Skip to main content
Erschienen in: International Journal of Legal Medicine 3/2010

01.05.2010 | ORIGINAL ARTICLE

Potentials and limits of pairwise kinship analysis using autosomal short tandem repeat loci

verfasst von: Michael Nothnagel, Jörg Schmidtke, Michael Krawczak

Erschienen in: International Journal of Legal Medicine | Ausgabe 3/2010

Einloggen, um Zugang zu erhalten

Abstract

At least in principle, most instances of complex kinship testing can be reduced to pairwise kinship cases involving two critical family members that either link or separate presumed sub-branches of a family. In the European population, the 34 short tandem repeats (STRs) currently used in forensic genetics are sufficiently powerful to allow assessment of disputed first and second but not lower degrees of pairwise blood relatedness. We provide estimates of the means and variances of marker-specific log-likelihood ratios, using large-sample approximation and assuming different scenarios of pairwise kinship analysis. These estimates allow power calculations to be performed for any combination of the available STRs. Since some of the markers considered are physically linked, chromosome-wide likelihood calculations in kinship cases other than parent–child duos (and trios) have to take the reduced rates of meiotic inter-marker recombination into account. We show by simulation that this requirement may be ignored when discriminating distant hypotheses about kinship, but that linkage may play an important role in the biostatistical analysis of more intricate cases.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Henke L, Aaspollu A, Biondo R, Budowle B, Drobnic K, van Eede PH, Felske-Zech H, Fernández de Simón L, Garafano L, Gehrig C, Luckenbach C, Malik N, Muche M, Parson W, Primorac D, Schneider PM, Thomson J, Vanek D (2003) Evaluation of the STR typing kit PowerPlex™ 16 with respect to technical performance and population genetics: a multicenter study. Int Congr Ser 1239:789–794CrossRef Henke L, Aaspollu A, Biondo R, Budowle B, Drobnic K, van Eede PH, Felske-Zech H, Fernández de Simón L, Garafano L, Gehrig C, Luckenbach C, Malik N, Muche M, Parson W, Primorac D, Schneider PM, Thomson J, Vanek D (2003) Evaluation of the STR typing kit PowerPlex™ 16 with respect to technical performance and population genetics: a multicenter study. Int Congr Ser 1239:789–794CrossRef
2.
Zurück zum Zitat Schmid D, Anslinger K, Rolf B (2005) Allele frequencies of the ACTBP2 (=SE33), D18S51, D8S1132, D12S391, D2S1360, D3S1744, D5S2500, D7S1517, D10S2325 and D21S2055 loci in a German population sample. Forensic Sci Int 151:303–305CrossRefPubMed Schmid D, Anslinger K, Rolf B (2005) Allele frequencies of the ACTBP2 (=SE33), D18S51, D8S1132, D12S391, D2S1360, D3S1744, D5S2500, D7S1517, D10S2325 and D21S2055 loci in a German population sample. Forensic Sci Int 151:303–305CrossRefPubMed
3.
Zurück zum Zitat Cox DR, Hinkley DV (1974) Theoretical statistics. Chapman & Hall/CRC, Boca Raton Cox DR, Hinkley DV (1974) Theoretical statistics. Chapman & Hall/CRC, Boca Raton
4.
Zurück zum Zitat Feller W (1968) An introduction to probability theory and its applications. Wiley, New York Feller W (1968) An introduction to probability theory and its applications. Wiley, New York
5.
Zurück zum Zitat Essen-Möller E (1938) Die Beweiskraft der Ähnlichkeit im Vaterschaftsnachweis. Theoretische Grundlagen. Mitt Anthropol Ges 68:9–53 Essen-Möller E (1938) Die Beweiskraft der Ähnlichkeit im Vaterschaftsnachweis. Theoretische Grundlagen. Mitt Anthropol Ges 68:9–53
6.
Zurück zum Zitat Ryman N, Hansson A, Hirschfeld J, Swan T (1981) Probability of paternity exclusion in different mother–child genotype combinations. Hereditas 94:99–104PubMedCrossRef Ryman N, Hansson A, Hirschfeld J, Swan T (1981) Probability of paternity exclusion in different mother–child genotype combinations. Hereditas 94:99–104PubMedCrossRef
7.
Zurück zum Zitat Selvin S (1980) Probability of nonpaternity determined by multiple allele codominant systems. Am J Hum Genet 32:276–278PubMed Selvin S (1980) Probability of nonpaternity determined by multiple allele codominant systems. Am J Hum Genet 32:276–278PubMed
8.
Zurück zum Zitat Selvin S, Grunbaum BW, Myhre BA (1983) The probability of exclusion or likelihood of guilt of an accused: paternity. J Forensic Sci Soc 23:19–25CrossRefPubMed Selvin S, Grunbaum BW, Myhre BA (1983) The probability of exclusion or likelihood of guilt of an accused: paternity. J Forensic Sci Soc 23:19–25CrossRefPubMed
9.
Zurück zum Zitat Kosambi DD (1944) The estimation of the map distance from recombination values. Ann Eugen 12:172–175 Kosambi DD (1944) The estimation of the map distance from recombination values. Ann Eugen 12:172–175
10.
Zurück zum Zitat Leal SM, Yan K, Muller-Myhsok B (2005) SimPed: a simulation program to generate haplotype and genotype data for pedigree structures. Hum Hered 60:119–122CrossRefPubMed Leal SM, Yan K, Muller-Myhsok B (2005) SimPed: a simulation program to generate haplotype and genotype data for pedigree structures. Hum Hered 60:119–122CrossRefPubMed
11.
Zurück zum Zitat Cottingham RW Jr, Idury RM, Schaffer AA (1993) Faster sequential genetic linkage computations. Am J Hum Genet 53:252–263PubMed Cottingham RW Jr, Idury RM, Schaffer AA (1993) Faster sequential genetic linkage computations. Am J Hum Genet 53:252–263PubMed
12.
Zurück zum Zitat Lathrop GM, Lalouel JM (1984) Easy calculations of LOD scores and genetic risks on small computers. Am J Hum Genet 36:460–465PubMed Lathrop GM, Lalouel JM (1984) Easy calculations of LOD scores and genetic risks on small computers. Am J Hum Genet 36:460–465PubMed
13.
Zurück zum Zitat Lathrop GM, Lalouel JM, Julier C, Ott J (1984) Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci U S A 81:3443–3446CrossRefPubMed Lathrop GM, Lalouel JM, Julier C, Ott J (1984) Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci U S A 81:3443–3446CrossRefPubMed
14.
Zurück zum Zitat Schaffer AA, Gupta SK, Shriram K, Cottingham RW Jr (1994) Avoiding recomputation in linkage analysis. Hum Hered 44:225–237CrossRefPubMed Schaffer AA, Gupta SK, Shriram K, Cottingham RW Jr (1994) Avoiding recomputation in linkage analysis. Hum Hered 44:225–237CrossRefPubMed
15.
Zurück zum Zitat O’Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63:259–266CrossRefPubMed O’Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63:259–266CrossRefPubMed
16.
Zurück zum Zitat R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
17.
Zurück zum Zitat Tillmar AO, Mostad P, Egeland T, Lindblom B, Holmlund G, Montelius K (2008) Analysis of linkage and linkage disequilibrium for eight X-STR markers. Forensic Sci Int Genet 3:37–41CrossRefPubMed Tillmar AO, Mostad P, Egeland T, Lindblom B, Holmlund G, Montelius K (2008) Analysis of linkage and linkage disequilibrium for eight X-STR markers. Forensic Sci Int Genet 3:37–41CrossRefPubMed
18.
Zurück zum Zitat Broman KW, Murray JC, Sheffield VC, White RL, Weber JL (1998) Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet 63:861–869CrossRefPubMed Broman KW, Murray JC, Sheffield VC, White RL, Weber JL (1998) Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet 63:861–869CrossRefPubMed
19.
Zurück zum Zitat Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247PubMed Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247PubMed
20.
Zurück zum Zitat Kong X, Matise TC (2005) MAP-O-MAT: internet-based linkage mapping. Bioinformatics 21:557–559CrossRefPubMed Kong X, Matise TC (2005) MAP-O-MAT: internet-based linkage mapping. Bioinformatics 21:557–559CrossRefPubMed
21.
Zurück zum Zitat Matise TC, Chen F, Chen W, De La Vega FM, Hansen M, He C, Hyland FC, Kennedy GC, Kong X, Murray SS, Ziegle JS, Stewart WC, Buyske S (2007) A second-generation combined linkage physical map of the human genome. Genome Res 17:1783–1786CrossRefPubMed Matise TC, Chen F, Chen W, De La Vega FM, Hansen M, He C, Hyland FC, Kennedy GC, Kong X, Murray SS, Ziegle JS, Stewart WC, Buyske S (2007) A second-generation combined linkage physical map of the human genome. Genome Res 17:1783–1786CrossRefPubMed
22.
Zurück zum Zitat Matise TC, Gitlin JA (1999) MAP-O-MAT: marker-based linkage mapping on the World Wide Web. Am J Hum Genet 65:A435 Matise TC, Gitlin JA (1999) MAP-O-MAT: marker-based linkage mapping on the World Wide Web. Am J Hum Genet 65:A435
23.
Zurück zum Zitat Machado FB, Medina-Acosta E (2009) Genetic map of human X-linked microsatellites used in forensic practice. Forensic Sci Int Genet 3:202–204CrossRefPubMed Machado FB, Medina-Acosta E (2009) Genetic map of human X-linked microsatellites used in forensic practice. Forensic Sci Int Genet 3:202–204CrossRefPubMed
24.
Zurück zum Zitat Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321–324CrossRefPubMed Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321–324CrossRefPubMed
Metadaten
Titel
Potentials and limits of pairwise kinship analysis using autosomal short tandem repeat loci
verfasst von
Michael Nothnagel
Jörg Schmidtke
Michael Krawczak
Publikationsdatum
01.05.2010
Verlag
Springer-Verlag
Erschienen in
International Journal of Legal Medicine / Ausgabe 3/2010
Print ISSN: 0937-9827
Elektronische ISSN: 1437-1596
DOI
https://doi.org/10.1007/s00414-009-0413-0

Weitere Artikel der Ausgabe 3/2010

International Journal of Legal Medicine 3/2010 Zur Ausgabe

EDITORIAL

Editorial

Neu im Fachgebiet Rechtsmedizin

Molekularpathologische Untersuchungen im Wandel der Zeit

Open Access Biomarker Leitthema

Um auch an kleinen Gewebeproben zuverlässige und reproduzierbare Ergebnisse zu gewährleisten ist eine strenge Qualitätskontrolle in jedem Schritt des Arbeitsablaufs erforderlich. Eine nicht ordnungsgemäße Prüfung oder Behandlung des …

Vergleichende Pathologie in der onkologischen Forschung

Pathologie Leitthema

Die vergleichende experimentelle Pathologie („comparative experimental pathology“) ist ein Fachbereich an der Schnittstelle von Human- und Veterinärmedizin. Sie widmet sich der vergleichenden Erforschung von Gemeinsamkeiten und Unterschieden von …

Gastrointestinale Stromatumoren

Open Access GIST CME-Artikel

Gastrointestinale Stromatumoren (GIST) stellen seit über 20 Jahren ein Paradigma für die zielgerichtete Therapie mit Tyrosinkinaseinhibitoren dar. Eine elementare Voraussetzung für eine mögliche neoadjuvante oder adjuvante Behandlung bei …

Personalisierte Medizin in der Onkologie

Aufgrund des erheblichen technologischen Fortschritts in der molekularen und genetischen Diagnostik sowie zunehmender Erkenntnisse über die molekulare Pathogenese von Krankheiten hat in den letzten zwei Jahrzehnten ein grundlegender …