16:952–965PubMed Parodi O et al (2012) Patient-specific prediction of coronary plaque growth from CTA angiography: a multiscale model for plaque formation and progression. IEEE Trans Inf Technol Biomed 16:952–965PubMed
59.
Zurück zum Zitat Li ZY et al (2009) The mechanical triggers of plaque rupture: shear stress vs pressure gradient. Br J Radiol 82:S39–S45PubMed Li ZY et al (2009) The mechanical triggers of plaque rupture: shear stress vs pressure gradient. Br J Radiol 82:S39–S45PubMed
60.
Zurück zum Zitat Slagger CJ et al (2005) The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat Clin Pract Cardiovasc Med 2:456–464 Slagger CJ et al (2005) The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat Clin Pract Cardiovasc Med 2:456–464
61.
Zurück zum Zitat Brown AJ et al (2016) Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol 13:210–220PubMed Brown AJ et al (2016) Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol 13:210–220PubMed
62.
Zurück zum Zitat Gijsen F et al (2019) Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J 40:3421–3433PubMedPubMedCentral Gijsen F et al (2019) Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J 40:3421–3433PubMedPubMedCentral
63.
Zurück zum Zitat Boogers MJ et al (2010) Automated quantification of stenosis severity on 64-slice CT: a comparison with quantitative coronary angiography. JACC Cardiovasc Imaging 3:699–709PubMed Boogers MJ et al (2010) Automated quantification of stenosis severity on 64-slice CT: a comparison with quantitative coronary angiography. JACC Cardiovasc Imaging 3:699–709PubMed
64.
Zurück zum Zitat Dodge JT et al (1998) Impact of injection rate on the thrombolysis in myocardial infarction (TIMI) trial frame count. Am J Cardiol 81:1268–1270PubMed Dodge JT et al (1998) Impact of injection rate on the thrombolysis in myocardial infarction (TIMI) trial frame count. Am J Cardiol 81:1268–1270PubMed
65.
Zurück zum Zitat Tanedo JS et al (2001) Assessing coronary blood flow dynamics with the TIMI frame count method: comparison with simultaneous intracoronary Doppler and ultrasound. Catheter Cardiovasc Interv 53:459–463PubMed Tanedo JS et al (2001) Assessing coronary blood flow dynamics with the TIMI frame count method: comparison with simultaneous intracoronary Doppler and ultrasound. Catheter Cardiovasc Interv 53:459–463PubMed
66.
Zurück zum Zitat Eslami P et al (2019) Effect of wall elasticity on hemodynamics and wall shear stress in patient-specific simulations in the coronary arteries. J. Biomech. Eng. 142(2):0245031–02450310 Eslami P et al (2019) Effect of wall elasticity on hemodynamics and wall shear stress in patient-specific simulations in the coronary arteries. J. Biomech. Eng. 142(2):0245031–02450310
67.
Zurück zum Zitat Updegrove A et al (2017) SimVascular: an open source pipeline for cardiovascular simulation. Ann Biomed Eng 45:525–541PubMed Updegrove A et al (2017) SimVascular: an open source pipeline for cardiovascular simulation. Ann Biomed Eng 45:525–541PubMed
68.
Zurück zum Zitat Rossi A et al (2014) Stress myocardial perfusion imaging with multidetector CT. Radiology 270:25–46PubMed Rossi A et al (2014) Stress myocardial perfusion imaging with multidetector CT. Radiology 270:25–46PubMed
69.
Zurück zum Zitat Eslami P et al (2015) Computational study of computed tomography contrast gradients in models of stenosed coronary arteries. J Biomech Eng 137:091002 Eslami P et al (2015) Computational study of computed tomography contrast gradients in models of stenosed coronary arteries. J Biomech Eng 137:091002
70.
Zurück zum Zitat Kurata A et al (2015) Quantification of the myocardial area at risk using coronary CT angiography and Voronoi algorithm-based myocardial segmentation. Eur Radiol 25:49–57PubMed Kurata A et al (2015) Quantification of the myocardial area at risk using coronary CT angiography and Voronoi algorithm-based myocardial segmentation. Eur Radiol 25:49–57PubMed
71.
Zurück zum Zitat Murray CD (1926) The physiological principle of minimum work. The vascular systems and the cost of blood volume. J Gen Physiol 12:445 Murray CD (1926) The physiological principle of minimum work. The vascular systems and the cost of blood volume. J Gen Physiol 12:445
72.
Zurück zum Zitat Zhou Y, Kassab GS, Molloi S (2002) In vivo validation of the design rules of the coronary arteries and their application in the assessment of diffuse disease. Phys Med Biol 47:977–993PubMed Zhou Y, Kassab GS, Molloi S (2002) In vivo validation of the design rules of the coronary arteries and their application in the assessment of diffuse disease. Phys Med Biol 47:977–993PubMed
73.
Zurück zum Zitat Kassab GS (2006) Scaling laws of vascular trees: of form and function. Am J Physiol Heart Circ Physiol 290:894–903 Kassab GS (2006) Scaling laws of vascular trees: of form and function. Am J Physiol Heart Circ Physiol 290:894–903
74.
Zurück zum Zitat van der Giessen AG et al (2011) The influence of boundary conditions on wall shear stress distribution in patients specific coronary trees. J Biomech 44:1089–1095PubMed van der Giessen AG et al (2011) The influence of boundary conditions on wall shear stress distribution in patients specific coronary trees. J Biomech 44:1089–1095PubMed
75.
Zurück zum Zitat Tran JS, Schiavazzi DE, Ramachandra AB, Kahn AM, Marsden AL (2016) Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Comput Fluids 142:128–138PubMedPubMedCentral Tran JS, Schiavazzi DE, Ramachandra AB, Kahn AM, Marsden AL (2016) Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Comput Fluids 142:128–138PubMedPubMedCentral
76.
Zurück zum Zitat Barlis P et al (2015) Reversal of flow between serial bifurcation lesions: insights from computational fluid dynamic analysis in a population-based phantom model. EuroIntervention 11:e1–e3PubMed Barlis P et al (2015) Reversal of flow between serial bifurcation lesions: insights from computational fluid dynamic analysis in a population-based phantom model. EuroIntervention 11:e1–e3PubMed
77.
Zurück zum Zitat Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6:16–26PubMed Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6:16–26PubMed
78.
Zurück zum Zitat Kim HJ et al (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38:3195–3209PubMed Kim HJ et al (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38:3195–3209PubMed
79.
Zurück zum Zitat Sankaran S et al (2012) Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann Biomed Eng 40:2228–2242PubMedPubMedCentral Sankaran S et al (2012) Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann Biomed Eng 40:2228–2242PubMedPubMedCentral
80.
Zurück zum Zitat Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195:5685–5706 Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195:5685–5706
81.
Zurück zum Zitat Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43:151–159 Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43:151–159
82.
Zurück zum Zitat Hecht F, Pironneau O (2017) An energy stable monolithic Eulerian fluid-structure finite element method. Int J Numer Methods Fluids 85:430–446 Hecht F, Pironneau O (2017) An energy stable monolithic Eulerian fluid-structure finite element method. Int J Numer Methods Fluids 85:430–446
83.
Zurück zum Zitat Peskin CS, Peskin CS (2002) Numerica : The immersed boundary method. The immersed boundary method. Acta Numer 11:479–517 Peskin CS, Peskin CS (2002) Numerica : The immersed boundary method. The immersed boundary method. Acta Numer 11:479–517
84.
Zurück zum Zitat Seo JH, Mittal R (2011) A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J Comput Phys 230:7347–7363PubMedPubMedCentral Seo JH, Mittal R (2011) A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J Comput Phys 230:7347–7363PubMedPubMedCentral
85.
Zurück zum Zitat Prosi M, Perktold K, Ding Z, Friedman MH (2004) Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J Biomech 37:1767–1775PubMed Prosi M, Perktold K, Ding Z, Friedman MH (2004) Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J Biomech 37:1767–1775PubMed
86.
Zurück zum Zitat Torii R et al (1965) Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun Numer Methods Eng 90:443–445 Torii R et al (1965) Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun Numer Methods Eng 90:443–445
87.
Zurück zum Zitat Torii R et al (2009) The effect of dynamic vessel motion on haemodynamic parameters in the right coronary artery: a combined MR and CFD study. Br. J. Radiol. 82:S24–S32PubMed Torii R et al (2009) The effect of dynamic vessel motion on haemodynamic parameters in the right coronary artery: a combined MR and CFD study. Br. J. Radiol. 82:S24–S32PubMed
88.
Zurück zum Zitat Mundi S et al (2018) Endothelial permeability, LDL deposition, and cardiovascular risk factors-A review. Cardiovasc Res 114:35–52PubMed Mundi S et al (2018) Endothelial permeability, LDL deposition, and cardiovascular risk factors-A review. Cardiovasc Res 114:35–52PubMed
89.
Zurück zum Zitat Anssari-Benam A, Bader DL, Screen HRC (2011) A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation. J Mater Sci Mater Med 22:253–262PubMed Anssari-Benam A, Bader DL, Screen HRC (2011) A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation. J Mater Sci Mater Med 22:253–262PubMed
90.
Zurück zum Zitat Thondapu V et al (2018) Endothelial shear stress 5 years after implantation of a coronary bioresorbable scaffold. Eur Heart J 39:1602–1609PubMed Thondapu V et al (2018) Endothelial shear stress 5 years after implantation of a coronary bioresorbable scaffold. Eur Heart J 39:1602–1609PubMed
91.
Zurück zum Zitat Boyd J, Buick JM, Green S (2007) Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flow using the lattice Botlzmann method. Phys. Fluids 19:93103 Boyd J, Buick JM, Green S (2007) Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flow using the lattice Botlzmann method. Phys. Fluids 19:93103
92.
Zurück zum Zitat Quemada D (1978) Rheology of concentrated disperse systems III. General features of the proposed non-Newtonian model. Comparison with experimental data. Rheol Acta 17:643–653 Quemada D (1978) Rheology of concentrated disperse systems III. General features of the proposed non-Newtonian model. Comparison with experimental data. Rheol Acta 17:643–653
93.
Zurück zum Zitat Tang HS, Kalyon DM (2004) Estimation of the parameters of Herschel-Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers. Rheol Acta 43:80–88 Tang HS, Kalyon DM (2004) Estimation of the parameters of Herschel-Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers. Rheol Acta 43:80–88
94.
Zurück zum Zitat Alkadhi H et al (2008) Radiation dose of cardiac dual-source CT: the effect of tailoring the protocol to patient-specific parameters. Eur J Radiol 68:385–391PubMed Alkadhi H et al (2008) Radiation dose of cardiac dual-source CT: the effect of tailoring the protocol to patient-specific parameters. Eur J Radiol 68:385–391PubMed
96.
Zurück zum Zitat Zreik M et al (2019) A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans Med Imaging 38:1588–1598PubMed Zreik M et al (2019) A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans Med Imaging 38:1588–1598PubMed
97.
Zurück zum Zitat Maher G, Wilson N, Marsden A (2019) Accelerating cardiovascular model building with convolutional neural networks. Med Biol Eng Comput 57:2319–2335PubMedPubMedCentral Maher G, Wilson N, Marsden A (2019) Accelerating cardiovascular model building with convolutional neural networks. Med Biol Eng Comput 57:2319–2335PubMedPubMedCentral
98.
Zurück zum Zitat Zhong L et al (2018) Application of patient-specific computational fluid dynamics in coronary and intra-cardiac flow simulations: challenges and opportunities. Front Physiol 9:742PubMedPubMedCentral Zhong L et al (2018) Application of patient-specific computational fluid dynamics in coronary and intra-cardiac flow simulations: challenges and opportunities. Front Physiol 9:742PubMedPubMedCentral
99.
Zurück zum Zitat Tesche C et al (2016) Coronary CT angiography-derived fractional flow reserve. Radiology 285:17–33 Tesche C et al (2016) Coronary CT angiography-derived fractional flow reserve. Radiology 285:17–33
100.
Zurück zum Zitat Coenen A et al (2018) Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve result from the MACHINE Consortium. Circ Cardiovasc Imaging 11:1–11 Coenen A et al (2018) Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve result from the MACHINE Consortium. Circ Cardiovasc Imaging 11:1–11
101.
Zurück zum Zitat Kantor B, Kuzo RS, Gerber TC (2007) Coronary computed tomographic angiography: current and future uses. Hear Metab 34:5–9 Kantor B, Kuzo RS, Gerber TC (2007) Coronary computed tomographic angiography: current and future uses. Hear Metab 34:5–9
102.
Zurück zum Zitat Ma H et al (2018) Automated quantification and evaluation of motion artifact on coronary CT angiography images. Med Phys 45:5494–5508PubMed Ma H et al (2018) Automated quantification and evaluation of motion artifact on coronary CT angiography images. Med Phys 45:5494–5508PubMed
103.
Zurück zum Zitat Li P et al (2018) Blooming artifact reduction in coronary artery calcification by a new de-blooming algorithm: initial study. Sci Rep 8:1–8 Li P et al (2018) Blooming artifact reduction in coronary artery calcification by a new de-blooming algorithm: initial study. Sci Rep 8:1–8
104.
Zurück zum Zitat Halliburton SS, Tanabe Y, Partovi S, Rajiah P (2017) The role of advanced reconstruction algorithms in cardiac CT. Cardiovasc Diagn Ther 7:527–538PubMedPubMedCentral Halliburton SS, Tanabe Y, Partovi S, Rajiah P (2017) The role of advanced reconstruction algorithms in cardiac CT. Cardiovasc Diagn Ther 7:527–538PubMedPubMedCentral
105.
Zurück zum Zitat Nishiyama H et al (2019) Incremental diagnostic value of whole-heart dynamic computed tomography perfusion imaging for detecting obstructive coronary artery disease. J Cardiol 73:425–431PubMed Nishiyama H et al (2019) Incremental diagnostic value of whole-heart dynamic computed tomography perfusion imaging for detecting obstructive coronary artery disease. J Cardiol 73:425–431PubMed
106.
Zurück zum Zitat Diaz-zamudio M et al (2017) Quantitative plaque features from coronary computed tomography angiography to identify regional ischemia by myocardial perfusion imaging. Eur Heart J 18:499–507 Diaz-zamudio M et al (2017) Quantitative plaque features from coronary computed tomography angiography to identify regional ischemia by myocardial perfusion imaging. Eur Heart J 18:499–507
107.
Zurück zum Zitat Wittek A, Grosland NM, Joldes GR, Magnotta V, Miller K (2016) From finite element meshes to clouds of points: a review of methods for generation of computational biomechanics models for patient-specific applications. Ann Biomed Eng 44:3–15PubMed Wittek A, Grosland NM, Joldes GR, Magnotta V, Miller K (2016) From finite element meshes to clouds of points: a review of methods for generation of computational biomechanics models for patient-specific applications. Ann Biomed Eng 44:3–15PubMed
108.
Zurück zum Zitat You YH, Kou XY, Tan ST (2015) Adaptive meshing for finite element analysis of heterogeneous materials. Comput Des 62:176–189 You YH, Kou XY, Tan ST (2015) Adaptive meshing for finite element analysis of heterogeneous materials. Comput Des 62:176–189
109.
Zurück zum Zitat Si H (2015) TetGen, a quality tetrahedral mesh generator. AMC Trans Math Softw 41:11 Si H (2015) TetGen, a quality tetrahedral mesh generator. AMC Trans Math Softw 41:11
110.
Zurück zum Zitat Seo JH, Eslami P, Caplan J, Tamargo RJ, Mittal R (2018) A highly automated computational method for modeling of intracranial aneurysm hemodynamics. Front Physiol 9:1–12 Seo JH, Eslami P, Caplan J, Tamargo RJ, Mittal R (2018) A highly automated computational method for modeling of intracranial aneurysm hemodynamics. Front Physiol 9:1–12
111.
Zurück zum Zitat Bishop AH, Samady H (2004) Fractional flow reserve: critical review of an important physiologic adjunct to angiography. Am Heart J 147:792–802PubMed Bishop AH, Samady H (2004) Fractional flow reserve: critical review of an important physiologic adjunct to angiography. Am Heart J 147:792–802PubMed
112.
Zurück zum Zitat Barfett JJ, Fistra J, Mikulis DJ, Krings T (2010) Blood velocity calculated from volumetric dynamic computed scanning of flow phantoms. Invest Radiol 45:10–13 Barfett JJ, Fistra J, Mikulis DJ, Krings T (2010) Blood velocity calculated from volumetric dynamic computed scanning of flow phantoms. Invest Radiol 45:10–13
113.
Zurück zum Zitat Tran JS, Schiavazzi DE, Ramachandra AB, Kahn AM, Marsden AL (2016) Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Comput Fluids 27:138–144 Tran JS, Schiavazzi DE, Ramachandra AB, Kahn AM, Marsden AL (2016) Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Comput Fluids 27:138–144
Metadaten
Titel
Physiology and coronary artery disease: emerging insights from computed tomography imaging based computational modeling
verfasst von
Parastou Eslami
Vikas Thondapu
Julia Karady
Eline M. J. Hartman
Zexi Jin
Mazen Albaghdadi
Michael Lu
Jolanda J. Wentzel
Udo Hoffmann
Publikationsdatum
10.08.2020
Verlag
Springer Netherlands
Erschienen in
The International Journal of Cardiovascular Imaging / Ausgabe 12/2020
Print ISSN: 1569-5794
Elektronische ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-020-01954-x

Weitere Artikel der Ausgabe 12/2020

The International Journal of Cardiovascular Imaging 12/2020 Zur Ausgabe

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.