Skip to main content
Erschienen in: Immunologic Research 5/2020

26.08.2020 | Original Article

Protectin DX ameliorates inflammation in sepsis-induced acute lung injury through mediating PPARγ/NF-κB pathway

verfasst von: Haifa Xia, Yangyang Ge, Fuquan Wang, Yu Ming, Zhouyang Wu, Jingxu Wang, Shujun Sun, Shiqian Huang, Ming Chen, Weimin Xiao, Shanglong Yao

Erschienen in: Immunologic Research | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Previous reports have demonstrated that the newly identified lipid mediator protectin DX (PDX) could effectively attenuate multiple organ injuries in sepsis. The aim of our study was to clarify whether PDX could improve acute lung injury (ALI) induced by sepsis and elucidate the relevant potential mechanism. After inducing sepsis by the cecal ligation and puncture approach, mice were treated with a high or low dose of PDX. Pathological changes in the pulmonary tissue were analyzed by hematoxylin-eosin staining, and lung injury score was evaluated. Lung permeability and edema were assessed by lung wet/dry ratio, and protein and cellular load of the bronchoalveolar lavage fluid (BALF). Inflammatory cytokine levels in BALF were measured by ELISA and the expression of PPARγ in the lung tissue was analyzed by immunoblotting. The results suggested that PDX could diminish the inflammatory response in lung tissue after sepsis by upregulating PPARγ and inhibiting the phosphorylation and activation of NF-κB p65. PDX treatment lowered the levels of pro-inflammation cytokines IL-1β, IL-6, TNF-α, and MCP-1, and the levels of anti-inflammatory cytokine IL-10 was increased in the BALF. It also improved lung permeability and reduced lung injury. Furthermore, the protective effect of PDX on lung tissue could be reversed by GW9662, a specific PPAR-γ antagonist. Taken together, our study indicated that PDX could ameliorate the inflammatory response in ALI by activating the PPARγ/NF-κB pathway in a mouse model of sepsis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ashbaugh D, Boyd Bigelow D, Petty T, Levine B. Acute respiratory distress in adults. Lancet. 1967;290:319–23. Ashbaugh D, Boyd Bigelow D, Petty T, Levine B. Acute respiratory distress in adults. Lancet. 1967;290:319–23.
2.
Zurück zum Zitat Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800.PubMed Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800.PubMed
3.
Zurück zum Zitat Acute Respiratory Distress Syndrome. JAMA. 2012; 307. Acute Respiratory Distress Syndrome. JAMA. 2012; 307.
4.
Zurück zum Zitat Kangelaris KN, Prakash A, Liu KD, Aouizerat B, Woodruff PG, Erle DJ, et al. Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS. Am J Physiol Lung C. 2015;308:L1102–13. Kangelaris KN, Prakash A, Liu KD, Aouizerat B, Woodruff PG, Erle DJ, et al. Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS. Am J Physiol Lung C. 2015;308:L1102–13.
5.
Zurück zum Zitat Morrell ED, Radella F II, Manicone AM, Mikacenic C, Stapleton RD, Gharib SA, et al. Peripheral and alveolar cell transcriptional programs are distinct in acute respiratory distress syndrome. Am J Resp Crit Care. 2018;197:528–32. Morrell ED, Radella F II, Manicone AM, Mikacenic C, Stapleton RD, Gharib SA, et al. Peripheral and alveolar cell transcriptional programs are distinct in acute respiratory distress syndrome. Am J Resp Crit Care. 2018;197:528–32.
6.
Zurück zum Zitat Bos LDJ, Scicluna BP, Ong DSY, Cremer O, van der Poll T, Schultz MJ. Understanding heterogeneity in biologic phenotypes of acute respiratory distress syndrome by leukocyte expression profiles. Am J Resp Crit Care. 2019;200:42–50. Bos LDJ, Scicluna BP, Ong DSY, Cremer O, van der Poll T, Schultz MJ. Understanding heterogeneity in biologic phenotypes of acute respiratory distress syndrome by leukocyte expression profiles. Am J Resp Crit Care. 2019;200:42–50.
7.
Zurück zum Zitat Calfee CS, Delucchi KL, Sinha P, Matthay MA, Hackett J, Shankar-Hari M, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med. 2018;6:691–8.PubMedPubMedCentral Calfee CS, Delucchi KL, Sinha P, Matthay MA, Hackett J, Shankar-Hari M, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med. 2018;6:691–8.PubMedPubMedCentral
8.
Zurück zum Zitat Maderna P, Godson C. Lipoxins: resolutionary road. Brit J Pharmacol. 2009;158:947–59. Maderna P, Godson C. Lipoxins: resolutionary road. Brit J Pharmacol. 2009;158:947–59.
9.
Zurück zum Zitat Serhan CN, Chiang N. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br J Pharmacol. 2008;153(Suppl 1):S200–15.PubMed Serhan CN, Chiang N. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br J Pharmacol. 2008;153(Suppl 1):S200–15.PubMed
10.
11.
Zurück zum Zitat Gong J, Wu ZY, Qi H, Chen L, Li HB, Li B, et al. Maresin 1 mitigates LPS-induced acute lung injury in mice. Brit J Pharmacol. 2014;171:3539–50. Gong J, Wu ZY, Qi H, Chen L, Li HB, Li B, et al. Maresin 1 mitigates LPS-induced acute lung injury in mice. Brit J Pharmacol. 2014;171:3539–50.
12.
Zurück zum Zitat Cao C, Yin C, Shou S, Wang J, Yu L, Li X, et al. Ulinastatin protects against LPS-induced acute lung injury by attenuating TLR4/NF-κB pathway activation and reducing inflammatory mediators. SHOCK. 2018;50:595–605.PubMedCrossRef Cao C, Yin C, Shou S, Wang J, Yu L, Li X, et al. Ulinastatin protects against LPS-induced acute lung injury by attenuating TLR4/NF-κB pathway activation and reducing inflammatory mediators. SHOCK. 2018;50:595–605.PubMedCrossRef
13.
Zurück zum Zitat White PJ, Mitchell PL, Schwab M, Trottier J, Kang JX, Barbier O, et al. Transgenic ω-3 PUFA enrichment alters morphology and gene expression profile in adipose tissue of obese mice: potential role for protectins. METABOLISM. 2015;64:666–76.PubMedCrossRef White PJ, Mitchell PL, Schwab M, Trottier J, Kang JX, Barbier O, et al. Transgenic ω-3 PUFA enrichment alters morphology and gene expression profile in adipose tissue of obese mice: potential role for protectins. METABOLISM. 2015;64:666–76.PubMedCrossRef
14.
Zurück zum Zitat Korner A, et al. Resolution of inflammation and sepsis survival are improved by dietary Omega-3 fatty acids. Cell Death Differ. 2018;25:421–31.PubMedCrossRef Korner A, et al. Resolution of inflammation and sepsis survival are improved by dietary Omega-3 fatty acids. Cell Death Differ. 2018;25:421–31.PubMedCrossRef
15.
Zurück zum Zitat Lagarde M, Calzada C, Guichardant M, Véricel E. Dose-effect and metabolism of docosahexaenoic acid: pathophysiological relevance in blood platelets. Prostaglandins Leukot Essent Fat Acids. 2013;88:49–52.CrossRef Lagarde M, Calzada C, Guichardant M, Véricel E. Dose-effect and metabolism of docosahexaenoic acid: pathophysiological relevance in blood platelets. Prostaglandins Leukot Essent Fat Acids. 2013;88:49–52.CrossRef
16.
Zurück zum Zitat Liu M, Chen P, Véricel E, Lelli M, Béguin L, Lagarde M, et al. Characterization and biological effects of di-hydroxylated compounds deriving from the lipoxygenation of ALA. J Lipid Res. 2013;54:2083–94.PubMedPubMedCentralCrossRef Liu M, Chen P, Véricel E, Lelli M, Béguin L, Lagarde M, et al. Characterization and biological effects of di-hydroxylated compounds deriving from the lipoxygenation of ALA. J Lipid Res. 2013;54:2083–94.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Liu M, Boussetta T, Makni-Maalej K, Fay M, Driss F, el-Benna J, et al. Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities. LIPIDS. 2014;49:49–57.PubMedCrossRef Liu M, Boussetta T, Makni-Maalej K, Fay M, Driss F, el-Benna J, et al. Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities. LIPIDS. 2014;49:49–57.PubMedCrossRef
18.
Zurück zum Zitat White PJ, St-Pierre P, Charbonneau A, Mitchell PL, St-Amand E, Marcotte B, et al. Protectin DX alleviates insulin resistance by activating a myokine-liver glucoregulatory axis. Nat Med. 2014;20:664–9.PubMedPubMedCentralCrossRef White PJ, St-Pierre P, Charbonneau A, Mitchell PL, St-Amand E, Marcotte B, et al. Protectin DX alleviates insulin resistance by activating a myokine-liver glucoregulatory axis. Nat Med. 2014;20:664–9.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Li H, Ruan XZ, Powis SH, Fernando R, Mon WY, Wheeler DC, et al. EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism. Kidney Int. 2005;67:867–74.PubMedCrossRef Li H, Ruan XZ, Powis SH, Fernando R, Mon WY, Wheeler DC, et al. EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism. Kidney Int. 2005;67:867–74.PubMedCrossRef
20.
Zurück zum Zitat D B Jump SDC. Regulation of gene expression by dietary fat. ANNU REV NUTR. 1999. D B Jump SDC. Regulation of gene expression by dietary fat. ANNU REV NUTR. 1999.
21.
Zurück zum Zitat Chawla A. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001;294:1866–70.PubMed Chawla A. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001;294:1866–70.PubMed
22.
Zurück zum Zitat Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. NATURE. 2007;447:1116–20.PubMedPubMedCentral Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. NATURE. 2007;447:1116–20.PubMedPubMedCentral
23.
Zurück zum Zitat Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68:280–9.PubMed Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68:280–9.PubMed
24.
Zurück zum Zitat Draper E, Reynolds CM, Canavan M, Mills KH, Loscher CE, Roche HM. Omega-3 fatty acids attenuate dendritic cell function via NF-κB independent of PPARγ. J Nutr Biochem. 2011;22:784–90.PubMed Draper E, Reynolds CM, Canavan M, Mills KH, Loscher CE, Roche HM. Omega-3 fatty acids attenuate dendritic cell function via NF-κB independent of PPARγ. J Nutr Biochem. 2011;22:784–90.PubMed
25.
Zurück zum Zitat Haworth O, Levy BD. Endogenous lipid mediators in the resolution of airway inflammation. Eur Respir J. 2007;30:980–92.PubMedPubMedCentral Haworth O, Levy BD. Endogenous lipid mediators in the resolution of airway inflammation. Eur Respir J. 2007;30:980–92.PubMedPubMedCentral
26.
Zurück zum Zitat Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4:31–6.PubMedPubMedCentral Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4:31–6.PubMedPubMedCentral
27.
Zurück zum Zitat Xia H, et al. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype. Sci Rep UK. 2017;7. Xia H, et al. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype. Sci Rep UK. 2017;7.
28.
Zurück zum Zitat Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Resp Cell Mol. 2011;44:725–38. Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Resp Cell Mol. 2011;44:725–38.
29.
Zurück zum Zitat Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306:2594–605.PubMedPubMedCentral Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306:2594–605.PubMedPubMedCentral
30.
Zurück zum Zitat Cohen J. The immunopathogenesis of sepsis. NATURE. 2002;420:885–91.PubMed Cohen J. The immunopathogenesis of sepsis. NATURE. 2002;420:885–91.PubMed
31.
Zurück zum Zitat Abraham E, Singer M. Mechanisms of sepsis-induced organ dysfunction. Crit Care Med. 2007;35:2408–16.PubMed Abraham E, Singer M. Mechanisms of sepsis-induced organ dysfunction. Crit Care Med. 2007;35:2408–16.PubMed
32.
Zurück zum Zitat Russell CD, Schwarze J. The role of pro-resolution lipid mediators in infectious disease. IMMUNOLOGY. 2014;141:166–73.PubMedPubMedCentral Russell CD, Schwarze J. The role of pro-resolution lipid mediators in infectious disease. IMMUNOLOGY. 2014;141:166–73.PubMedPubMedCentral
33.
Zurück zum Zitat Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T, et al. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol. 2006;176:1848–59.PubMed Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T, et al. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol. 2006;176:1848–59.PubMed
34.
Zurück zum Zitat Liao Z, Dong J, Wu W, Yang T, Wang T, Guo L, et al. Resolvin D1 attenuates inflammation in lipopolysaccharide-induced acute lung injury through a process involving the PPARγ/NF-κB pathway. Resp Res. 2012;13:110. Liao Z, Dong J, Wu W, Yang T, Wang T, Guo L, et al. Resolvin D1 attenuates inflammation in lipopolysaccharide-induced acute lung injury through a process involving the PPARγ/NF-κB pathway. Resp Res. 2012;13:110.
35.
Zurück zum Zitat Rosen ED, Spiegelman BM. PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 2001;276:37731–4.PubMedCrossRef Rosen ED, Spiegelman BM. PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 2001;276:37731–4.PubMedCrossRef
36.
Zurück zum Zitat Straus DS, Pascual G, Li M, Welch JS, Ricote M, Hsiang CH, et al. 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci U S A. 2000;97:4844–9.PubMedPubMedCentralCrossRef Straus DS, Pascual G, Li M, Welch JS, Ricote M, Hsiang CH, et al. 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci U S A. 2000;97:4844–9.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M, et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. NATURE. 2000;403:103–8.PubMedCrossRef Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M, et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. NATURE. 2000;403:103–8.PubMedCrossRef
38.
Zurück zum Zitat Ikeda J, et al. PPARγ agonists attenuate palmitate-induced ER stress through up-regulation of SCD-1 in macrophages. PLoS One. 2015;10:e128546. Ikeda J, et al. PPARγ agonists attenuate palmitate-induced ER stress through up-regulation of SCD-1 in macrophages. PLoS One. 2015;10:e128546.
Metadaten
Titel
Protectin DX ameliorates inflammation in sepsis-induced acute lung injury through mediating PPARγ/NF-κB pathway
verfasst von
Haifa Xia
Yangyang Ge
Fuquan Wang
Yu Ming
Zhouyang Wu
Jingxu Wang
Shujun Sun
Shiqian Huang
Ming Chen
Weimin Xiao
Shanglong Yao
Publikationsdatum
26.08.2020
Verlag
Springer US
Erschienen in
Immunologic Research / Ausgabe 5/2020
Print ISSN: 0257-277X
Elektronische ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-020-09151-7

Weitere Artikel der Ausgabe 5/2020

Immunologic Research 5/2020 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

HNO-Op. auch mit über 90?

16.04.2024 HNO-Chirurgie Nachrichten

Mit Blick auf das Risiko für Komplikationen nach elektiven Eingriffen im HNO-Bereich scheint das Alter der Patienten kein ausschlaggebender Faktor zu sein. Entscheidend ist offenbar, wie fit die Betroffenen tatsächlich sind.

Intrakapsuläre Tonsillektomie gewinnt an Boden

16.04.2024 Tonsillektomie Nachrichten

Gegenüber der vollständigen Entfernung der Gaumenmandeln hat die intrakapsuläre Tonsillektomie einige Vorteile, wie HNO-Fachleute aus den USA hervorheben. Sie haben die aktuelle Literatur zu dem Verfahren gesichtet.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.