Skip to main content
Erschienen in: Molecular Brain 1/2016

Open Access 01.12.2016 | Research

Positive geotactic behaviors induced by geomagnetic field in Drosophila

verfasst von: Ji-Eun Bae, Sunhoe Bang, Soohong Min, Sang-Hyup Lee, Soon-Hwan Kwon, Youngseok Lee, Yong-Ho Lee, Jongkyeong Chung, Kwon-Seok Chae

Erschienen in: Molecular Brain | Ausgabe 1/2016

Abstract

Background

Appropriate vertical movement is critical for the survival of flying animals. Although negative geotaxis (moving away from Earth) driven by gravity has been extensively studied, much less is understood concerning a static regulatory mechanism for inducing positive geotaxis (moving toward Earth).

Results

Using Drosophila melanogaster as a model organism, we showed that geomagnetic field (GMF) induces positive geotaxis and antagonizes negative gravitaxis. Remarkably, GMF acts as a sensory cue for an appetite-driven associative learning behavior through the GMF-induced positive geotaxis. This GMF-induced positive geotaxis requires the three geotaxis genes, such as cry, pyx and pdf, and the corresponding neurons residing in Johnston’s organ of the fly’s antennae.

Conclusions

These findings provide a novel concept with the neurogenetic basis on the regulation of vertical movement by GMF in the flying animals.
Begleitmaterial
Additional file 1: Table S1. GMF parameters of the near-zero GMF condition in Fig. 1. Values of X, Y, and Z intensity are the means of 10 trials for each condition. Total intensity, was calculated using the formula \( \sqrt{X^2+{Y}^2+{Z}^2} \) [13]. Sham: ambient GMF, −: near-zero GMF condition. (DOC 27 kb)
Additional file 3:
Video. A representative normal behavior of Canton-S flies in the tube-positioning assay under the sham condition (the ambient GMF) (Fig. 1c). (AVI 6775 kb)
Additional file 4:
Video. A representative negative geotactic behavior of Canton-S flies in the tube-positioning assay under the cancellation condition (the near-zero GMF) (Fig. 1c). (AVI 6674 kb)
Additional file 5: Table S2. GMF parameters of the positive geotactic GMF conditions in Fig. 2a. Values of X, Y, and Z intensity are the means of 10 trials for each condition. Total intensity, was calculated using the formula \( \sqrt{X^2+{Y}^2+{Z}^2} \) [13]. a, b, and c are the GMF conditions under which the geotactic positioning was measured, respectively. Note that b and c were positive geotactic GMF conditions. (DOC 28 kb)
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13041-016-0235-1) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

KSC conceived the idea of studying the GMF-modulated geotaxis using Drosophila and using tube-positioning assay and free-flight assay to measure geotactic behaviors in flies; KSC and JC designed the study; KSC, YHL, JEB, SHK and SHL designed and constructed the experimental apparatuses; SB, SM, YL, JC and KSC prepared the experimental materials including genetic flies; JEB, SB, SM, KSC, SHL and SHK performed the experiments. KSC, JEB, SB, SM and JC analyzed the data. SM, KSC and JC wrote the paper. All the authors discussed and commented on the manuscript. All authors read and approved the final manuscript.
Abkürzungen
ANOVA
one-way analysis of variance
cry
cryptochrome
EMF
electromagnetic field
GFP
green fluorescent protein
GMF
geomagnetic field
iav
inactive
JO
Johnston’s organ
l-LNvs
large ventral lateral neurons
LNds
dorsal lateral neurons
nan
nanchung
pdf
pigment-dispersing factor
pdfr
pdf receptor
pyx
pyrexia
RPM
radical pair mechanism
SEM
standard error of the mean
s-LNvs
small ventral lateral neurons
TNT
tetanus toxin
TRP
transient receptor potential
ZT
Zeitgeber time

Background

Geotaxis is a typical innate behavioral response of all living organisms characterized by locomotive activities toward or away from Earth. Particularly, negative geotaxis against Earth’s gravity is prominent in flying animals [13]. Remarkable advances have been made in identifying the genes and organs governing the geotactic behaviors using various model organisms, such as the fruit fly, rat, and mouse [36]. Especially, two geotaxis genes, cryptochrome (cry) and pigment-dispersing factor (pdf) were discovered to be important for the fruit fly’s negative geotaxis [3, 4]. In addition, pyrexia (pyx), a member of the transient receptor potential (TRP) family, has been also implicated in gravity sensing by Johnston’s organ (JO), the primary organ that senses gravity in Drosophila [7, 8].
It is generally accepted that microgravity in a space craft or simulated microgravity on the ground provides suitable experimental conditions to investigate whether gravity provokes geotaxis of living organisms [911]. However, this consensus may be flawed because geotactic behaviors under these conditions are confounded by a wide range of artifacts. For instance, geomagnetic field (GMF), one of the bio-effective environmental factors on Earth, is also notably weakened in space [9, 12]. A web of GMF ranging from 25 μT at the magnetic equator to 65 μT at the magnetic poles surrounds Earth [13] and influences animals’ locomotive activities. Indeed, GMF provides migratory animals an important behavioral cue for their horizontal migration [14, 15]. The European robin and eastern red-spotted newt use an inclination compass that provides directional information on the magnetic pole (north) and magnetic equator (south) for north–south migration [15, 16]. Hatchling loggerhead sea turtles exploit longitudinal and latitudinal information, a two-coordinate magnetic map, of GMF to migrate in the North Atlantic Ocean to spawn [17]. Because the trajectories of such flying or swimming animals occur not in planes but in a three-dimensional space, we speculate that GMF may also influence vertical movement.
Interestingly, a recent study showed that electromagnetic field (EMF) interferes with flies’ negative geotaxis [18]. In the study, EMF, of which intensity was heterogeneous and adjusted at an artificially high level of 500 μT, disrupted the gravity-induced negative geotaxis, and this phenomenon was abolished in cry mutant flies, suggesting that CRY mediates the effect of EMF [18]. The result strongly implicates that naturally existing magnetic fields including GMF can influence the geotactic behaviors of animals on Earth.
In the present study, we adopted a Helmholtz coil system generating highly refined and reproducible GMF conditions to identify the role of GMF in flies’ geotactic behaviors and the neurogenetic basis for the GMF-modulated geotactic behaviors. Attenuation of GMF to near zero potentiated the gravity-induced negative geotactic behaviors, suggesting the antagonizing effect of GMF on the gravity-induced geotaxis. We also generated particular GMF conditions with increased intensity where flies exhibited robust positive geotaxis. Both the GMF-modulated negative and positive geotactic behaviors required the neural circuit expressing CRY, Pyx and PDF. These results indicate that flies employ the GMF-based neural adjustment to maintain optimal vertical positioning.

Results

Potentiated negative geotaxis by near-zero GMF

To determine if GMF influences the geotactic behaviors of Drosophila, we constructed a GMF condition (henceforth, referred to as GMF, unless otherwise indicated) ranging from near-zero to ca. 85 μT which is comparable to the ambient GMF on Earth using a Helmholtz coil system (Fig. 1a). First, we attempted to modulate the intensity of GMF to a near-zero condition (Additional file 1: Table S1), and the tube-positioning assay, a modified version of the tube-climbing assay, was performed in the test cube to measure vertical positioning of flies at Zeitgeber time (ZT) 5 to ZT8 (Fig. 1b and Additional file 2: Figure S1A). A near-zero GMF condition was achieved by cancellation of all three GMF axes, X, Y, and Z, which significantly decreased the geotactic positioning scores (8 %–16 %) in all tested fly strains, Canton-S, white-eyed Canton-S, w 1118 , Oregon-R, and Berlin-K (P < 0.01–0.001), compared to the sham condition (~45 μT in the lab) (Fig. 1c, Additional files 3 and 4) (By the definition described in Methods and Fig. 1b, a decrease in the geotactic positioning score indicates an increase in negative geotaxis and vice versa.). This potentiated negative geotaxis of flies under the near-zero GMF was similarly reproduced at ZT0–ZT2 (Additional file 2: Figure S1B), a circadian period characterized by higher locomotor activities in flies [19]. In addition, the geotactic responses modulated by countervailing fields in Helmholtz coil system was reproduced by passive cancellation of GMF with a permalloy cube made of nickel-iron alloy, a widely used metal for GMF shielding (Additional file 2: Figure S1C, S1D). In a time-course analysis, the geotactic response of Canton-S was fast (approximately 1 min, P < 0.005) and was sustained up to 11 min (P < 0.001) under the near-zero GMF (Fig. 1d and Additional file 4). Based on these robust and consistent responses, the Canton-S line was primarily used in subsequent experiments.
In another widely used geotaxis assay employing a vertical choice Y-maze [4] (Fig. 1e), more flies left the maze through the upper exits (1 and 3) than the lower exits (4–6) under the near-zero GMF than the ambient GMF (P < 0.05) (Fig. 1f), confirming that attenuation of GMF strengthens the negative geotactic nature of flies. As a control, the exit profiles of flies through the vertical maze versus horizontal maze in the ambient GMF were reproduced as previously described [4] (Additional file 2: Figure S1E). To further confirm the near-zero GMF-induced negative geotaxis in a more natural setup, a free-flight assay in which flies could freely fly in a cubic arena was also conducted (Fig. 1g). Consistent with the above results, the near-zero GMF elicited flying at higher elevations (P < 0.05) (Fig. 1h). Collectively, these results strongly suggest that GMF antagonizes negative geotaxis in Drosophila.

Positive geotaxis induced by modulated GMF

A growing body of evidence suggests that the individual components of GMF provide fundamentally different information to magnetosensitive animals. The vector of GMF provides directional information, whereas the intensity and/or inclination provide positional information for horizontal movement [15]. However, GMF has not been previously suggested as a cue for vertical movement of animals such as geotactic behaviors. Since the near-zero GMF potentiated negative geotaxis as shown in Fig. 1, we next asked whether any GMF conditions with increased intensity make flies actively move downward to the bottom per se. Therefore, we examined the geotactic behaviors of flies in response to specific GMF conditions with increased intensity up to 85 μT (Additional file 5: Table S2). Interestingly, we observed robust positive geotactic responses of the flies under the GMF conditions at 71 μT (b in Fig. 2a) and 85 μT (c in Fig. 2a) (P < 0.005 and < 0.001, respectively). To rule out possible influence from the experimental setup (see Fig. 1b, left), we carried out a control experiment by rotating the test cube 90° counterclockwise in the horizontal plane. The geotactic scores were comparable between the two directions of the test cube under the near-zero GMF and the positive geotactic GMF condition b (Additional file 6: Figure S2A). These results demonstrate that flies can move downward, i.e., positive geotactic, under the GMF conditions with increased intensity.
It has been known that magnetosensitive movements in Drosophila are mediated by a blue light-dependent manner [20, 21]. We evaluated the possibility that wild-type flies exhibit differential geotactic behaviors in response to light and dark conditions. Interestingly, flies did not exhibit substantial changes in geotactic behaviors under the near-zero GMF and the positive geotactic GMF condition b in Fig. 2a in the dark condition (0 lx) (Fig. 2b and c), indicating that light is required for GMF-modulated geotaxis. In addition, the potentiated negative geotaxis at short wavelengths (400–420 nm) (P < 0.005) was comparable to that at full spectrum (P < 0.005) (Additional file 6: Figure S2B), demonstrating that blue light is sufficient for the GMF-modulated geotaxis.
Next, we examined whether the GMF-modulated positive geotaxis is biologically relevant for a stereotyped fly behavior. To address this question, we conducted an associative learning experiment in which the fly memory on the food located at the bottom of a test tube was associated with the memory on a non-geotactic GMF condition (Fig. 2d). The non-geotactic GMF condition a was demonstrated to function as a neutral stimulus for geotactic responses (Fig. 2a). If starved flies successfully learned to associate the appetite-driven stimulus with the non-geotactic GMF, the flies would exhibit a positive geotactic response upon the sole presentation of the non-geotactic GMF without food. To associate the appetite-driven stimulus with the non-geotactic GMF condition, a group of starved flies was initially trained for 2 min under non-geotactic GMF conditions with food. After a 2 min-rest with the test tube upside-down to eliminate any potential bias for the bottom of the tube, the starved flies were subjected to the non-geotactic GMF condition without food for the test. As a control, parallel experiments were performed in which no food was supplied during the initial training (Fig. 2d). Strikingly, the flies trained by the non-geotactic GMF stimulus with food (Fig. 2e, right) exhibited significant positive geotactic responses under the non-geotactic GMF alone (P < 0.005) (Fig. 2e, right), but no remarkable behavioral changes under the sham condition (Fig. 2e, right). By contrast, the control flies for which no food was associated with the non-geotactic GMF stimulus (Fig. 2e, middle) did not exhibit a noticeable positive geotactic response under the non-geotactic GMF condition (Fig. 2e, middle). Collectively, these results demonstrate that GMF can function as a biologically relevant behavioral cue for vertical movement in flies, particularly when it is associated with the appetitive stimulus that is compulsory for survival in the wild.

Necessity of CRY, PDF and Pyx pathways in positive geotaxis

To characterize the biological mechanisms underlying the GMF-modulated positive geotaxis, we evaluated the requirements of the signaling pathways that convey the environmental magnetoreceptive information toward the locomotive organs. cry was identified as a geotaxis gene through behavioral genetic screening, and an inverse correlation between the cry transcript level and negative geotaxis was observed [3]. In addition, given the observed results in Fig. 2b, c and Additional file 6: Figure S2B and that CRY is a light-responsive protein [20, 21], we hypothesized that CRY is involved in the GMF-induced geotaxis. To test this hypothesis, CRY-deficient cry 01 mutant flies [20] backcrossed into the wild-type Canton-S background were used to enable the comparison of their geotactic behaviors with those of Canton-S flies as controls. First, we observed that CRY-deficient flies displayed abrogated negative geotactic behaviors that were normally potentiated by the near-zero GMF (Fig. 3a). To check the positive geotactic responses of the mutants, we used the same GMF condition b (Intensity = 71 μT) that elicited positive geotactic responses in Fig. 2a. In this condition, CRY-deficient flies exhibited impaired positive geotactic responses compared to wild-type controls, and CRY expression-rescued flies exhibited normal positive geotactic responses (Fig. 3b and c, respectively). In addition, RNAi knockdown of cry using the cry-GAL4 driver completely abolished the positive geotactic responses compared to wild-type and other control flies (Fig. 3d). Moreover, CRY-deficient flies were defective in the near-zero GMF-induced negative geotaxis and the CRY expression-rescued flies recovered the geotactic behavioral phenotype (Additional file 7: Figure S3A). Similarly, the impaired geotactic response in cry-knockdown flies was restored by the recovering of the expression of CRY in the mutant flies (Additional file 7: Figure S3B).
Previous studies suggested that pdf and pdf receptor (pdfr) play crucial roles in geotaxis [3, 22]. Thus, we examined whether PDF also plays a role in the GMF-modulated geotactic behaviors using pdf 01 mutant flies, a PDF-deficient line [23]. Interestingly, pdf 01 mutant flies were defective in both the near-zero GMF-induced negative geotactic and positive geotactic responses compared to wild-type controls (Fig. 3e and f). Genetic restoration of PDF expression in the mutants fully rescued the defect in both geotactic responses (Fig. 3g and Additional file 7: Figure S3C). Supporting these results, specific knockdown of pdf using pdf-GAL4 driver also impaired both the near-zero GMF-induced negative geotaxis and positive geotactic responses (Fig. 3h and Additional file 7: Figure S3D). Together, these results demonstrate that PDF is required for the GMF-modulated geotactic behavior in flies.
We next examined the GMF-modulated geotactic responses in a pyx-deficient mutant line because Pyx encoded by pyx belongs to the TRP channel family and critically contributes to gravity sensing in the Drosophila JO [7, 8]. The mutant flies exhibited impaired GMF-modulated positive geotaxis and near-zero GMF-induced negative geotaxis (Fig. 3i and j, respectively), and both of the impaired geotactic responses were successfully recovered by genetic rescue of pyx (Fig. 3k and Additional file 7: Figure S3E, respectively). Similarly, RNAi knockdown of pyx abrogated the positive geotactic positioning and near-zero GMF-induced negative geotaxis (Fig. 3l and Additional file 7: Figure S3F, respectively). These results consistently suggest that Pyx is required for the GMF-modulated geotactic behaviors.
Having shown that CRY, PDF and Pyx genes are required for the GMF-modulated geotactic behaviors, we investigated the neuroanatomical loci critical for the behaviors. We paid first attention to JO that is comprised of specialized neurons and cap cells for perceiving mechanical stimuli and sensing gravity for normal geotaxis (Fig. 4a) [7, 8]. Intriguingly, Pyx is expressed in the cap cells in JO [8] and a batch of prominent CRY neurons morphologically corresponding to JO neurons was visualized (Fig. 4b). However, we found no evidence for PDF neurons located in JO (Fig. 4c). Prior to testing the necessity of these neurons in the GMF-modulated geotaxis, we confirmed whether JO is indeed critical for the GMF-modulated geotactic responses. To achieve this, we physically injured JO in the second segment of antenna [8] and checked the geotactic responses. As a result, we observed that the flies with injured JO exhibited severely impaired GMF-modulated geotactic behaviors (Fig. 4d). As a comparison, we also cut off flies’ wings [24] and examined the injured flies’ geotactic behaviors, but found no significant difference between the injured flies and controls (Additional file 8: Figure S4A), substantiating the hypothesis that JO is critical locus for the GMF-modulated geotaxis in flies. To next examine if the CRY, PDF and Pyx neurons in JO are required for the GMF-modulated geotactic responses, we targeted expression of tetanus toxin (TNT) to silence each of these neurons expressing CRY, PDF and Pyx using their specific GAL4 drivers. Interestingly, silencing CRY, PDF and Pyx neurons all abrogated the GMF-modulated positive geotaxis (Fig. 4e-g). Also, silencing these neurons abolished the near-zero GMF-induced negative geotaxis (Additional file 8: Figure S4B-S4D). Taken together, these results demonstrate that a neural circuit expressing CRY, PDF, and Pyx is required for the GMF-modulated geotactic behaviors and suggest that the circuit-mediated sensory processes for the GMF-modulated geotactic responses may occur in JO.

Johnston’s organ-specific role of CRY and Pyx pathways

To determine whether the functions of CRY, PDF and Pyx in JO are critical for the GMF-modulated geotactic responses, we selectively restored the gene expression of cry, pdf and pyx in the fly mutants of these genes using two JO-specific GAL4 drivers, nanchung (nan) and inactive (iav) [8]. Supporting the hypothesis, JO-specific expression of exogenous cry using these two different GAL4 drivers in CRY-deficient flies completely rescued the impaired GMF-modulated geotactic behaviors (Fig. 5a, b, Additional file 9: Figure S5A and S5B). Similarly, the defective GMF-modulated geotactic responses in Pyx-deficient flies were also rescued by JO-specific expression of exogenous pyx (Fig. 5c, d, Additional file 9: Figure S5C and S5D). These results indicate that CRY and Pyx function in JO to mediate the GMF-modulated geotactic behaviors.
Strikingly, however, JO-specific expression of PDF was not sufficient to rescue the defective GMF-modulated geotactic responses of pdf mutant flies (Fig. 5e, f, Additional file 9: Figure S5E and S5F). This result is in consistence with the notion that PDF is not expressed in JO (Fig. 4c), suggesting that the PDF neurons in the remaining body parts are responsible for the GMF-modulated geotactic responses. Intriguingly, we found that RNAi knockdown of pdf in CRY- or Pyx-expressing cells impaired the GMF-modulated geotactic responses (Fig. 5g, h, Additional file 9: Figure S5G and S5H). Taken together, these data suggest that PDF functions in the GMF-modulated geotactic responses elsewhere in the CRY- and Pyx-expressing cells.

Discussion and conclusions

As revealed by our work, GMF serves as a driving force for geotactic behaviors; attenuating it to near zero potentiated the gravity-induced negative geotaxis, whereas specific GMF conditions with increased intensity elicited robust positive geotaxis. Consistently, we observed that flies locate themselves at higher positions upon exposure to a negative geotactic GMF condition in a free-flight experimental setup. Based on these results, we hypothesize that the bipolar geotactic responses modulated by GMF would in turn affect a flying animal’s vertical movements.
Our data demonstrated that the GMF-modulated geotaxis is a genuine behavior-oriented response that utilizes specific tissues (i.e. JO), neural circuits and genes to integrate the surrounding GMF information. To investigate whether flies sense the existence of GMF and learn to associate it as a behavioral cue, we trained flies using food located at the bottom of a tube to make them move downward in the presence of a non-geotactic GMF to determine if flies would move downward due to the memory of the GMF previously associated with food. Surprisingly, flies indeed moved downward in the presence of a non-geotactic GMF even in the absence of food, clearly demonstrating that GMF could act as a geotactic behavioral cue for Drosophila.
JO-selective genetic restoration of cry and pyx successfully rescued the impaired GMF-modulated geotactic responses of the fly mutants of these genes, whereas JO-specific pdf expression was insufficient to rescue the defective geotactic responses of PDF-deficient mutants (Fig. 5 and Additional file 9: Figure S5). These results raise two intriguing questions. 1) Do other tissues mediate the GMF-modulated geotactic responses? 2) If so, what is the hierarchy among JO and these tissues? A recent study attempted to selectively restore CRY expression in different tissues of cry mutant flies and tested their geotactic behaviors in response to electromagnetic field (EMF) [18]. The study found that selective restoration of CRY in three different tissues, including JO, dorsal lateral neurons (LNds), and particular regions in the eye, rescued the disturbed climbing responses induced by EMF to varying degrees. Consistent with the involvement of multiple tissues in the EMF-modulated geotactic responses, we also conclude that both nan/iav-positive cells in JO and PDF-positive CRY-expressing cells in different tissues are important for the GMF-modulated geotactic responses. Indeed, CRY and PDF are co-expressed in a subset of clock neurons in the brain, such as small ventral lateral neurons (s-LNvs) and large ventral lateral neurons (l-LNvs), and thus form the interfacial neural circuits for circadian output pathways [25, 26]. In addition, circadian rhythm signals from CRY-expressing clock neurons are projected onto the PDF-PDFR signaling circuits and thus are eventually propagated toward locomotor organs such as the legs and/or wings [2628]. In fact, the circadian locomotor activity of Canton-S flies was affected by EMF, and this effect required CRY [29]. Therefore, it is conceivable that the environmental GMF sensed by the CRY-mediated pathway in JO converges on the subset of clock neurons in the brain that controls locomotive activities to execute the complete process of the GMF-modulated geotactic responses.
What is the biological significance of the GMF-modulated geotaxis in nature? GMF is critical for the high accuracy of long-distance travel by migratory animals [14, 15, 17]. We speculate that the importance of GMF as a behavioral cue may be attributable to its consistency, in contrast to olfaction and vision which are locally formed and weakened or distorted by weather changes. For example, navigating animals may imprint sets of the GMF parameters for feeding sites along the past migratory routes via food-GMF associative learning, which allows them to secure fueling sites for subsequent journeys. Supporting this notion, a study presented evidence that the migratory songbird thrush nightingale (Luscinia luscinia) exploits GMF for locating food sources before crossing the Sahara Desert, a large ecological barrier [30]. In addition, a theory on radical pair mechanism (RPM) provided the genetic basis for sensing GMF by CRY. According to the RPM theory, the three-dimensional pattern of magnetoreception mediated by CRY provides a spherical coordinate system in the brain, and that can elicit directional and spatial responses of animals in three dimensions [31]. These studies support our finding that GMF would serve as an important behavioral cue for animal’s vertical movements during the navigation in nature. Further investigation of how animals sense and utilize GMF components, e.g., total intensity, inclination, declination, etc. will lead us to a better understanding of the behaviors of magnetotactic animals on Earth.

Methods

Fly stocks and genetics

All flies were reared with standard cornmeal-yeast-agar diet at 25 °C, 60 % relative humidity, in a 12 h light/12 h dark cycle under a full-spectrum fluorescent light that was turned on at 09:00 (local time), and the ambient geomagnetic field (GMF; total intensity = 44.9 μT, X (North–south) = 32.2 μT, Y (East–west) = −5.8 μT, Z (vertical to ground) = 30.8 μT). Fly strains of Canton-S, Oregon-R, w 1118, Berlin-K, cry-GAL4 16 , nan-GAL4, iav-GAL4, UAS-mCD8::GFP, UAS-cry RNAi (BL25859), and UAS-pyx RNAi (BL31297) were provided by the Bloomington Drosophila Stock Center (Indiana University, Bloomington, IN, USA). UAS-pdf RNAi (v4380) was provided by Vienna Drosophila RNAi Center (Vienna, Austria). Other flies were gifts: cry 01 flies [20] from Dr. S. M. Reppert (Univ. of Massachusetts, USA); pdf 01 [23] from Dr. J. H. Park (Univ. of Tennessee, USA); UAS-TNT and UAS-ImpTNT [32] from Dr. C. J. O’Kane (Univ. of Cambridge, UK), and pdf-GAL4 [19] from Dr. J. Choe (KAIST, Korea); pyx-GAL4 [8] from Dr. F. N. Hamada (Cincinnati Children’s Hospital Medical Center, USA); UAS-cry [33] from Dr. E. Rosato (Univ. of Leicester, UK); UAS-pdf [19] from Dr. P. H. Taghert (Washington Univ., USA). cry 01 , pdf 01 , and pyx 3 were outcrossed to Canton-S background for 6–8 generations. For restoring the mutant phenotype using GAL4-UAS system in each cry 01 , pdf 01 , or pyx 3 mutant background, pyx-GAL4 and iav-GAL4 were recombined onto the third chromosome carrying each mutant allele. There was no abnormal phenotype in appearances and life cycle during the development of fly strains throughout the experiments, except low oviposition rate in PDF-deficient files.

Regulation of GMF

A rectangular Helmholtz coil system (Fig. 1a) consisting of three pairs of parallel coils arranged orthogonally for three axes was constructed based on our previous Helmholtz coil system [3436], and it was used to modulate the intensity of three GMF vectors by active cancellation. The coil for X axis (North–south) was aligned with true geographic north so that Y-coil has a room for contributing to modulate Y vector of GMF. The position of geographic north was determined using the local declination value (−7.53 at the time of set-up) of Daegu city outside the building where the experiments were performed. Using this set-up, we intended to maximize the diversity of GMF conditions close to the real world for testing flies’ geotactic behaviors. Average dimensions of the coils were 1,890 × 1,890 mm, 1,890 × 1,800 mm, and 1,980 × 1,980 mm, for the X, Y, and Z axes, respectively. Coils for each axis comprised two bundles (1 mm in diameter enameled Cu wire, 175-turns/bundle) on an open non-magnetic aluminum frame aligned in parallel with each other, with effective distances of 1,029 mm, 980 mm, and 1,078 mm for the X, Y, and Z axes, respectively. A pair of coils for each axis was connected to an adjustable DC power supply (E3631A; Agilent Technologies, Santa Clara, CA, USA). GMF was measured using a 3-axis gaussmeter (MGM 3AXIS; ALPHALAB, West Salt Lake City, UT, USA), and homogeneity of the GMF in the sample space was measured as 99 %, 95 %, and 90 % for the tube-positioning assay, Y-maze assay, and free-flight assay, respectively. The modified GMF parameter conditions and the intensity of fluorescent light (500 lx unless otherwise mentioned) were indicated in figure legends or table captions accordingly. The ambient power frequency of the 60-Hz magnetic field was less than 3 μT, as measured by a gaussmeter (TES 1390; TES Electrical Electronic, Taipei, Taiwan). Throughout the experiments, 60 Hz electric field across the assay area was measured using (3D NF Analyzer NFA 1000; Gigahertz Solutions, Fürth, Bayern, Germany). The difference of electric field between experimental conditions was negligible; sham (1.22 V/m), cancellation of X, Y, and Z (1.21 V/m), condition a (1.21 V/m), b (1.22 V/m), and c (1.22 V/m).
To decrease GMF to near zero (indicated as – in figures), we cancelled the intensity of each axis of the ambient GMF by countervailing the each axis using the coil system (Figs. 1c, d, f, h, 2b, 3a, e, i, 4d, Additional file 2: Figure S1B, Additional file 6: Figure S2A-B, Additional file 7: Figure S3A-F, Additional file 8: Figure S4A-D and Additional file 9: Figure S5A-H). Conversely, positive geotaxis was induced by strengthening the total intensity as appeared in b and c of Fig. 2a. The strengthening condition was indicated as + in Figs. 2c, 3b-d, f-h, j-l, 4d-g, 5a-h and Additional file 8: Figure S4A.
Exceptionally, passive shielding was used for Additional file 2: Figure S1D. This shielding condition was achieved by conducting behavioral experiments in a double-layered permalloy (0.5-mm thick) cube (180 × 100 × 140 mm, length × width × height) (Additional file 2: Figure S1C) with one open-side for handling of samples and recording of flight behaviors. The passive shielding experiment also showed similarly potentiated negative geotaxis comparable to the countervailing method using the coil system (Additional file 2: Figure S1D). The cancellation efficiency for total intensity was ca. 36-fold (69-, 71-, and 33-fold for the X, Y, and Z axes, respectively), and the homogeneity was about 95 % in the sample space.

Geotaxis assay

All the experiments using the coil were conducted in a temperature-controlled room kept at 25 °C and the temperature across the assaying area was monitored using thermometers (USB Datalogger 98581; MIC Meter Industrial Company, Taichung City, Taiwan). The fly samples were set inside the coils 3 s after turning on the current. The tube-positioning assay was performed mostly between ZT5 and ZT8 as well as ZT0 and ZT2 in a separate experiment according to a previous study [37] with some modifications. Prior to the assay, flies (1 ~ 3-day-old) taken from the rearing incubator were put into a pooled flask (180 mL) and accommodated for 10 min. The flies (45 ± 2) were then transferred into a transparent polypropylene test tube (20 × 850 mm, diameter × height) sealed by a cotton plug at the orifice without anesthesia. The test tubes with the flies were kept inverted on the top for 1 min and then gently placed with the bottom down inside either a cube (180 × 100 × 140 mm, length × width × height) (Fig. 1b and Additional file 2: Figure S1A) located at the center of the Helmholtz coil. Vertical positioning of the flies in the test tubes was video-recorded for 11 min and quantified as the “geotactic positioning score” using the following equation: (number of flies at the lowest four sections of the test tube that was equally divided into five imaginary sections/total number of flies) × 100 % (see Fig. 1b). Other alternative equations that included ‘the lowest three sections’ and ‘the lowest two sections’ instead of ‘the lowest four sections’ showed similar scores (Pearson correlation [R] values were 0.98 and 0.96, respectively). The calculation was performed on the five consecutive captured photos at 5 s interval, and the average of the scores from the five photos was used as a data point.
For the removal of the JO or wings in Fig. 4d and Additional file 8: Figure S4A, the JO was injured by pinching the second antennal segments with fine forceps [8] or wings were cut off at the hinge region with micro-scissors [24] under anesthesia with CO2 [8, 24]. The injured flies were accommodated to the rearing incubator for 24 h before the tube-positioning assay (10 flies/test), and then the assay was performed.
The Y-maze assay was adopted as an alternative geotaxis assay with some modifications [3, 4]. The six-exit maze was constructed from clear polypropylene T- and Y-shaped connectors 4 mm in diameter (Kartell, Noviglio, Italy), and a 4-mm-bore non-toxic silicon tube (Cole-Parmer, Vernon Hills, IL, USA) (Fig. 1e). For collection of flies at the exits, a semi-transparent 1-ml plastic tip used for micropipettes was connected to each exit. Each tip was jointed with a tapered 15-ml clear polypropylene conical tube to prevent flies from reentering the maze through the exit. The prepared maze was fixed on a transparent acryl plate for rigidity and placed at the center of the Helmholtz coils. The Y-maze assay was performed between ZT0 and ZT2. For each experiment, 25 ± 2 flies were transferred from a pooled flask to a 15-ml clear polypropylene conical tube (feeding tube) and allowed to enter the maze through a 10-cm-long silicon tube linking the feeding tube and the entrance of the maze. The flies were kept there for 30 min until at least 90 % of them were collected. Light was placed parallel to all exits, and the intensity of light was 350 lx and 500 lx at the entrance and all exits, respectively. The exit score for each exit was calculated as (number of flies collected at each exit/total number of flies collected at all exits) × 100 %. Exit profiles were compared between the sham (the ambient GMF) and near-zero GMF conditions (total intensity, 0.015 ± 0.006 μT), in which the plane of the maze was vertical to the ground. As a control, the exit profile of the sham-horizontal maze was compared to that of the sham-vertical maze.
The free-flight assay was performed to determine the effect of GMF-induced modulation on free flying behavior of flies in a cubic arena (0.6 × 0.6 × 0.6 m) (Fig. 1g). The five planes of the arena were made of pale white board, whereas the front plane was a transparent film through which light could shine and flying behavior could be recorded. A fluorescent light lamp was placed 5 cm above the bottom line of the arena, and the light intensity was 500 lx at the point of departure. The assay was performed between ZT0 and ZT2. For each experiment, 30 ± 2 flies were transferred from the pooled flask to a 15-ml clear polypropylene conical tube. Upon removing the cap, the tube was instantly intruded 6 cm into the arena through a hole (20 mm in diameter) at the rear-center region of the bottom, and the flies were allowed to crawl up to the orifice and fly freely. Flying behavior was recorded for 2 min. The GMF inside of the arena was modulated as indicated in Fig. 1h. Flying score was calculated as (number of flies flown onto the upper section of the front plane/total number of flies flown onto the whole section of the front plane) × 100 %. As a control, the flying profile under the sham conditions (the ambient GMF) was determined.
The associative learning assay was carried out according to the scheme depicted in Fig. 2d. One to two-day-old Canton-S flies were transferred to an empty flask containing Whatman paper soaked with distilled water and starved for 24 h; they were then placed in another empty flask containing no water for 6 h before training. In each experiment, 20 ± 2 flies were used. For the training group, flies were loaded into a training tube containing food, the same rearing diet, either in the sham or the non-geotactic GMF for 2 min. The trained flies were transferred to a test tube that was inverted during the 2-min rest and subsequently tested for 2 min. In the control experiments, flies were processed by the same procedure without food in a tube. For the test, the tube-positioning assay was conducted to measure geotactic behavior of the trained or control flies under the sham or the non-geotactic GMF condition. The trained and control flies were experimented consecutively. The non-geotactic GMF was generated using a home-made one-axis square Helmholtz coil (250 × 250 × 100 mm, 1,000 turns, 1 mm in diameter enameled Cu wire) on open acrylic frame. The coils were positioned perpendicular to a test tube at its base; homogeneity of the non-geotactic GMF intensity at the lower one-third of test tube was 95 % (see Fig. 2d).

Statistical analysis

Statistical analyses were performed by Student’s t-test or one-way analysis of variance (ANOVA) Tukey’s test using Origin software (San Clemente, CA, USA). Statistical values are presented as mean ± standard error of the mean (SEM). In all analyses, P < 0.05 is regarded as significant. All experiments were repeated at least 10 times.
Not applicable
Not applicable

Availability of data and material

Supporting data are found in the supporting materials; 5 supporting figures, 2 supporting tables, 2 supporting videos, and one striking image.

Acknowledgements

We thank to the following investigators for reagents and fly strains: Drs. S. M. Reppert, J. H. Park, J. Choe, F. N. Hamada, E. Rosato, Y. D. Chung, and P. H. Taghert. We also thank to the Bloomington Drosophila Stock Center (BDSC), Vienna Drosophila RNAi center (VDRC) and KAIST Drosophila Library Facility for providing fly strains and materials.

Funding

This research was supported by the Basic Science Research Program (2015R1D1A3A01019256) and the Basic Research Laboratory (BRL) Program (2013R1A4A1069507) to KSC, the National Creative Research Initiatives grant (No. 2010–0018291) to JC, and the NRF-2012-Global Ph.D. Fellowship to SM through the National Research Foundation of Korea (NRF). JC, SB, and SM were also supported by the BK21 Plus Program from the Ministry of Education. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

KSC conceived the idea of studying the GMF-modulated geotaxis using Drosophila and using tube-positioning assay and free-flight assay to measure geotactic behaviors in flies; KSC and JC designed the study; KSC, YHL, JEB, SHK and SHL designed and constructed the experimental apparatuses; SB, SM, YL, JC and KSC prepared the experimental materials including genetic flies; JEB, SB, SM, KSC, SHL and SHK performed the experiments. KSC, JEB, SB, SM and JC analyzed the data. SM, KSC and JC wrote the paper. All the authors discussed and commented on the manuscript. All authors read and approved the final manuscript.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Anhänge

Additional files

Additional file 1: Table S1. GMF parameters of the near-zero GMF condition in Fig. 1. Values of X, Y, and Z intensity are the means of 10 trials for each condition. Total intensity, was calculated using the formula \( \sqrt{X^2+{Y}^2+{Z}^2} \) [13]. Sham: ambient GMF, −: near-zero GMF condition. (DOC 27 kb)
Additional file 3:
Video. A representative normal behavior of Canton-S flies in the tube-positioning assay under the sham condition (the ambient GMF) (Fig. 1c). (AVI 6775 kb)
Additional file 4:
Video. A representative negative geotactic behavior of Canton-S flies in the tube-positioning assay under the cancellation condition (the near-zero GMF) (Fig. 1c). (AVI 6674 kb)
Additional file 5: Table S2. GMF parameters of the positive geotactic GMF conditions in Fig. 2a. Values of X, Y, and Z intensity are the means of 10 trials for each condition. Total intensity, was calculated using the formula \( \sqrt{X^2+{Y}^2+{Z}^2} \) [13]. a, b, and c are the GMF conditions under which the geotactic positioning was measured, respectively. Note that b and c were positive geotactic GMF conditions. (DOC 28 kb)
Literatur
1.
Zurück zum Zitat Hirsch J, Erlenmeyer-Kimling L. Sign of taxis as a property of the genotype. Science. 1961;134:835–36.CrossRefPubMed Hirsch J, Erlenmeyer-Kimling L. Sign of taxis as a property of the genotype. Science. 1961;134:835–36.CrossRefPubMed
2.
Zurück zum Zitat Pires A, Woollacott RM. A direct and active influence of gravity on the behavior of a marine invertebrate larva. Science. 1983;220:731–33.CrossRefPubMed Pires A, Woollacott RM. A direct and active influence of gravity on the behavior of a marine invertebrate larva. Science. 1983;220:731–33.CrossRefPubMed
3.
Zurück zum Zitat Toma DP, White KP, Hirsch J, Greenspan RJ. Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nat Genet. 2002;31:349–53.PubMed Toma DP, White KP, Hirsch J, Greenspan RJ. Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nat Genet. 2002;31:349–53.PubMed
4.
Zurück zum Zitat Armstrong JD, Texada MJ, Munjaal R, Baker DA, Beckingham KM. Gravitaxis in Drosophila melanogaster: a forward genetic screen. Genes Brain Behav. 2006;5:222–39.CrossRefPubMed Armstrong JD, Texada MJ, Munjaal R, Baker DA, Beckingham KM. Gravitaxis in Drosophila melanogaster: a forward genetic screen. Genes Brain Behav. 2006;5:222–39.CrossRefPubMed
5.
Zurück zum Zitat Motz BA, Alberts JR. The validity and utility of geotaxis in young rodents. Neurotoxicol Teratol. 2005;27:529–33.CrossRefPubMed Motz BA, Alberts JR. The validity and utility of geotaxis in young rodents. Neurotoxicol Teratol. 2005;27:529–33.CrossRefPubMed
6.
Zurück zum Zitat Wade CE. Responses across the gravity continuum: hypergravity to microgravity. Adv Space Biol Med. 2005;10:225–45.CrossRefPubMed Wade CE. Responses across the gravity continuum: hypergravity to microgravity. Adv Space Biol Med. 2005;10:225–45.CrossRefPubMed
7.
Zurück zum Zitat Kamikouchi A, Inagaki HK, Effertz T, Hendrich O, Fiala A, Göpfert MC, et al. The neural basis of Drosophila gravity-sensing and hearing. Nature. 2009;458:165–71.CrossRefPubMed Kamikouchi A, Inagaki HK, Effertz T, Hendrich O, Fiala A, Göpfert MC, et al. The neural basis of Drosophila gravity-sensing and hearing. Nature. 2009;458:165–71.CrossRefPubMed
8.
Zurück zum Zitat Sun Y, Liu L, Ben-Shahar Y, Jacobs JS, Eberl DF, Welsh MJ. TRPA channels distinguish gravity sensing from hearing in Johnston’s organ. Proc Natl Acad Sci USA. 2009;106:13606–11.CrossRefPubMedPubMedCentral Sun Y, Liu L, Ben-Shahar Y, Jacobs JS, Eberl DF, Welsh MJ. TRPA channels distinguish gravity sensing from hearing in Johnston’s organ. Proc Natl Acad Sci USA. 2009;106:13606–11.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Del Seppia C, Mezzasalma L, Messerotti M, Cordelli A, Ghione S. Investigations of a simulated geomagnetic field experienced by the International Space Station on attentional performance. Bioelectromagnetics. 2009;30:45–51.CrossRefPubMed Del Seppia C, Mezzasalma L, Messerotti M, Cordelli A, Ghione S. Investigations of a simulated geomagnetic field experienced by the International Space Station on attentional performance. Bioelectromagnetics. 2009;30:45–51.CrossRefPubMed
10.
Zurück zum Zitat Herranz R, Benguría A, Laván DA, López-Vidriero I, Gasset G, Javier Medina F, et al. Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome. Mol Ecol. 2010;19:4255–64.CrossRefPubMed Herranz R, Benguría A, Laván DA, López-Vidriero I, Gasset G, Javier Medina F, et al. Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome. Mol Ecol. 2010;19:4255–64.CrossRefPubMed
11.
Zurück zum Zitat Marco R, Laván DA, van Loon JJ, Leandro LJ, Larkin OJ, Dijkstra C, et al. Drosophila melanogaster, a model system for comparative studies on the responses to real and simulated microgravity. J Gravit Physiol. 2007;14:125–26. Marco R, Laván DA, van Loon JJ, Leandro LJ, Larkin OJ, Dijkstra C, et al. Drosophila melanogaster, a model system for comparative studies on the responses to real and simulated microgravity. J Gravit Physiol. 2007;14:125–26.
12.
Zurück zum Zitat Mandea M, Panet I, Lesur V, de Viron O, Diament M, Le Mouël JL. Recent changes of the Earth’s core derived from satellite observations of magnetic and gravity fields. Proc Natl Acad Sci USA. 2012;109:19129–33.CrossRefPubMedPubMedCentral Mandea M, Panet I, Lesur V, de Viron O, Diament M, Le Mouël JL. Recent changes of the Earth’s core derived from satellite observations of magnetic and gravity fields. Proc Natl Acad Sci USA. 2012;109:19129–33.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Finlay CC, Maus S, Beggan CD, Bondar TN, Chambodut A, Chernova TA, et al. International Geomagnetic Reference Field: the eleventh generation. Geophys J Int. 2010;183:1216–30.CrossRef Finlay CC, Maus S, Beggan CD, Bondar TN, Chambodut A, Chernova TA, et al. International Geomagnetic Reference Field: the eleventh generation. Geophys J Int. 2010;183:1216–30.CrossRef
14.
Zurück zum Zitat Johnsen S, Lohmann KJ. The physics and neurobiology of magnetoreception. Nat Rev Neurosci. 2005;6:703–12.CrossRefPubMed Johnsen S, Lohmann KJ. The physics and neurobiology of magnetoreception. Nat Rev Neurosci. 2005;6:703–12.CrossRefPubMed
16.
Zurück zum Zitat Phillips JB. Two magnetoreception pathways in a migratory salamander. Science. 1986;233:765–67.CrossRefPubMed Phillips JB. Two magnetoreception pathways in a migratory salamander. Science. 1986;233:765–67.CrossRefPubMed
17.
Zurück zum Zitat Lohmann KJ, Putman NF, Lohmann CM. The magnetic map of hatchling loggerhead sea turtles. Curr Opin Neurobiol. 2012;22:336–42.CrossRefPubMed Lohmann KJ, Putman NF, Lohmann CM. The magnetic map of hatchling loggerhead sea turtles. Curr Opin Neurobiol. 2012;22:336–42.CrossRefPubMed
18.
Zurück zum Zitat Fedele G, Green EW, Rosato E, Kyriacou CP. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat Commun. 2014;5:4391–96.CrossRefPubMedPubMedCentral Fedele G, Green EW, Rosato E, Kyriacou CP. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat Commun. 2014;5:4391–96.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell. 1999;99:791–802.CrossRefPubMed Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell. 1999;99:791–802.CrossRefPubMed
20.
Zurück zum Zitat Gegear RJ, Casselman A, Waddell S, Reppert SM. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature. 2008;454:1014–18.CrossRefPubMedPubMedCentral Gegear RJ, Casselman A, Waddell S, Reppert SM. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature. 2008;454:1014–18.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Gegear RJ, Foley LE, Casselman A, Reppert SM. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature. 2010;463:804–07.CrossRefPubMedPubMedCentral Gegear RJ, Foley LE, Casselman A, Reppert SM. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature. 2010;463:804–07.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Mertens I, Vandingenen A, Johnson EC, Shafer OT, Li W, Trigg JS, et al. PDF receptor signaling in Drosophila contributes to both circadian and geotactic behaviors. Neuron. 2005;48:213–19.CrossRefPubMed Mertens I, Vandingenen A, Johnson EC, Shafer OT, Li W, Trigg JS, et al. PDF receptor signaling in Drosophila contributes to both circadian and geotactic behaviors. Neuron. 2005;48:213–19.CrossRefPubMed
23.
Zurück zum Zitat Park JH, Helfrich-Förster C, Lee G, Liu L, Rosbash M, Hall JC. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci USA. 2000;97:3608–13.CrossRefPubMedPubMedCentral Park JH, Helfrich-Förster C, Lee G, Liu L, Rosbash M, Hall JC. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci USA. 2000;97:3608–13.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Fang Y, Soares L, Bonini NM. Design and implementation of in vivo imaging of neural injury responses in the adult Drosophila wing. Nat Protoc. 2013;8:810–19.CrossRefPubMedPubMedCentral Fang Y, Soares L, Bonini NM. Design and implementation of in vivo imaging of neural injury responses in the adult Drosophila wing. Nat Protoc. 2013;8:810–19.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Im SH, Li W, Taghert PH. PDFR and CRY signaling converge in a subset of clock neurons to modulate the amplitude and phase of circadian behavior in Drosophila. PLoS One. 2011;6:e18974.CrossRefPubMedPubMedCentral Im SH, Li W, Taghert PH. PDFR and CRY signaling converge in a subset of clock neurons to modulate the amplitude and phase of circadian behavior in Drosophila. PLoS One. 2011;6:e18974.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Taghert PH, Shafer OT. Mechanisms of clock output in the Drosophila circadian pacemaker system. J Biol Rhythms. 2006;21:445–57.CrossRefPubMed Taghert PH, Shafer OT. Mechanisms of clock output in the Drosophila circadian pacemaker system. J Biol Rhythms. 2006;21:445–57.CrossRefPubMed
29.
Zurück zum Zitat Yoshii T, Ahmad M, Helfrich-Förster C. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 2009;7:e1000086.CrossRefPubMedPubMedCentral Yoshii T, Ahmad M, Helfrich-Förster C. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 2009;7:e1000086.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A. Magnetic cues trigger extensive refueling. Nature. 2001;414:35–6.CrossRefPubMed Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A. Magnetic cues trigger extensive refueling. Nature. 2001;414:35–6.CrossRefPubMed
31.
Zurück zum Zitat Phillips JB, Muheim R, Jorge PE. A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception? J Exp Biol. 2010;213:3247–55.CrossRefPubMed Phillips JB, Muheim R, Jorge PE. A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception? J Exp Biol. 2010;213:3247–55.CrossRefPubMed
32.
Zurück zum Zitat Sweeney ST, Broadie K, Keane J, Niemann H, O’Kane CJ. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron. 1995;14:341–51.CrossRefPubMed Sweeney ST, Broadie K, Keane J, Niemann H, O’Kane CJ. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron. 1995;14:341–51.CrossRefPubMed
33.
Zurück zum Zitat Dissel S, Codd V, Fedic R, Garner KJ, Costa R, Kyriacou CP, et al. A constitutively active cryptochrome in Drosophila melanogaster. Nat Neurosci. 2004;7:834–40.CrossRefPubMed Dissel S, Codd V, Fedic R, Garner KJ, Costa R, Kyriacou CP, et al. A constitutively active cryptochrome in Drosophila melanogaster. Nat Neurosci. 2004;7:834–40.CrossRefPubMed
34.
Zurück zum Zitat Bae JE, Do JY, Kwon SH, Lee SD, Jung YW, Kim SC, et al. Electromagnetic field-induced converse cell growth during a long-term observation. Int J Radiat Biol. 2013;89:1035–44.CrossRefPubMed Bae JE, Do JY, Kwon SH, Lee SD, Jung YW, Kim SC, et al. Electromagnetic field-induced converse cell growth during a long-term observation. Int J Radiat Biol. 2013;89:1035–44.CrossRefPubMed
35.
Zurück zum Zitat Koh EK, Ryu BK, Jeong DY, Bang IS, Nam MH, Chae KS. A 60-Hz sinusoidal magnetic field induces apoptosis of prostate cancer cells through reactive oxygen species. Int J Radiat Biol. 2008;84:945–55.CrossRefPubMed Koh EK, Ryu BK, Jeong DY, Bang IS, Nam MH, Chae KS. A 60-Hz sinusoidal magnetic field induces apoptosis of prostate cancer cells through reactive oxygen species. Int J Radiat Biol. 2008;84:945–55.CrossRefPubMed
36.
Zurück zum Zitat Ryu JM, Kim NJ, Won R, Lee SD, Chae KS. Reproducibility and desensitization of the power frequency magnetic field effect on movement of the common cutworm Spodoptera litura. Entomol Res. 2009;39:406–09.CrossRef Ryu JM, Kim NJ, Won R, Lee SD, Chae KS. Reproducibility and desensitization of the power frequency magnetic field effect on movement of the common cutworm Spodoptera litura. Entomol Res. 2009;39:406–09.CrossRef
37.
Zurück zum Zitat Inagaki HK, Kamikouchi A, Ito K. Methods for quantifying simple gravity sensing in Drosophila melanogaster. Nat Protoc. 2010;5:20–5.CrossRefPubMed Inagaki HK, Kamikouchi A, Ito K. Methods for quantifying simple gravity sensing in Drosophila melanogaster. Nat Protoc. 2010;5:20–5.CrossRefPubMed
Metadaten
Titel
Positive geotactic behaviors induced by geomagnetic field in Drosophila
verfasst von
Ji-Eun Bae
Sunhoe Bang
Soohong Min
Sang-Hyup Lee
Soon-Hwan Kwon
Youngseok Lee
Yong-Ho Lee
Jongkyeong Chung
Kwon-Seok Chae
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Molecular Brain / Ausgabe 1/2016
Elektronische ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-016-0235-1

Weitere Artikel der Ausgabe 1/2016

Molecular Brain 1/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.