Skip to main content
Erschienen in: Abdominal Radiology 10/2018

04.04.2018 | Perspective

Principles of three-dimensional printing and clinical applications within the abdomen and pelvis

verfasst von: Sarah Bastawrous, Nicole Wake, Dmitry Levin, Beth Ripley

Erschienen in: Abdominal Radiology | Ausgabe 10/2018

Einloggen, um Zugang zu erhalten

Abstract

Improvements in technology and reduction in costs have led to widespread interest in three-dimensional (3D) printing. 3D-printed anatomical models contribute to personalized medicine, surgical planning, and education across medical specialties, and these models are rapidly changing the landscape of clinical practice. A physical object that can be held in one’s hands allows for significant advantages over standard two-dimensional (2D) or even 3D computer-based virtual models. Radiologists have the potential to play a significant role as consultants and educators across all specialties by providing 3D-printed models that enhance clinical care. This article reviews the basics of 3D printing, including how models are created from imaging data, clinical applications of 3D printing within the abdomen and pelvis, implications for education and training, limitations, and future directions.
Literatur
2.
Zurück zum Zitat Matsumoto JS, Morris JM, Foley TA, et al. (2015) Three-dimensional physical modeling : applications and experience at Mayo Clinic. Radiographics 35:1989–2006CrossRefPubMed Matsumoto JS, Morris JM, Foley TA, et al. (2015) Three-dimensional physical modeling : applications and experience at Mayo Clinic. Radiographics 35:1989–2006CrossRefPubMed
4.
Zurück zum Zitat Wake N, Rude T, Kang SK, et al. (2017) 3D printed renal cancer models derived from MRI data: application in pre-surgical planning. Abdom Radiol 42(5):1501–1509CrossRef Wake N, Rude T, Kang SK, et al. (2017) 3D printed renal cancer models derived from MRI data: application in pre-surgical planning. Abdom Radiol 42(5):1501–1509CrossRef
5.
Zurück zum Zitat Choy WJ, Mobbs RJ, Wilcox B, et al. (2017) Reconstruction of thoracic spine using a personalized 3D-printed vertebral body in adolescent with T9 primary bone tumor. World Neurosurg 105:1032.e13–1032.e17CrossRef Choy WJ, Mobbs RJ, Wilcox B, et al. (2017) Reconstruction of thoracic spine using a personalized 3D-printed vertebral body in adolescent with T9 primary bone tumor. World Neurosurg 105:1032.e13–1032.e17CrossRef
6.
Zurück zum Zitat Wong KC, Kumta SM, Geel NV, et al. (2015) One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg 20(1):14–23CrossRefPubMed Wong KC, Kumta SM, Geel NV, et al. (2015) One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg 20(1):14–23CrossRefPubMed
7.
Zurück zum Zitat Javan R, Herrin D, Tangestanipoor A (2016) Understanding spatially complex segmental and branch anatomy using 3D printing. Acad Radiol 23(9):1183–1189CrossRefPubMed Javan R, Herrin D, Tangestanipoor A (2016) Understanding spatially complex segmental and branch anatomy using 3D printing. Acad Radiol 23(9):1183–1189CrossRefPubMed
8.
Zurück zum Zitat Aranda JL, Jiménez MF, Rodríguez M, Varela G (2015) Tridimensional titanium-printed custom-made prosthesis for sternocostal reconstruction. Eur J Cardiothoracic Surg 48(4):e92–e94CrossRef Aranda JL, Jiménez MF, Rodríguez M, Varela G (2015) Tridimensional titanium-printed custom-made prosthesis for sternocostal reconstruction. Eur J Cardiothoracic Surg 48(4):e92–e94CrossRef
9.
Zurück zum Zitat Park E-K, Lim J-Y, Yun I-S, et al. (2016) Cranioplasty enhanced by three-dimensional printing. J Craniofac Surg 27(4):1 Park E-K, Lim J-Y, Yun I-S, et al. (2016) Cranioplasty enhanced by three-dimensional printing. J Craniofac Surg 27(4):1
10.
Zurück zum Zitat Bernhard J-C, Isotani S, Matsugasumi T, et al. (2016) Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol 34(3):337–345CrossRefPubMed Bernhard J-C, Isotani S, Matsugasumi T, et al. (2016) Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol 34(3):337–345CrossRefPubMed
11.
Zurück zum Zitat Suzuki M, Ogawa Y, Kawano A, et al. (2004) Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol 124(4):400–402CrossRefPubMed Suzuki M, Ogawa Y, Kawano A, et al. (2004) Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol 124(4):400–402CrossRefPubMed
12.
Zurück zum Zitat Adams F, Qiu T, Mark A, et al. (2017) Soft 3D-printed phantom of the human kidney with collecting system. Ann Biomed Eng 45(4):963–972CrossRefPubMed Adams F, Qiu T, Mark A, et al. (2017) Soft 3D-printed phantom of the human kidney with collecting system. Ann Biomed Eng 45(4):963–972CrossRefPubMed
13.
Zurück zum Zitat Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7):3240–3253CrossRefPubMed Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7):3240–3253CrossRefPubMed
14.
Zurück zum Zitat Konno T, Mashiko T, Oguma H, et al. (2016) Rapid 3-dimensional models of cerebral aneurysm for emergency surgical clipping. No Shinkei Geka 44(8):651–660PubMed Konno T, Mashiko T, Oguma H, et al. (2016) Rapid 3-dimensional models of cerebral aneurysm for emergency surgical clipping. No Shinkei Geka 44(8):651–660PubMed
15.
Zurück zum Zitat Janusziewicz R, Tumbleston JR, Quintanilla AL, Mecham SJ, Desimone JM (2016) Layerless fabrication with continuous liquid interface production. Proc Natl Acad Sci USA 113(42):11703–11708CrossRefPubMed Janusziewicz R, Tumbleston JR, Quintanilla AL, Mecham SJ, Desimone JM (2016) Layerless fabrication with continuous liquid interface production. Proc Natl Acad Sci USA 113(42):11703–11708CrossRefPubMed
16.
Zurück zum Zitat Ripley B, Levin D, Kelil T, et al. (2017) 3D printing from MRI Data: harnessing strengths and minimizing weaknesses. J Magn Reson Imaging 45(3):635–645CrossRefPubMed Ripley B, Levin D, Kelil T, et al. (2017) 3D printing from MRI Data: harnessing strengths and minimizing weaknesses. J Magn Reson Imaging 45(3):635–645CrossRefPubMed
17.
Zurück zum Zitat Hsu C, Ghaffari M, Alaraj A, et al. (2017) Gap-free segmentation of vascular networks with automatic image processing pipeline. Comput Biol Med 82(January):29–39CrossRefPubMed Hsu C, Ghaffari M, Alaraj A, et al. (2017) Gap-free segmentation of vascular networks with automatic image processing pipeline. Comput Biol Med 82(January):29–39CrossRefPubMed
18.
Zurück zum Zitat Schulz-Wendtland R, Harz M, Meier-Meitinger M, et al. (2017) Semi-automated delineation of breast cancer tumors and subsequent materialization using three-dimensional printing (rapid prototyping). J Surg Oncol 115(3):238–242CrossRefPubMed Schulz-Wendtland R, Harz M, Meier-Meitinger M, et al. (2017) Semi-automated delineation of breast cancer tumors and subsequent materialization using three-dimensional printing (rapid prototyping). J Surg Oncol 115(3):238–242CrossRefPubMed
19.
Zurück zum Zitat George E, Liacouras P, Rybicki FJ, Mitsouras D (2017) Measuring and establishing the accuracy and reproducibility of 3D printed medical models. Radiographics 5:160165 George E, Liacouras P, Rybicki FJ, Mitsouras D (2017) Measuring and establishing the accuracy and reproducibility of 3D printed medical models. Radiographics 5:160165
20.
21.
Zurück zum Zitat Di Prima M, Coburn J, Hwang D, et al. (2015) Additively manufactured medical products—the FDA perspective. 3D Print Med 2(1):1CrossRef Di Prima M, Coburn J, Hwang D, et al. (2015) Additively manufactured medical products—the FDA perspective. 3D Print Med 2(1):1CrossRef
22.
Zurück zum Zitat Zein NN, Hanouneh IA, Bishop PD, et al. (2013) Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transplant 19:1304–1310CrossRef Zein NN, Hanouneh IA, Bishop PD, et al. (2013) Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transplant 19:1304–1310CrossRef
23.
Zurück zum Zitat Ikegami T, Maehara Y (2013) Transplantation: 3D printing of the liver in living donor liver transplantation. Nat Rev Gastroenterol Hepatol 10(12):697–698CrossRefPubMed Ikegami T, Maehara Y (2013) Transplantation: 3D printing of the liver in living donor liver transplantation. Nat Rev Gastroenterol Hepatol 10(12):697–698CrossRefPubMed
24.
Zurück zum Zitat Kong X, Nie L, Zhang H, et al. (2016) Do Three-dimensional visualization and three-dimensional printing improve hepatic segment anatomy teaching? A Randomized Controlled Study. J Surg Educ 73(2):264–269CrossRefPubMed Kong X, Nie L, Zhang H, et al. (2016) Do Three-dimensional visualization and three-dimensional printing improve hepatic segment anatomy teaching? A Randomized Controlled Study. J Surg Educ 73(2):264–269CrossRefPubMed
25.
Zurück zum Zitat Marro A, Bandukwala T, Mak W (2016) Three-dimensional printing and medical imaging: a review of the methods and applications. Curr Probl Diagn Radiol 45(1):2–9CrossRefPubMed Marro A, Bandukwala T, Mak W (2016) Three-dimensional printing and medical imaging: a review of the methods and applications. Curr Probl Diagn Radiol 45(1):2–9CrossRefPubMed
26.
Zurück zum Zitat Marconi S, Pugliese L, Del Chiaro M, et al. (2016) An innovative strategy for the identification and 3D reconstruction of pancreatic cancer from CT images. Updates Surg 68(3):273–278CrossRefPubMed Marconi S, Pugliese L, Del Chiaro M, et al. (2016) An innovative strategy for the identification and 3D reconstruction of pancreatic cancer from CT images. Updates Surg 68(3):273–278CrossRefPubMed
27.
Zurück zum Zitat Andolfi C, Plana A, Kania P, Banerjee PP, Small S (2017) Usefulness of three-dimensional modeling in surgical planning, resident training, and patient education. J Laparoendosc Adv Surg Tech 27(5):512–515CrossRef Andolfi C, Plana A, Kania P, Banerjee PP, Small S (2017) Usefulness of three-dimensional modeling in surgical planning, resident training, and patient education. J Laparoendosc Adv Surg Tech 27(5):512–515CrossRef
28.
Zurück zum Zitat Sayed Aluwee SAZ, Bin Zhou X, Kato H, et al. (2017) Evaluation of pre-surgical models for uterine surgery by use of three-dimensional printing and mold casting. Radiol Phys Technol 10(3):279–285CrossRefPubMed Sayed Aluwee SAZ, Bin Zhou X, Kato H, et al. (2017) Evaluation of pre-surgical models for uterine surgery by use of three-dimensional printing and mold casting. Radiol Phys Technol 10(3):279–285CrossRefPubMed
29.
Zurück zum Zitat Baek MH, Kim DY, Kim N, et al. (2016) Incorporating a 3-dimensional printer into the management of early-stage cervical cancer. J Surg Oncol 114(2):150–152CrossRefPubMed Baek MH, Kim DY, Kim N, et al. (2016) Incorporating a 3-dimensional printer into the management of early-stage cervical cancer. J Surg Oncol 114(2):150–152CrossRefPubMed
30.
Zurück zum Zitat Werner H, Lopes J, Tonni G, Araujo Júnior E (2015) Physical model from 3D ultrasound and magnetic resonance imaging scan data reconstruction of lumbosacral myelomeningocele in a fetus with Chiari II malformation. Child’s Nerv Syst 31(4):511–513CrossRef Werner H, Lopes J, Tonni G, Araujo Júnior E (2015) Physical model from 3D ultrasound and magnetic resonance imaging scan data reconstruction of lumbosacral myelomeningocele in a fetus with Chiari II malformation. Child’s Nerv Syst 31(4):511–513CrossRef
31.
Zurück zum Zitat Westerman ME, Matsumoto JM, Morris JM, Leibovich BC (2016) Three-dimensional printing for renal cancer and surgical planning. Eur Urol Focus 2(6):574–576CrossRefPubMed Westerman ME, Matsumoto JM, Morris JM, Leibovich BC (2016) Three-dimensional printing for renal cancer and surgical planning. Eur Urol Focus 2(6):574–576CrossRefPubMed
32.
Zurück zum Zitat Silberstein JL, Maddox MM, Dorsey P, et al. (2014) Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: a pilot study. Urology 84(2):268–272CrossRefPubMed Silberstein JL, Maddox MM, Dorsey P, et al. (2014) Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: a pilot study. Urology 84(2):268–272CrossRefPubMed
33.
Zurück zum Zitat Zhang Y, Ge H, Li N, et al. (2016) Evaluation of three-dimensional printing for laparoscopic partial nephrectomy of renal tumors: a preliminary report. World J Urol 34(4):533–537CrossRefPubMed Zhang Y, Ge H, Li N, et al. (2016) Evaluation of three-dimensional printing for laparoscopic partial nephrectomy of renal tumors: a preliminary report. World J Urol 34(4):533–537CrossRefPubMed
34.
Zurück zum Zitat Wake N, Chandarana H, Huang WC, Taneja SS, Rosenkrantz AB (2016) Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology. Clin Radiol 71(6):610–614CrossRefPubMed Wake N, Chandarana H, Huang WC, Taneja SS, Rosenkrantz AB (2016) Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology. Clin Radiol 71(6):610–614CrossRefPubMed
35.
Zurück zum Zitat Chen DYT, Uzzo RG (2009) Optimal management of localized renal cell carcinoma: surgery, ablation, or active surveillance. J Natl Compr Canc Netw 7(6):635–642; quiz 643 Chen DYT, Uzzo RG (2009) Optimal management of localized renal cell carcinoma: surgery, ablation, or active surveillance. J Natl Compr Canc Netw 7(6):635–642; quiz 643
36.
Zurück zum Zitat Sivarajan G, Huang WC (2012) Current practice patterns in the surgical management of renal cancer in the United States. Urol Clin N Am 39(2):149–160, v Sivarajan G, Huang WC (2012) Current practice patterns in the surgical management of renal cancer in the United States. Urol Clin N Am 39(2):149–160, v
37.
Zurück zum Zitat Ellison JS, Montgomery JS, Hafez KS, et al. (2013) Association of RENAL nephrometry score with outcomes of minimally invasive partial nephrectomy. Int J Urol 20(6):564–570CrossRefPubMed Ellison JS, Montgomery JS, Hafez KS, et al. (2013) Association of RENAL nephrometry score with outcomes of minimally invasive partial nephrectomy. Int J Urol 20(6):564–570CrossRefPubMed
38.
Zurück zum Zitat Simhan J, Smaldone MC, Tsai KJ, et al. (2011) Objective measures of renal mass anatomic complexity predict rates of major complications following partial nephrectomy. Eur Urol 60(4):724–730CrossRefPubMedPubMedCentral Simhan J, Smaldone MC, Tsai KJ, et al. (2011) Objective measures of renal mass anatomic complexity predict rates of major complications following partial nephrectomy. Eur Urol 60(4):724–730CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Zargar H, Allaf ME, Bhayani S, et al. (2015) Trifecta and optimal perioperative outcomes of robotic and laparoscopic partial nephrectomy in surgical treatment of small renal masses: a multi-institutional study. BJU Int 116(3):407–414CrossRefPubMed Zargar H, Allaf ME, Bhayani S, et al. (2015) Trifecta and optimal perioperative outcomes of robotic and laparoscopic partial nephrectomy in surgical treatment of small renal masses: a multi-institutional study. BJU Int 116(3):407–414CrossRefPubMed
40.
Zurück zum Zitat Atug F, Castle EP, Woods M, Davis R, Thomas R (2006) Robotics in urologic surgery: an evolving new technology. Int J Urol 13(7):857–863CrossRefPubMed Atug F, Castle EP, Woods M, Davis R, Thomas R (2006) Robotics in urologic surgery: an evolving new technology. Int J Urol 13(7):857–863CrossRefPubMed
41.
Zurück zum Zitat Knoedler M, Feibus AH, Lange A, et al. (2015) Individualized physical 3-dimensional kidney tumor models constructed from 3-dimensional printers result in improved trainee anatomic understanding. Urology 85(6):1257–1261CrossRefPubMed Knoedler M, Feibus AH, Lange A, et al. (2015) Individualized physical 3-dimensional kidney tumor models constructed from 3-dimensional printers result in improved trainee anatomic understanding. Urology 85(6):1257–1261CrossRefPubMed
42.
Zurück zum Zitat Maddox MM, Feibus A, Liu J, et al. (2017) 3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study. J Robot Surg 12(1):27–33CrossRefPubMed Maddox MM, Feibus A, Liu J, et al. (2017) 3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study. J Robot Surg 12(1):27–33CrossRefPubMed
43.
Zurück zum Zitat Tran-Gia J, Schlogl S, Lassmann M (2016) Design and fabrication of kidney phantoms for internal radiation dosimetry using 3D printing technology. J Nucl Med 57(12):1998–2005CrossRefPubMed Tran-Gia J, Schlogl S, Lassmann M (2016) Design and fabrication of kidney phantoms for internal radiation dosimetry using 3D printing technology. J Nucl Med 57(12):1998–2005CrossRefPubMed
44.
Zurück zum Zitat Department of Health and Human Services: Center for Disease Control and Prevention and NCI (2014) U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2011 Incidence and Mortality Web-based Report Department of Health and Human Services: Center for Disease Control and Prevention and NCI (2014) U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2011 Incidence and Mortality Web-based Report
45.
46.
Zurück zum Zitat Shin T, Ukimura O, Gill IS (2016) Three-dimensional printed model of prostate anatomy and targeted biopsy-proven index tumor to facilitate nerve-sparing prostatectomy. Eur Urol 69(2):377–379CrossRefPubMed Shin T, Ukimura O, Gill IS (2016) Three-dimensional printed model of prostate anatomy and targeted biopsy-proven index tumor to facilitate nerve-sparing prostatectomy. Eur Urol 69(2):377–379CrossRefPubMed
47.
Zurück zum Zitat Reis SP, Majdalany BS, AbuRahma AF, et al. (2017) ACR appropriateness criteria® pulsatile abdominal mass suspected abdominal aortic aneurysm. J Am Coll Radiol 14(5):S258–S265CrossRefPubMed Reis SP, Majdalany BS, AbuRahma AF, et al. (2017) ACR appropriateness criteria® pulsatile abdominal mass suspected abdominal aortic aneurysm. J Am Coll Radiol 14(5):S258–S265CrossRefPubMed
48.
Zurück zum Zitat Powell JT, Sweeting MJ, Ulug P, et al. (2017) Meta-analysis of individual-patient data from EVAR-1, DREAM, OVER and ACE trials comparing outcomes of endovascular or open repair for abdominal aortic aneurysm over 5 years. Br J Surg 104(3):166–178CrossRefPubMedPubMedCentral Powell JT, Sweeting MJ, Ulug P, et al. (2017) Meta-analysis of individual-patient data from EVAR-1, DREAM, OVER and ACE trials comparing outcomes of endovascular or open repair for abdominal aortic aneurysm over 5 years. Br J Surg 104(3):166–178CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Reise JA, Sheldon H, Earnshaw J, et al. (2010) Patient preference for surgical method of abdominal aortic aneurysm repair: postal survey. Eur J Vasc Endovasc Surg 39(1):55–61CrossRefPubMed Reise JA, Sheldon H, Earnshaw J, et al. (2010) Patient preference for surgical method of abdominal aortic aneurysm repair: postal survey. Eur J Vasc Endovasc Surg 39(1):55–61CrossRefPubMed
50.
Zurück zum Zitat Neequaye SK, Aggarwal R, Van Herzeele I, Darzi A, Cheshire NJ (2007) Endovascular skills training and assessment. J Vasc Surg 46(5):1055–1064CrossRefPubMed Neequaye SK, Aggarwal R, Van Herzeele I, Darzi A, Cheshire NJ (2007) Endovascular skills training and assessment. J Vasc Surg 46(5):1055–1064CrossRefPubMed
51.
Zurück zum Zitat Torres IO, De Luccia N (2016) A simulator for training in endovascular aneurysm repair: the use of three dimensional printers. Eur J Vasc Endovasc Surg 54(2):247–253CrossRef Torres IO, De Luccia N (2016) A simulator for training in endovascular aneurysm repair: the use of three dimensional printers. Eur J Vasc Endovasc Surg 54(2):247–253CrossRef
52.
Zurück zum Zitat Tam MD, Latham TR, Lewis M, et al. (2016) A pilot study assessing the impact of 3-D printed models of aortic aneurysms on management decisions in EVAR planning. Vasc Endovasc Surg 50(1):4–9CrossRef Tam MD, Latham TR, Lewis M, et al. (2016) A pilot study assessing the impact of 3-D printed models of aortic aneurysms on management decisions in EVAR planning. Vasc Endovasc Surg 50(1):4–9CrossRef
53.
Zurück zum Zitat Taylor SM, Mills JL, Fujitani RM (1994) The juxtarenal abdominal aortic aneurysm. A more common problem than previously realized? Arch Surg 129(7):734–737CrossRefPubMed Taylor SM, Mills JL, Fujitani RM (1994) The juxtarenal abdominal aortic aneurysm. A more common problem than previously realized? Arch Surg 129(7):734–737CrossRefPubMed
54.
Zurück zum Zitat Hu Z, Li Y, Peng R, et al. (2016) Experience with fenestrated endovascular repair of juxtarenal abdominal aortic aneurysms at a single center. Medicine (Baltimore) 95(10):e2683CrossRef Hu Z, Li Y, Peng R, et al. (2016) Experience with fenestrated endovascular repair of juxtarenal abdominal aortic aneurysms at a single center. Medicine (Baltimore) 95(10):e2683CrossRef
55.
Zurück zum Zitat Starnes BW, Tatum B (2012) Early report from an investigator-initiated investigational device exemption clinical trial on physician-modified endovascular grafts. J Vasc Surg 58(2):311–317CrossRef Starnes BW, Tatum B (2012) Early report from an investigator-initiated investigational device exemption clinical trial on physician-modified endovascular grafts. J Vasc Surg 58(2):311–317CrossRef
56.
Zurück zum Zitat Taher F, Falkensammer J, McCarte J, et al. (2017) The influence of prototype testing in three-dimensional aortic models on fenestrated endograft design. J Vasc Surg 65(6):1591–1597CrossRefPubMed Taher F, Falkensammer J, McCarte J, et al. (2017) The influence of prototype testing in three-dimensional aortic models on fenestrated endograft design. J Vasc Surg 65(6):1591–1597CrossRefPubMed
57.
58.
Zurück zum Zitat Meess KM, Izzo RL, Dryjski ML, Curl RE, et al. (2017) 3D printed abdominal aortic aneurysm phantom for image guided surgical planning with a patient specific fenestrated endovascular graft system. In: Cook TS, Zhang J (eds) Proceedings of SPIE—the International Society for Optical Engineering. SPIE, Bellingham, p 101380P Meess KM, Izzo RL, Dryjski ML, Curl RE, et al. (2017) 3D printed abdominal aortic aneurysm phantom for image guided surgical planning with a patient specific fenestrated endovascular graft system. In: Cook TS, Zhang J (eds) Proceedings of SPIE—the International Society for Optical Engineering. SPIE, Bellingham, p 101380P
59.
Zurück zum Zitat Koleilat I, Jaeggli M, Ewing JA, et al. (2016) Interobserver variability in physician-modified endograft planning by comparison with a three-dimensional printed aortic model. J Vasc Surg 64(6):1789–1796CrossRefPubMed Koleilat I, Jaeggli M, Ewing JA, et al. (2016) Interobserver variability in physician-modified endograft planning by comparison with a three-dimensional printed aortic model. J Vasc Surg 64(6):1789–1796CrossRefPubMed
60.
Zurück zum Zitat Huang J, Li G, Wang W, Wu K, Le T (2016) 3D printing guiding stent graft fenestration: a novel technique for fenestration in endovascular aneurysm repair. Vascular 25(4):442–446CrossRefPubMed Huang J, Li G, Wang W, Wu K, Le T (2016) 3D printing guiding stent graft fenestration: a novel technique for fenestration in endovascular aneurysm repair. Vascular 25(4):442–446CrossRefPubMed
61.
Zurück zum Zitat Itagaki MW (2015) Using 3D printed models for planning and guidance during endovascular intervention: a technical advance. Diagn Interv Radiol 21(4):338–341CrossRefPubMedPubMedCentral Itagaki MW (2015) Using 3D printed models for planning and guidance during endovascular intervention: a technical advance. Diagn Interv Radiol 21(4):338–341CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Yuan D, Luo H, Yang H, et al. (2017) Precise treatment of aortic aneurysm by three-dimensional printing and simulation before endovascular intervention. Sci Rep. 7(1):795CrossRefPubMedPubMedCentral Yuan D, Luo H, Yang H, et al. (2017) Precise treatment of aortic aneurysm by three-dimensional printing and simulation before endovascular intervention. Sci Rep. 7(1):795CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Ruiz S, Galarreta D, Antón R, Cazón A, Finol EA (2017) A methodology for developing anisotropic AAA phantoms via additive manufacturing. J Biomech 57:161–166CrossRef Ruiz S, Galarreta D, Antón R, Cazón A, Finol EA (2017) A methodology for developing anisotropic AAA phantoms via additive manufacturing. J Biomech 57:161–166CrossRef
64.
Zurück zum Zitat Marconi S, Pugliese L, Botti M, et al. (2017) Value of 3D printing for the comprehension of surgical anatomy. Surg Endosc 31(10):4102–4110CrossRefPubMed Marconi S, Pugliese L, Botti M, et al. (2017) Value of 3D printing for the comprehension of surgical anatomy. Surg Endosc 31(10):4102–4110CrossRefPubMed
65.
Zurück zum Zitat Waran V, Devaraj P, Hari Chandran T, et al. (2012) Three-dimensional anatomical accuracy of cranial models created by rapid prototyping techniques validated using a neuronavigation station. J Clin Neurosci 19(4):574–577CrossRefPubMed Waran V, Devaraj P, Hari Chandran T, et al. (2012) Three-dimensional anatomical accuracy of cranial models created by rapid prototyping techniques validated using a neuronavigation station. J Clin Neurosci 19(4):574–577CrossRefPubMed
66.
Zurück zum Zitat Mafeld S, Nesbitt C, Mccaslin J, et al. (2017) Three-dimensional (3D) printed endovascular simulation models: a feasibility study. Ann Transl Med 5(3):1–8CrossRef Mafeld S, Nesbitt C, Mccaslin J, et al. (2017) Three-dimensional (3D) printed endovascular simulation models: a feasibility study. Ann Transl Med 5(3):1–8CrossRef
67.
Zurück zum Zitat Kolesky DB, Truby RL, Gladman AS, et al. (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130CrossRefPubMed Kolesky DB, Truby RL, Gladman AS, et al. (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130CrossRefPubMed
69.
Zurück zum Zitat Laronda MM, Rutz AL, Xiao S, et al. (2017) A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 8:15261CrossRefPubMedPubMedCentral Laronda MM, Rutz AL, Xiao S, et al. (2017) A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 8:15261CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Huotilainen E, Jaanimets R, Valášek J, et al. (2014) Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process. J Craniomaxillofac Surg 42(5):259–265CrossRef Huotilainen E, Jaanimets R, Valášek J, et al. (2014) Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process. J Craniomaxillofac Surg 42(5):259–265CrossRef
71.
Zurück zum Zitat Hoang D, Perrault D, Stevanovic M, Ghiassi A (2016) Surgical applications of three-dimensional printing: a review of the current literature and how to get started. Ann Transl Med 4(23):456CrossRefPubMedPubMedCentral Hoang D, Perrault D, Stevanovic M, Ghiassi A (2016) Surgical applications of three-dimensional printing: a review of the current literature and how to get started. Ann Transl Med 4(23):456CrossRefPubMedPubMedCentral
Metadaten
Titel
Principles of three-dimensional printing and clinical applications within the abdomen and pelvis
verfasst von
Sarah Bastawrous
Nicole Wake
Dmitry Levin
Beth Ripley
Publikationsdatum
04.04.2018
Verlag
Springer US
Erschienen in
Abdominal Radiology / Ausgabe 10/2018
Print ISSN: 2366-004X
Elektronische ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-018-1554-8

Weitere Artikel der Ausgabe 10/2018

Abdominal Radiology 10/2018 Zur Ausgabe

Classics in Abdominal Radiology

The stack of coins sign in scleroderma

Classics in Abdominal Imaging

The cluster sign

Classics in Abdominal Radiology

The Champagne sign

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.