Skip to main content
Erschienen in: Journal of Cardiothoracic Surgery 1/2023

Open Access 01.12.2023 | Research

Proteomics investigation of human sera for determination of postoperative indicators of pulmonary cystic echinococcosis

verfasst von: Fatemeh Sadat Sadjjadi, Homa Hajjaran, Bahareh Sedaghat, Parviz Mardani, Seyed Mahmoud Sadjjadi

Erschienen in: Journal of Cardiothoracic Surgery | Ausgabe 1/2023

Abstract

Background

Cystic echinococcosis (CE)/hydatidosis is an important zoonotic parasitic disease caused by the larval stage of Echinococcus granulosus. The disease is a major health problem all over the world. Finding specific and sensitive biomarkers for follow-up of CE in patients after surgery is essential. Using proteomics methods, the present study aimed to evaluate post-surgical treatment by finding probable biomarker/s in the serum of human lungs CE.

Methods

A total of 24 human sera were tested. These sera included eight confirmed lung/s CE patients sera before surgery (BS), eight sera 12 months post-surgery (12MPS) as well as eight control sera from healthy people. Proteomics methods including 2DE and LC–MS/MS were performed on the specimens followed by bioinformatics analysis. Differentially expressed proteins (DEP) were detected and, separately integrated with protein–protein interaction (PPI) data to construct the PPI network.

Results

A total of 171 protein spots were detected in three groups including BS, 12MPS, and control groups; of which a total of 106 DEP have been expressed based on fold changes > = 2 and p-value < 0.05. More analysis was performed and a total of 10 protein spots were selected for identification by mass spectrometry showing the following proteins: APOA1, BGN, SPP2, EAF1, ACOXL, MRPL55, MCTP2, SEPTIN1, B4GALNT1, and ZNF843. Based on centrality parameters of the PPI network (degree and betweenness) five Hub-bottlenecks proteins with significant centrality values were found including APOA1, BGN, SPP2, EAF1, and ACOXL.

Conclusion

This study showed five proteins as hub-bottleneck proteins; of which APOA1 was more prominent. It can be concluded that a change in expression of this protein in patients’ sera could be used as an indicator tool for the achievement of lungs CE surgical therapy.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Cystic echinococcosis(CE)/hydatidosis is an important zoonotic parasitic disease caused by the larval stage or metacestode of the tapeworm Echinococcus granulosus [1, 2]. The disease is still a major health problem all over the world including Iran [35]. Human cases of the disease are routinely reported in different hospitals of country [47]. The disease has been listed as one of the 17 neglected tropical diseases (NTDs) recognized by the World Health Organization [8]. Human can be infected via consuming the parasite eggs leading to cyst formation especially in the liver followed by lungs and other organs [2, 9].
Different species/genotypes of Echinococcus including E. granulosus sensu stricto (s.s) (G1–G3), E. equinus (G4), E. ortleppi (G5), E. canadensis (G6–G10), E. multilocularis, E. vogeli, E. oligarthrus, E. felidis, and E. shiquicus has been reported in the world [1012]. A number of above species and genotypes including E. granulosus s.s, E. canadensis, E. ortleppi have been reported from different organs of humans and animals in Iran [5, 1317]. Diagnosis and treatment of lungs CE is difficult due to confusion with other lung diseases and the fact that infection may remain asymptomatic or for a long time and then manifest itself as a severe and debilitating condition [9, 18, 19]. Radiological studies are the primary step in the detection and evaluation of pulmonary CE cysts. Considering the cost and availability, chest X-rays are still the most used procedure. In complicated CE cysts, CT is the imaging of choice. It can recognize the details of the lesions and their surrounding structures to help the differential diagnoses and uncover additional smaller cysts which are not usually detectable by conventional chest X-ray. The use of ultrasound in lung lesions is limited and is applicable in lesions close to the thoracic wall [20, 21]. Usually, the treatment of CE is performed through surgical procedure and, drug therapy. Due to the possibility of cyst rupture during surgery, the possibility of forming secondary cysts and recurrence of the disease, follow-up of patients with CE at regular intervals after surgery is essential [22]. Post-surgical follow up of CE is usually uses ultrasonography and serological methods [23, 24]. Ultrasonography which is usually used for post follow up of liver cyst surgery is not effective in lungs CE [2]. Currently, there are no markers for evaluation of surgical and drug therapy on CE patients [25]. Evaluation of antibody in sera of treated patients is not recommended due to persistent high level of antibody even after removal of cyst for several months [26].
Evaluation of antigens in sera although is more specific but possess low sensitivity [27]. So, it is essential to find new methods for monitoring and follow up of the treated human CE patients [19]. It seems that the proteomic identification could improve the understanding of biochemical and immunological characteristics of CE [2830].
The present study using proteomics methods was aimed to find probable indicator/s biomarker/s in serum of lungs CE patients before surgery and twelve months post-surgery as evaluation criteria for achievement of lungs surgical therapy.

Materials and methods

Sample collection

A total of 24 human sera from different counties of Fars province, southern Iran were collected and stored at – 20 °C until use. In this region E. granulosus sensu stricto followed by E. canadensis (G6/7) are the most frequent species/genotypes in lungs CE [5]. The pulmonary cyst in the patients were classified according to the location of the cysts and their size. The rate of cysts in the left lobe were more than right lobe. The cysts’ size was classified as small (0–4 cm), medium (5–9 cm), and large (10–15 cm). About 50% of the cysts were small size followed by medium and large size.
The samples were transferred to the Helminthology Research Laboratory at the School of Medicine, SUMS, Iran, for further actions. These sera were included eight confirmed lung/s CE patients sera before surgery (BS), eight sera 12 months post-surgery (12MPS) as well as eight control sera from healthy people. The healthy samples were selected from people who had no sign and symptoms of CE and their sera was negative by ELISA test. After surgery a number of cases had protoscoleces in their CE cyst which was recognizable by microscopy. BS and 12MPS sera samples were collected from the same patients. Gender distribution of the patients showed the male (62%) and female (38%). Patients’ age ranged from under 10 to more than 70 years. All patients and control people had Iranian nationality. Informed consent was obtained from all individual participants included in the study.

Protein separation by two dimensional gel electrophoresis (2-DE)

All sera in each group (BS, 12MPS and control) were thawed at room temperature, vortexed on ice, and pooled separately. Protein assay was performed on every pooled sera group using Bradford method [31]. Immobilized pH gradient (IPG) 7 cm strips (pH 3–10) (Bio-Rad, USA) were used for the first dimension of 2-DE. A diluted sample was made by adding 75 μl of each pooled sample in 50 μl of rehydration buffer (7 M urea, 2 M thiourea, 2% CHAPS, 50 mM DTT, 0.5% Bio-Lyte ampholyte, 0.001% bromophenol blue).
The diluted samples were loaded on IPG strips and incubated at room temperature for 16–18 h. The first dimension of 2-DE was performed with the following voltage and time schedule: (50 v, linear, 4 h), (250 v, linear, 1 h), (1000 v, linear, 1 h), (2000 v, linear, 1 h), (4000 v, linear, 2 h) and (4000 v, rapid, 10 h). The device turned off at 13000 v.
In the next step, the gels were equilibrated twice in equilibration buffers including: 6 M urea, 87% glycerol, 2% SDS, 0.375 M Tris, (pH = 8.8), 0.002% bromophenol blue, once by 1% DTT and once by 2.5% iodoacetamide, for 15 min.
To run the second dimension of 2DE, SDS PAGE was performed. IPG 7Cm strips (pH3-10) were transferred into SDS PAGE formed of 12% polyacryleamide gel and sealed with agarose. The gels transferred to electrophoresis tank with running buffer. Electric current was set at 100 v for 105 min. The 2-DE experiments were repeated three times for each group [30].

Gel staining and gel de-staining

After completion of 2DE, the gels were removed and washed three times with deionized water for10 minutes for each step. KANG staining method [32] was performed for gels staining as follows: The gels were fixed in fixative solution (30 ml ethanol 30%, 2 ml phosphoric acid 2%, 6 ml DW) for 3 h. Then gels were washed 2 times with DW. Gels transfer in staining solution (0.4 gr Coomassie Brilliant Blue G-250, 100 gr aluminium solphate 5%, 200 ml ethanol 10% and 188 ml orthophosphoric acid 85%) for 21 h.
Gels were washed twice and transferred to the de-staining solution (200 ml ethanol 10%, 47 ml phosphoric acid 2%, DW) for 1 h while shaking.

Statistical analysis

Statistical analysis was performed using Progenesis SameSpots software. A densitometer GS-800 (BioRad) was used for scanning image of 2DE gels. The images were analyzed using Progenesis SameSpots software to compare the processed gels for detecting the protein spots, evaluating their color intensity, spots alignment, and statistical analysis. One-way analysis of variance (ANOVA) and fold changes were used to determine the statistically significant changes in protein expression between groups. Spots with p-values < 0.05 and fold changes > = 2 are considered as significant spots.

Mass spectrometry

A total of 10 significant spots which were selected according to their sharpness, density and the changes in protein expression between groups based on statistical analysis were incised and isolated followed by mass spectrometry for protein identification at Proteomics and Mass Spectrometry Core, Medical Plants and Drug Research Institute, University of Shahid Beheshti, Tehran, Iran. Matrix-assisted laser desorption/ionization mass spectrometry (Applied Biosystems 4800 MALDI- TOF/TOF) was used to analysis the samples. The collection solutions were desalted by passing through C18 Zip-Tip reverse phase chromatography pipette tip (Millipore, Bedford, USA) prior to MALDI- TOF analysis, according to the manufacturer’s instructions. The samples were spotted on MALDI plate mixed with an equal volume of matrix solution of sinapinic acid in 50% ACN containing 0.1% TFA, air dried, and analyzed with a MALDI-TOF/TOF mass spectrometer, operated in high linear positive mode. After that, the data were interpreted and processed using Data Explorer software version 4.0 (Applied Biosystems). The obtained mass diagram and data were analysed using Mascot database search (https://​www.​matrixscience.​com/​). Each identified protein was determined with UniProt accession number (https://​www.​uniprot.​org/​).

Bioinformatics analysis

The UniProt accession number of differentially expressed proteins (DEPs) were subjected to STRING online database (https://​string-db.​org/​) in order to construct the functional protein association network. The data obtained from STRING was subjected to Cytoscape v3.2.0 software. Protein–Protein Interaction (PPI) network was drawn for CE results obtained from HPRD, BIND, INTACT, MINT and STRING databases by the application Cytoscape v3.2.0 integrated to the whole network for all DEP in the experiments. Cytoscape extracted the centrality parameters including degree, bottleneck, and betweenness centrality, and analyze the network using special plugins as Cytohubba.

Results

The 2DE method which was used for separating sera proteins in samples showed a total of 171 protein spots in three groups including BS, 12MPS and control. A total of 106 DEP have been expressed in three groups of sera tested, based on fold changes > = 2 and p-value < 0.05. A total of 51 out of 106 DEP spots have been increased their expression after surgery. Simultaneously, a total of 23 out of 106 DEP have been decreased their expression after surgery. In control group 32 DEP spots have been detected.
A total of 10 protein spots were identified by mass spectrometry (LC–MS/MS) (Fig. 1). The expression change of each one in 2DE gel demonstrated in Fig. 2. Details about identified proteins are shown in Table 1.
Table 1
Details about each protein spot were identified by LC–MS/MS
Spot no
Protein name
Gene name
UniProt accession no
MW (Da)
pI
ANOVA
Fold
Control
BS
12MPS
1
Apolipoprotein A-I
APOA1
F8W696
10
8.03
2.617e−013
6.6
2
Biglycan
BGN
C9JKG1
23
8.58
2.760e−011
2.1
3
Secreted phosphoprotein 24
SPP2
Q13103
23
8.42
5.439e−012
2.7
4
ELL-associated factor 1
EAF1
Q96JC9
12
7.22
8.027e−014
5.5
5
Isoform 3 of Acyl-coenzyme A oxidase-like protein
ACOXL
Q9NUZ1-3
20
7.15
1.221e−015
2.5
6
39S ribosomal protein L55, mitochondrial
MRPL55
A0A087X2A2
15
5.96
1.156e−011
3.5
7
Multiple C2 and transmembrane domain-containing protein 2
MCTP2
F5H415
14
10
4.715e−010
2.6
8
Septin-1
SEPTIN1
Q8WYJ6
15
7.82
2.454e−014
5.9
9
Beta-1,4 N-acetylgalactosaminyltransferase 1
B4GALNT1
F8VR44
10
5.96
1.906e−012
4.8
10
Zinc finger protein 843
ZNF843
ZN843_HUMAN
12
7.93
4.390e−010
3.7
In the BS group, a total of nine spots with high expression proteins were identified as follows: Apolipoprotein A-I (APOA1), Biglycan (BGN), Secreted phosphoprotein 24 (SPP2), Isoform 3 of Acyl-coenzyme A oxidase-like protein (ACOXL), 39S ribosomal protein L55,mitochondrial (MRPL55), Multiple C2 and transmembrane domain-containing protein 2 (MCTP2), Septin-1 (SEPTIN1), Beta-1,4 N-acetylgalactosaminyltransferase 1 (B4GALNT1) and Zinc finger protein 843 (ZNF843).
On the other hand the expression of BGN, SPP2, MRPL505, MCTP2 and Septin-1 (SEPTIN1) has been decreased after surgery in 12MPS group. In control group APOA1 and ELL-associated factor 1 (EAF1) and ZNF843 were identified with high expression rather than in other groups.
The whole network was visualized and analyzed using Cytoscape v3.2.0 software, including 137 nodes and 383 edges (Fig. 3).
The hubs, bottlenecks, and hub-bottlenecks are represented in the Tables 2 and 3. The topological parameters of network are described in Table 4. The finding indicates that 5 Hub-bottlenecks proteins including APOA1, BGN, SPP2, EAF1 and ACOXL are query proteins which were identified by MS analysis (Table 5).
Table 2
Bottlenecks proteins with significant centrality values, based on betweenness
No
Gen name
Protein name
Betweenness score
1
APOA1
Apolipoprotein A-I
5451.761
2
BGN
Biglycan
2832.578
3
SPP2
Secreted phosphoprotein 24
1978.989
4
APP
Amyloid-beta precursor protein
1656.169
5
ABCA1
Phospholipid-transporting ATPase
1425.333
6
EAF1
ELL-associated factor 1
1408.603
7
APOB
Apolipoprotein B-100
1124.131
8
MCTP2
Multiple C2 and transmembrane domain-containing protein 2
1046.588
9
TRIM41
E3 ubiquitin-protein ligase TRIM41
1002.482
10
BRAP
BRCA1-associated protein
651.1595
11
CDC37
Hsp90 co-chaperone Cdc37
503.4186
12
MIR760
501.196
13
SDCBP
Syntenin-1
495.0561
14
PCMT1
Protein-L-isoaspartate(D-aspartate) O-methyltransferase
463.2281
15
MIPOL1
Mirror-image polydactyly gene 1 protein
459.5198
16
CLEC4G
C-type lectin domain family 4 member G
453.8621
17
MIR665
422.4701
18
PLTP
Phospholipid transfer protein
421.2035
19
TGFB1
Transforming growth factor beta-1 proprotein
420.5315
20
ACOXL
Isoform 3 of Acyl-coenzyme A oxidase-like protein
415.5001
Table 3
Hub proteins with significant centrality values, based on degree
No
Hub genes
Protein name
Degree
1
APOA1
Apolipoprotein A-I
41
2
BGN
Biglycan
24
3
SPP2
Secreted phosphoprotein 24
23
4
ABCA1
Phospholipid-transporting ATPase
18
5
APP
Amyloid-beta precursor protein
15
6
EAF1
ELL-associated factor 1
15
7
MCTP2
Multiple C2 and transmembrane domain-containing protein 2
15
8
TRIM41
E3 ubiquitin-protein ligase TRIM41
14
9
APOB
Apolipoprotein B-100
13
10
BRAP
BRCA1-associated protein
13
11
SDCBP
Syntenin-1
12
12
PCMT1
Protein-L-isoaspartate(D-aspartate) O-methyltransferase
11
13
MIPOL1
Mirror-image polydactyly gene 1 protein
11
14
TGFB1
Transforming growth factor beta-1 proprotein
10
15
ACOXL
Isoform 3 of Acyl-coenzyme A oxidase-like protein
10
16
FBLN1
Fibulin-1
10
17
TRIM27
Zinc finger protein RFP
10
18
CLEC4G
C-type lectin domain family 4 member G
9
19
PLTP
Phospholipid transfer protein
9
20
NAXE
NAD(P)H-hydrate epimerase
9
Table 4
Topological features of PPI network
Topological parameter
Values
Number of nodes
137
Number of edges
383
Clustering coefficient
0.105
Network centralization
0.237
Network density
0.038
Network diameter
5
Average node degree
5
Table 5
Hub-bottlenecks proteins with highly degree and betweenness
Protein name
Hub degree
Bottleneck betweeness
APOA1
41
5451.761
BGN
24
2832.578
SPP2
23
1978.989
EAF1
15
1408.603
ACOXL
10
415.5001

Discussion

The immunoproteomic approach to the diagnosis and follow-up the treatment outcome of human infectious diseases is an interesting tool [29]. Two-dimensional gel electrophoresis which is a main technique in the proteomics researches, has been one of the most effective methods for isolation of the proteins with complex components [33]. New proteomic tools allow high resolution analysis of complex proteins, through two-dimensional gels (2D-PAGE). The isolated proteins can be individually identified through mass spectrometry [34]. Proteomics investigation on sera components has been used to identify several biomarkers in infectious diseases including parasitic diseases [3539].
The lack of evidence to support the use of serological tools for the follow-up of CE patients is an unsolved problem [19]. Keeping in mind the above limitations and due to the lack of markers and the relatively low serological efficiency, it is essential to finding new methods for monitoring the lungs CE in humans. Therefore, the development of new methods for follow up of the lungs CE especially in treated patients is essential [19]. Moreover, due to low sensitivity and incomplete specificity, the use of serology is restricted to case confirmation, especially among symptomatic patients with an atypical lung lesion. Serology may be of used as an indicator of relapse or recurrence [4043]. Using new and applied methods in this regard is necessary [28]. Accordingly, mass spectrometry-based proteomics techniques, have arisen our ability to identify helminthes proteins [44].
Proteomic tools and bioinformatics analysis of sera from patients with evaluation of proteome levels related liver CE has been used successfully as a valid reliable diagnostic tool [45]. This method will increase the quality of the follow-up processes after a treatment [46].
Recently, proteomics has been used for liver CE follow-up on sera and plasma [47, 48]. So, using the above approach could be useful for evaluation of lungs CE after treatment.
In the present study, a novel approach was employed to identify candidate antigens for evaluation and following-up of human lungs CE after cyst removal. The use of 2D PAGE in combination with mass spectrometry, allowed us identification of ten different proteins using experimental conditions.
This approach has already been used a proteomics gel based method for sera evaluation of human liver CE patients [45]. Previous proteomics studies on hydatid fluid or larval stage of Echinococcus granulosus sensu lato (s.l.) have shown different proteins [4951]. These identified proteins are involved in a wide range of biological functions including stress response, cytoskeleton, metabolism especially those which may participate in the mechanisms of cholesterol uptake from the host [52, 53]. Moreover, comparing their amino acid sequences has showed homology with related parasites [50].
Our results showed a total of 171 protein spots in all gels in the experiment. They were classified into three groups including: BS, 12MPS and control groups. Among them a total of ten protein spots have been selected for identification with mass spectrometry including: APOA1, BGN, SPP2, EAF1 ACOXL, MRPL55, MCTP2, SEPTIN1, B4GALNT1, and ZNF843. Some of these proteins have been reported earlier from hydatid fluid in sheep liver CE [54]. However, they have not been reported from human sera of CE patients, so far. Anyhow, based on centrality parameters of the PPI network (degree and betweenness) a total of five hub-bottlenecks proteins with significant centrality values including APOA1, BGN, SPP2, EAF1 and ACOXL were found. More analysis showed that APOA1 with high degree and betweenness as the first hub protein in the PPI network.
APOA1 is first important protein which was identified in patients’ sera with high expression before surgery. APOA1 is a potential ligand for monocyte and macrophage receptors [55]. These receptors may also be involved in plasma lipoprotein recognition and induce an anti-inflammatory phenotype in macrophages upon recognition of EgAgB. Apolipoprotein component, binds to monocytes and macrophages specifically, using receptors shared with plasma lipoproteins and seems to induce signaling events involved in the regulation of inflammatory pathways [55]. The antigenicity and immunogenicity of AgB has been reported to be associated with its protein moiety or apolipoprotein components [56]. Mass spectrometry used in our study showed the presence of APOA1 in sera of lungs CE patients. Due to usage of pooled sera samples in each group, cyst size or cyst location in the lungs are not applicable to our results. Interestingly, APOA1 has previously been detected in Echinococcus granulosus s.l. hydatid fluid [50, 55]. On the other hand, APOA1 has also been detected in E. multilocularis metacestode [57]. Apolipoprotein has been proposed to be involved in the uptake of lipids by E. multilocularis metacestodes more special in the uptake of cholesterol. In human cases this can interacts with human APOA1 a major constituent of cholesterol-transporting high-density lipoproteins in plasma [53]. Our findings showed that, this protein was present in the sera of lungs CE patients BS and was significantly decreased after removal of the cysts. So, it could be a good candidate to be introduced as an indicator of active lungs CE and could be used for follow-up and treatment programs of CE.
BGN is another protein which has been expressed at high level in sera of lungs CE patients. This protein has been decreased after lungs cyst removal in the patients in 12MPS group. This protein has been reported in Trichinella spiralis and has been proposed to contribute the control of inflammation [58]. In addition to necrotic and activated cells, the extracellular matrix can also release biglycan [59]. Serum BGN may be a new non-invasive indicative marker for the presence of non-alcoholic steato hepatitis (NASH) and liver fibrosis [60].
Serum biglycan might be used as a non-invasive marker of liver fibrosis and also can be a potential biomarker for lung cancer [61]. However, there was no data on BGN and echinococcosis. One of the important protein detected in our study was SPP2. The SPP2 is a protein which was identified in patients’ sera before surgery. After cyst removal the expression of SPP2 has been suppressed in 12MPS group. The reported data on SPP2, has shown that dramatically induces apoptosis of tumor cell. It has been shown that SPP2 dramatically inhibits cell proliferation [62]. However, its role in the CE is not known, yet.
A number of other proteins including EAF1 has been identified in lungs CE patients' sera. Also it was recognized as another hub protein in our PPI network. Comparison of EAF1 expression between control, BS and 12MPS groups showed the high level of EAF1 in control group. It seems that the cyst formation suppressed EAF1 expression. However, after cyst removal in 12MPS, EAF1 expression level in sera is still high.
ACOXL has not been detected in the control group while it has been detected in lungs CE patients' sera. It has been expressed at a high level, even 12MPS. It has not been detected in CE sera, so far. Our observation showed that the majority of pulmonary CE were adults and only one third of the patients were children; although, in general, pulmonary cystic echinococcosis infections are commonly seen in children [63, 64].

Conclusion

The proteomics study revealed that in follow-up samples of lungs CE patients, the expression of several proteins was changed significantly 12 MPS groups in response to treatment and cyst removal. Such the five proteins as hub-bottleneck proteins were diagnosed. Among them APOA1 was more prominent. It can be concluded that change in expression of this protein in patients’ sera could be used as indicator tool for achievement of lungs CE surgical therapy.

Acknowledgements

The authors are thankful to Mrs Kazemian for her kind helps.

Declarations

Ethical consideration and consent to participate

Informed consent was obtained from all subjects, and all methods were carried out in accordance with the relevant guidelines and regulations of National Institute for Medical Research Development, ethical committee (Approval no. IR.NIMAD.REC.1397.351).
Not applicable.

Competing interests

The authors declared no conflicts of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Thompson RCA. Biology and systematics of echinococcus. Adv Parasitol. 2017;95:65–109.CrossRef Thompson RCA. Biology and systematics of echinococcus. Adv Parasitol. 2017;95:65–109.CrossRef
2.
Zurück zum Zitat Eckert J, Deplazes P. Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clin Microbiol Rev. 2004;17(1):107–35.CrossRef Eckert J, Deplazes P. Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clin Microbiol Rev. 2004;17(1):107–35.CrossRef
3.
Zurück zum Zitat Deplazes P, Rinaldi L, Alvarez Rojas CA, Torgerson PR, Harandi MF, Romig T, et al. Global distribution of alveolar and cystic echinococcosis. Adv Parasitol. 2017;95:315–493.CrossRef Deplazes P, Rinaldi L, Alvarez Rojas CA, Torgerson PR, Harandi MF, Romig T, et al. Global distribution of alveolar and cystic echinococcosis. Adv Parasitol. 2017;95:315–493.CrossRef
4.
Zurück zum Zitat Mahmoudi S, Mamishi S, Banar M, Pourakbari B, Keshavarz H. Epidemiology of echinococcosis in Iran: a systematic review and meta-analysis. BMC Infect Dis. 2019;19(1):929.CrossRef Mahmoudi S, Mamishi S, Banar M, Pourakbari B, Keshavarz H. Epidemiology of echinococcosis in Iran: a systematic review and meta-analysis. BMC Infect Dis. 2019;19(1):929.CrossRef
5.
Zurück zum Zitat Mardani P, Ezabadi AT, Sedaghat B, Sadjjadi SM. Pulmonary hydatidosis genotypes isolates from human clinical surgery based on sequencing of mitochondrial genes in Fars Iran. J Cardiothorac Surg. 2021;16(1):167.CrossRef Mardani P, Ezabadi AT, Sedaghat B, Sadjjadi SM. Pulmonary hydatidosis genotypes isolates from human clinical surgery based on sequencing of mitochondrial genes in Fars Iran. J Cardiothorac Surg. 2021;16(1):167.CrossRef
6.
Zurück zum Zitat Sadjjadi SM, Ardehali S, Noman-Pour B, Kumar PV, Izadpanah A. Diagnosis of cystic echinococcosis: ultrasound imaging or countercurrent immunoelectrophoresis? East Mediterr Health J. 2001;7(6):907–11.CrossRef Sadjjadi SM, Ardehali S, Noman-Pour B, Kumar PV, Izadpanah A. Diagnosis of cystic echinococcosis: ultrasound imaging or countercurrent immunoelectrophoresis? East Mediterr Health J. 2001;7(6):907–11.CrossRef
7.
Zurück zum Zitat Rokni MB. Echinococcosis/hydatidosis in Iran. Iran J Parasitol. 2009;4(2):1–16. Rokni MB. Echinococcosis/hydatidosis in Iran. Iran J Parasitol. 2009;4(2):1–16.
8.
Zurück zum Zitat World Health Assembly Resolution WHO 66.12: Neglected tropical diseases. 2013. World Health Assembly Resolution WHO 66.12: Neglected tropical diseases. 2013.
9.
Zurück zum Zitat Barnes TS, Deplazes P, Gottstein B, Jenkins DJ, Mathis A, Siles-Lucas M, et al. Challenges for diagnosis and control of cystic hydatid disease. Acta Trop. 2012;123(1):1–7.CrossRef Barnes TS, Deplazes P, Gottstein B, Jenkins DJ, Mathis A, Siles-Lucas M, et al. Challenges for diagnosis and control of cystic hydatid disease. Acta Trop. 2012;123(1):1–7.CrossRef
10.
Zurück zum Zitat Rojas CAA, Romig T, Lightowlers MW. Echinococcus granulosus sensu lato genotypes infecting humans—review of current knowledge. Int J Parasitol. 2014;44(1):9–18.CrossRef Rojas CAA, Romig T, Lightowlers MW. Echinococcus granulosus sensu lato genotypes infecting humans—review of current knowledge. Int J Parasitol. 2014;44(1):9–18.CrossRef
11.
Zurück zum Zitat Romig T, Ebi D, Wassermann M. Taxonomy and molecular epidemiology of Echinococcus granulosus sensu lato. Vet Parasitol. 2015;213(3–4):76–84.CrossRef Romig T, Ebi D, Wassermann M. Taxonomy and molecular epidemiology of Echinococcus granulosus sensu lato. Vet Parasitol. 2015;213(3–4):76–84.CrossRef
12.
Zurück zum Zitat Vuitton DA, McManus DP, Rogan MT, Romig T, Gottstein B, Naidich A, Tuxun T, Wen H, Menezes da Silva A; World Association of Echinococcosis. International consensus on terminology to be used in the field of echinococcoses. Parasite. 2020;27:41. Vuitton DA, McManus DP, Rogan MT, Romig T, Gottstein B, Naidich A, Tuxun T, Wen H, Menezes da Silva A; World Association of Echinococcosis. International consensus on terminology to be used in the field of echinococcoses. Parasite. 2020;27:41.
13.
Zurück zum Zitat Hajimohammadi B, Dalimi A, Eslami G, Ahmadian S, Zandi S, Baghbani A, Hosseini SS, Askari V, Sheykhzadegan M, Ardekani MN, Boozhmehrani MJ, Ranjbar MJ, Ghoshouni H, Vakili M. Occurrence and genetic characterization of Echinococcus granulosus sensu lato from domestic animals in central Iran. BMC Vet Res. 2022;18(1):22.CrossRef Hajimohammadi B, Dalimi A, Eslami G, Ahmadian S, Zandi S, Baghbani A, Hosseini SS, Askari V, Sheykhzadegan M, Ardekani MN, Boozhmehrani MJ, Ranjbar MJ, Ghoshouni H, Vakili M. Occurrence and genetic characterization of Echinococcus granulosus sensu lato from domestic animals in central Iran. BMC Vet Res. 2022;18(1):22.CrossRef
14.
Zurück zum Zitat Sadjjadi SM, Mikaeili F, Karamian M, Maraghi S, Sadjjadi FS, Shariat-Torbaghan S, Kia EB. Evidence that the Echinococcus granulosus G6 genotype has an affinity for the brain in humans. Int J Parasitol. 2013;43(11):875–7.CrossRef Sadjjadi SM, Mikaeili F, Karamian M, Maraghi S, Sadjjadi FS, Shariat-Torbaghan S, Kia EB. Evidence that the Echinococcus granulosus G6 genotype has an affinity for the brain in humans. Int J Parasitol. 2013;43(11):875–7.CrossRef
15.
Zurück zum Zitat Farhadi M, Fazaeli A, Haniloo A. Genetic characterization of livestock and human hydatid cyst isolates from northwest Iran, using the mitochondrial cox1 gene sequence. Parasitol Res. 2015;114(12):4363–70.CrossRef Farhadi M, Fazaeli A, Haniloo A. Genetic characterization of livestock and human hydatid cyst isolates from northwest Iran, using the mitochondrial cox1 gene sequence. Parasitol Res. 2015;114(12):4363–70.CrossRef
16.
Zurück zum Zitat Ebrahimipour M, Sadjjadi SM, Darani HY, Najjari M. Molecular studies on cystic echinococcosis of camel (Camelus dromedarius) and report of Echinococcus ortleppi in Iran. Iran J Parasitol. 2017;12(3):323–31. Ebrahimipour M, Sadjjadi SM, Darani HY, Najjari M. Molecular studies on cystic echinococcosis of camel (Camelus dromedarius) and report of Echinococcus ortleppi in Iran. Iran J Parasitol. 2017;12(3):323–31.
17.
Zurück zum Zitat Sadjjadi SM, Ebrahimipour M, Sadjjadi FS. Comparison between Echinococcus granulosus sensu stricto (G1) and E. canadensis (G6) mitochondrial genes (cox1 and nad1) and their related protein models using experimental and bioinformatics analysis. Comput Biol Chem. 2019;79:103–9.CrossRef Sadjjadi SM, Ebrahimipour M, Sadjjadi FS. Comparison between Echinococcus granulosus sensu stricto (G1) and E. canadensis (G6) mitochondrial genes (cox1 and nad1) and their related protein models using experimental and bioinformatics analysis. Comput Biol Chem. 2019;79:103–9.CrossRef
18.
Zurück zum Zitat Brunetti E, Garcia HH, Junghanss T. Cystic echinococcosis: chronic, complex, and still neglected. PLoS Negl Trop Dis. 2011;5(7): e1146.CrossRef Brunetti E, Garcia HH, Junghanss T. Cystic echinococcosis: chronic, complex, and still neglected. PLoS Negl Trop Dis. 2011;5(7): e1146.CrossRef
19.
Zurück zum Zitat Manzano-Román R, Sánchez-Ovejero C, Hernández-González A, Casulli A, Siles-Lucas M. Serological diagnosis and follow-up of human cystic echinococcosis: a new hope for the future? Biomed Res Int. 2015;2015:1–8.CrossRef Manzano-Román R, Sánchez-Ovejero C, Hernández-González A, Casulli A, Siles-Lucas M. Serological diagnosis and follow-up of human cystic echinococcosis: a new hope for the future? Biomed Res Int. 2015;2015:1–8.CrossRef
20.
Zurück zum Zitat Garg MK, Sharma M, Gulati A, Gorsi U, Aggarwal AN, Agarwal R, Khandelwal N. Imaging in pulmonary hydatid cysts. World J Radiol. 2016;8(6):581–7.CrossRef Garg MK, Sharma M, Gulati A, Gorsi U, Aggarwal AN, Agarwal R, Khandelwal N. Imaging in pulmonary hydatid cysts. World J Radiol. 2016;8(6):581–7.CrossRef
21.
Zurück zum Zitat Santivanez S, Garcia HH. Pulmonary cystic echinococcosis. Curr Opin Pulm Med. 2010;16(3):257–61. Santivanez S, Garcia HH. Pulmonary cystic echinococcosis. Curr Opin Pulm Med. 2010;16(3):257–61.
22.
Zurück zum Zitat Losada Morales H, Burgos San Juan L, Silva Abarca J, Muñoz Castro C. Experience with the surgical treatment of hepatic hydatidosis: case series with follow-up. World J Gastroenterol. 2010;16(26):3305–9.CrossRef Losada Morales H, Burgos San Juan L, Silva Abarca J, Muñoz Castro C. Experience with the surgical treatment of hepatic hydatidosis: case series with follow-up. World J Gastroenterol. 2010;16(26):3305–9.CrossRef
23.
Zurück zum Zitat Brunetti E, Tamarozzi F, Macpherson C, Filice C, Piontek MS, Kabaalioglu A, et al. Ultrasound and cystic echinococcosis. Ultrasound Int open. 2018;4(3):E70–8.CrossRef Brunetti E, Tamarozzi F, Macpherson C, Filice C, Piontek MS, Kabaalioglu A, et al. Ultrasound and cystic echinococcosis. Ultrasound Int open. 2018;4(3):E70–8.CrossRef
24.
Zurück zum Zitat Ben Salah E, Barrera C, Sakly W, Mosbahi S, Balliau T, Franche N, et al. Novel biomarkers for the early prediction of pediatric cystic echinococcosis post-surgical outcomes. J Infect. 2021;S0163–4453(21):00494–501. Ben Salah E, Barrera C, Sakly W, Mosbahi S, Balliau T, Franche N, et al. Novel biomarkers for the early prediction of pediatric cystic echinococcosis post-surgical outcomes. J Infect. 2021;S0163–4453(21):00494–501.
25.
Zurück zum Zitat Pagnozzi D, Addis MF, Biosa G, Roggio AM, Tedde V, Mariconti M, et al. Diagnostic accuracy of antigen 5-based ELISAs for human cystic echinococcosis Torgerson PR, editor. PLoS Negl Trop Dis. 2016;10(3):e0004585.CrossRef Pagnozzi D, Addis MF, Biosa G, Roggio AM, Tedde V, Mariconti M, et al. Diagnostic accuracy of antigen 5-based ELISAs for human cystic echinococcosis Torgerson PR, editor. PLoS Negl Trop Dis. 2016;10(3):e0004585.CrossRef
26.
Zurück zum Zitat Lawn SD, Bligh J, Craig PS, Chiodini PL. Human cystic echinococcosis: Evaluation of post-treatment serologic follow-up by IgG subclass antibody detection. Am J Trop Med Hyg. 2004;70(3):329–35.CrossRef Lawn SD, Bligh J, Craig PS, Chiodini PL. Human cystic echinococcosis: Evaluation of post-treatment serologic follow-up by IgG subclass antibody detection. Am J Trop Med Hyg. 2004;70(3):329–35.CrossRef
27.
Zurück zum Zitat Sadjjadi SM, Sedaghat F, Hosseini SV, Sarkari B. Serum antigen and antibody detection in echinococcosis: application in serodiagnosis of human hydatidosis. Korean J Parasitol. 2009;47(2):153–7.CrossRef Sadjjadi SM, Sedaghat F, Hosseini SV, Sarkari B. Serum antigen and antibody detection in echinococcosis: application in serodiagnosis of human hydatidosis. Korean J Parasitol. 2009;47(2):153–7.CrossRef
28.
Zurück zum Zitat Khalilpour A, Kilic T, Khalilpour S, Álvarez MM, Yazdi IK. Proteomic-based biomarker discovery for development of next generation diagnostics. Appl Microbiol Biotechnol. 2017;101(2):475–91.CrossRef Khalilpour A, Kilic T, Khalilpour S, Álvarez MM, Yazdi IK. Proteomic-based biomarker discovery for development of next generation diagnostics. Appl Microbiol Biotechnol. 2017;101(2):475–91.CrossRef
29.
Zurück zum Zitat Manterola C, García N, Rojas C. General aspects of the proteomic profile of Echinococcus granulosus. Int J Morphol. 2019;37(2):773–9.CrossRef Manterola C, García N, Rojas C. General aspects of the proteomic profile of Echinococcus granulosus. Int J Morphol. 2019;37(2):773–9.CrossRef
30.
Zurück zum Zitat Sedaghat B, Hajjaran H, Sadjjadi FS, Heidari S, Sadjjadi SM. Proteomic characterization of hydatid cyst fluid: two-dimensional electrophoresis (2-DE) setup through optimizing protein extraction. BMC Res Notes. 2021;14(1):22.CrossRef Sedaghat B, Hajjaran H, Sadjjadi FS, Heidari S, Sadjjadi SM. Proteomic characterization of hydatid cyst fluid: two-dimensional electrophoresis (2-DE) setup through optimizing protein extraction. BMC Res Notes. 2021;14(1):22.CrossRef
31.
Zurück zum Zitat Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRef Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRef
32.
Zurück zum Zitat Kang D-H, Gho Y-S, Suh M-K, Kang C-H. Highly sensitive and fast protein detection with coomassie brilliant blue in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bull Korean Chem Soc. 2002;23(11):1511–2.CrossRef Kang D-H, Gho Y-S, Suh M-K, Kang C-H. Highly sensitive and fast protein detection with coomassie brilliant blue in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bull Korean Chem Soc. 2002;23(11):1511–2.CrossRef
33.
Zurück zum Zitat Li J, Wang X, Wang Y, Zhang Z, Chen L, Wu J. Establishment and optimization of two-dimensional electrophoresis technique in hydatid fluid proteome of Echinococcus granulosus. Pak J Zool. 2014;46(5):1249–54. Li J, Wang X, Wang Y, Zhang Z, Chen L, Wu J. Establishment and optimization of two-dimensional electrophoresis technique in hydatid fluid proteome of Echinococcus granulosus. Pak J Zool. 2014;46(5):1249–54.
34.
Zurück zum Zitat Diaz-Masmela Y, Fragoso G, Ambrosio JR, Mendoza-Hernández G, Rosas G, Estrada K, et al. Immunodiagnosis of porcine cysticercosis: Identification of candidate antigens through immunoproteomics. Vet J. 2013;198(3):656–60.CrossRef Diaz-Masmela Y, Fragoso G, Ambrosio JR, Mendoza-Hernández G, Rosas G, Estrada K, et al. Immunodiagnosis of porcine cysticercosis: Identification of candidate antigens through immunoproteomics. Vet J. 2013;198(3):656–60.CrossRef
35.
Zurück zum Zitat Santamaria C, Chatelain E, Jackson Y, Miao Q, Ward BJ, Chappuis F, et al. Serum biomarkers predictive of cure in Chagas disease patients after nifurtimox treatment. BMC Infect Dis. 2014;14:302.CrossRef Santamaria C, Chatelain E, Jackson Y, Miao Q, Ward BJ, Chappuis F, et al. Serum biomarkers predictive of cure in Chagas disease patients after nifurtimox treatment. BMC Infect Dis. 2014;14:302.CrossRef
36.
Zurück zum Zitat Mahor D, Kumari V, Vashisht K, Galgalekar R, Samarth RM, Mishra PK, Banerjee N, Dixit R, Saluja R, De S, Pandey KC. Elevated serum matrix metalloprotease (MMP-2) as a candidate biomarker for stable COPD. BMC Pulm Med. 2020;20(1):302.CrossRef Mahor D, Kumari V, Vashisht K, Galgalekar R, Samarth RM, Mishra PK, Banerjee N, Dixit R, Saluja R, De S, Pandey KC. Elevated serum matrix metalloprotease (MMP-2) as a candidate biomarker for stable COPD. BMC Pulm Med. 2020;20(1):302.CrossRef
37.
Zurück zum Zitat Dard C, Swale C, Brenier-Pinchart M-P, Farhat DC, Bellini V, Robert MG, et al. A brain cyst load-associated antigen is a Toxoplasma gondii biomarker for serodetection of persistent parasites and chronic infection. BMC Biol. 2021;19(1):25.CrossRef Dard C, Swale C, Brenier-Pinchart M-P, Farhat DC, Bellini V, Robert MG, et al. A brain cyst load-associated antigen is a Toxoplasma gondii biomarker for serodetection of persistent parasites and chronic infection. BMC Biol. 2021;19(1):25.CrossRef
38.
Zurück zum Zitat Da’dara AA, Siddons G, Icaza M, Wang Q, Skelly PJ. How schistosomes alter the human serum proteome. Mol Biochem Parasitol. 2017;215:40–6.CrossRef Da’dara AA, Siddons G, Icaza M, Wang Q, Skelly PJ. How schistosomes alter the human serum proteome. Mol Biochem Parasitol. 2017;215:40–6.CrossRef
39.
Zurück zum Zitat Garcia-Obregon S, Azkargorta M, Seijas I, Pilar-Orive J, Borrego F, Elortza F, et al. Identification of a panel of serum protein markers in early stage of sepsis and its validation in a cohort of patients. J Microbiol Immunol Infect. 2018;51(4):465–72.CrossRef Garcia-Obregon S, Azkargorta M, Seijas I, Pilar-Orive J, Borrego F, Elortza F, et al. Identification of a panel of serum protein markers in early stage of sepsis and its validation in a cohort of patients. J Microbiol Immunol Infect. 2018;51(4):465–72.CrossRef
40.
Zurück zum Zitat Force L, Torres JM, Carrillo A, Buscà J. Evaluation of eight serological tests in the diagnosis of human echinococcosis and follow-up. Clin Infect Dis. 1992;15(3):473–80.CrossRef Force L, Torres JM, Carrillo A, Buscà J. Evaluation of eight serological tests in the diagnosis of human echinococcosis and follow-up. Clin Infect Dis. 1992;15(3):473–80.CrossRef
41.
Zurück zum Zitat Zarzosa MP, Orduña Domingo A, Gutiérrez P, Alonso P, Cuervo M, Prado A, et al. Evaluation of six serological tests in diagnosis and postoperative control of pulmonary hydatid disease patients. Diagn Microbiol Infect Dis. 1999;35(4):255–62.CrossRef Zarzosa MP, Orduña Domingo A, Gutiérrez P, Alonso P, Cuervo M, Prado A, et al. Evaluation of six serological tests in diagnosis and postoperative control of pulmonary hydatid disease patients. Diagn Microbiol Infect Dis. 1999;35(4):255–62.CrossRef
42.
Zurück zum Zitat Ortona E, Riganò R, Margutti P, Notargiacomo S, Ioppolo S, Vaccari S, et al. Native and recombinant antigens in the immunodiagnosis of human cystic echinococcosis. Parasite Immunol. 2000;22(11):553–9.CrossRef Ortona E, Riganò R, Margutti P, Notargiacomo S, Ioppolo S, Vaccari S, et al. Native and recombinant antigens in the immunodiagnosis of human cystic echinococcosis. Parasite Immunol. 2000;22(11):553–9.CrossRef
43.
Zurück zum Zitat Santivañez SJ, Arias P, Portocarrero M, Rodriguez S, Gonzalez AE, Gilman RH, et al. Serological diagnosis of lung cystic hydatid disease using the synthetic p176 peptide. Clin Vaccine Immunol. 2012;19(6):944–7.CrossRef Santivañez SJ, Arias P, Portocarrero M, Rodriguez S, Gonzalez AE, Gilman RH, et al. Serological diagnosis of lung cystic hydatid disease using the synthetic p176 peptide. Clin Vaccine Immunol. 2012;19(6):944–7.CrossRef
44.
Zurück zum Zitat Robinson MW, Cwiklinski K. Proteomics of host-helminth interactions. Pathogens. 2021;10(10):1317.CrossRef Robinson MW, Cwiklinski K. Proteomics of host-helminth interactions. Pathogens. 2021;10(10):1317.CrossRef
45.
Zurück zum Zitat Sadjjadi FS, Rezaie-Tavirani M, Ahmadi NA, Sadjjadi SM, Zali H. Proteome evaluation of human cystic echinococcosis sera using two dimensional gel electrophoresis. Gastroenterol Hepatol Bed Bench. 2018;11(1):75–82. Sadjjadi FS, Rezaie-Tavirani M, Ahmadi NA, Sadjjadi SM, Zali H. Proteome evaluation of human cystic echinococcosis sera using two dimensional gel electrophoresis. Gastroenterol Hepatol Bed Bench. 2018;11(1):75–82.
46.
Zurück zum Zitat Celik T, Akarsu GA, Güngör C, Colak C, Ormeci N. Evaluation of antibodies against hydatid cyst fluid antigens in the post-treatment follow-up of cystic echinococcosis patients. Med Sci Monit. 2009;15(4):170–6. Celik T, Akarsu GA, Güngör C, Colak C, Ormeci N. Evaluation of antibodies against hydatid cyst fluid antigens in the post-treatment follow-up of cystic echinococcosis patients. Med Sci Monit. 2009;15(4):170–6.
47.
Zurück zum Zitat Fratini F, Tamarozzi F, Macchia G, Bertuccini L, Mariconti M, Birago C, et al. Proteomic analysis of plasma exosomes from cystic echinococcosis patients provides in vivo support for distinct immune response profiles in active vs inactive infection and suggests potential biomarkers. PLoS Negl Trop Dis. 2020;14(10): e0008586.CrossRef Fratini F, Tamarozzi F, Macchia G, Bertuccini L, Mariconti M, Birago C, et al. Proteomic analysis of plasma exosomes from cystic echinococcosis patients provides in vivo support for distinct immune response profiles in active vs inactive infection and suggests potential biomarkers. PLoS Negl Trop Dis. 2020;14(10): e0008586.CrossRef
48.
Zurück zum Zitat Sadjjadi FS, Ahmadi NA, Rezaie-Tavirani M, Zali H. Following up of surgical treated human liver cystic echinococcosis: a proteomics approach. Iran J Parasitol. 2021;16(1):11–22. Sadjjadi FS, Ahmadi NA, Rezaie-Tavirani M, Zali H. Following up of surgical treated human liver cystic echinococcosis: a proteomics approach. Iran J Parasitol. 2021;16(1):11–22.
49.
Zurück zum Zitat Monteiro KM, de Carvalho MO, Zaha A, Ferreira HB. Proteomic analysis of the Echinococcus granulosus metacestode during infection of its intermediate host. Proteomics. 2010;10(10):1985–99.CrossRef Monteiro KM, de Carvalho MO, Zaha A, Ferreira HB. Proteomic analysis of the Echinococcus granulosus metacestode during infection of its intermediate host. Proteomics. 2010;10(10):1985–99.CrossRef
50.
Zurück zum Zitat Aziz A, Zhang W, Li J, Loukas A, McManus DP, Mulvenna J. Proteomic characterisation of Echinococcus granulosus hydatid cyst fluid from sheep, cattle and humans. J Proteomics. 2011;74(9):1560–72.CrossRef Aziz A, Zhang W, Li J, Loukas A, McManus DP, Mulvenna J. Proteomic characterisation of Echinococcus granulosus hydatid cyst fluid from sheep, cattle and humans. J Proteomics. 2011;74(9):1560–72.CrossRef
51.
Zurück zum Zitat Dos Santos VM, Dos Santos LAM. Diagnosis of hepatic hydatid cysts by contrast-enhanced ultrasound. Ultraschall Med. 2020;41(6):699–700.CrossRef Dos Santos VM, Dos Santos LAM. Diagnosis of hepatic hydatid cysts by contrast-enhanced ultrasound. Ultraschall Med. 2020;41(6):699–700.CrossRef
52.
Zurück zum Zitat Li X, Jiang S, Wang X, Hui W, Jia B. iTRAQ-based comparative proteomic analysis in different developmental stages of Echinococcus granulosus. Parasite. 2021;28:15.CrossRef Li X, Jiang S, Wang X, Hui W, Jia B. iTRAQ-based comparative proteomic analysis in different developmental stages of Echinococcus granulosus. Parasite. 2021;28:15.CrossRef
53.
Zurück zum Zitat Brehm K, Koziol U. Echinococcus-host interactions at cellular and molecular levels. Adv Parasitol. 2017;95:147–212.CrossRef Brehm K, Koziol U. Echinococcus-host interactions at cellular and molecular levels. Adv Parasitol. 2017;95:147–212.CrossRef
54.
Zurück zum Zitat Hui W, Jiang S, Liu X, Ban Q, Chen S, Jia B. Gene expression profile in the liver of sheep infected with cystic echinococcosis. PLoS ONE. 2016;11(7): e0160000.CrossRef Hui W, Jiang S, Liu X, Ban Q, Chen S, Jia B. Gene expression profile in the liver of sheep infected with cystic echinococcosis. PLoS ONE. 2016;11(7): e0160000.CrossRef
55.
Zurück zum Zitat Silva-Álvarez V, Folle AM, Ramos AL, Kitano ES, Iwai LK, Corraliza I, et al. Echinococcus granulosus antigen B binds to monocytes and macrophages modulating cell response to inflammation. Parasit Vectors. 2016;9:69.CrossRef Silva-Álvarez V, Folle AM, Ramos AL, Kitano ES, Iwai LK, Corraliza I, et al. Echinococcus granulosus antigen B binds to monocytes and macrophages modulating cell response to inflammation. Parasit Vectors. 2016;9:69.CrossRef
56.
Zurück zum Zitat Folle AM, Kitano ES, Lima A, Gil M, Cucher M, Mourglia-Ettlin G, et al. Characterisation of antigen B protein species present in the hydatid cyst fluid of Echinococcus canadensis G7 genotype. PLoS Negl Trop Dis. 2017;11(1): e0005250.CrossRef Folle AM, Kitano ES, Lima A, Gil M, Cucher M, Mourglia-Ettlin G, et al. Characterisation of antigen B protein species present in the hydatid cyst fluid of Echinococcus canadensis G7 genotype. PLoS Negl Trop Dis. 2017;11(1): e0005250.CrossRef
57.
Zurück zum Zitat Bernthaler P, Epping K, Schmitz G, Deplazes P, Brehm K. Molecular characterization of EmABP, an apolipoprotein A-I binding protein secreted by the Echinococcus multilocularis metacestode. Infect Immun. 2009;77(12):5564–71.CrossRef Bernthaler P, Epping K, Schmitz G, Deplazes P, Brehm K. Molecular characterization of EmABP, an apolipoprotein A-I binding protein secreted by the Echinococcus multilocularis metacestode. Infect Immun. 2009;77(12):5564–71.CrossRef
58.
Zurück zum Zitat Roy A, Ganesh G, Sippola H, Bolin S, Sawesi O, Dagälv A, et al. Mast cell chymase degrades the alarmins heat shock protein 70, biglycan, HMGB1, and interleukin-33 (IL-33) and limits danger-induced inflammation. J Biol Chem. 2014;289(1):237–50.CrossRef Roy A, Ganesh G, Sippola H, Bolin S, Sawesi O, Dagälv A, et al. Mast cell chymase degrades the alarmins heat shock protein 70, biglycan, HMGB1, and interleukin-33 (IL-33) and limits danger-induced inflammation. J Biol Chem. 2014;289(1):237–50.CrossRef
59.
Zurück zum Zitat Schaefer L, Babelova A, Kiss E, Hausser H-J, Baliova M, Krzyzankova M, et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest. 2005;115(8):2223–33.CrossRef Schaefer L, Babelova A, Kiss E, Hausser H-J, Baliova M, Krzyzankova M, et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest. 2005;115(8):2223–33.CrossRef
61.
Zurück zum Zitat Morimoto H, Hida Y, Maishi N, Nishihara H, Hatanaka Y, Li C, et al. Biglycan, tumor endothelial cell secreting proteoglycan, as possible biomarker for lung cancer. Thorac cancer. 2021;12(9):1347–57.CrossRef Morimoto H, Hida Y, Maishi N, Nishihara H, Hatanaka Y, Li C, et al. Biglycan, tumor endothelial cell secreting proteoglycan, as possible biomarker for lung cancer. Thorac cancer. 2021;12(9):1347–57.CrossRef
62.
Zurück zum Zitat Lao L, Shen J, Tian H, Zhong G, Murray SS, Wang JC. Secreted phosphoprotein 24kD (Spp24) inhibits growth of hepatocellular carcinoma in vivo. Environ Toxicol Pharmacol. 2017;51:51–5.CrossRef Lao L, Shen J, Tian H, Zhong G, Murray SS, Wang JC. Secreted phosphoprotein 24kD (Spp24) inhibits growth of hepatocellular carcinoma in vivo. Environ Toxicol Pharmacol. 2017;51:51–5.CrossRef
63.
Zurück zum Zitat Haliloglu M, Saatci I, Akhan O, Ozmen MN, Besim A. Spectrum of imaging findings in pediatric hydatid disease. AJR Am J Roentgenol. 1997;169(6):1627–31.CrossRef Haliloglu M, Saatci I, Akhan O, Ozmen MN, Besim A. Spectrum of imaging findings in pediatric hydatid disease. AJR Am J Roentgenol. 1997;169(6):1627–31.CrossRef
64.
Zurück zum Zitat Sarkar M, Pathania R, Jhobta A, Thakur BR, Chopra R. Cystic pulmonary hydatidosis. Lung India. 2016;33(2):179–91.CrossRef Sarkar M, Pathania R, Jhobta A, Thakur BR, Chopra R. Cystic pulmonary hydatidosis. Lung India. 2016;33(2):179–91.CrossRef
Metadaten
Titel
Proteomics investigation of human sera for determination of postoperative indicators of pulmonary cystic echinococcosis
verfasst von
Fatemeh Sadat Sadjjadi
Homa Hajjaran
Bahareh Sedaghat
Parviz Mardani
Seyed Mahmoud Sadjjadi
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Journal of Cardiothoracic Surgery / Ausgabe 1/2023
Elektronische ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-023-02109-4

Weitere Artikel der Ausgabe 1/2023

Journal of Cardiothoracic Surgery 1/2023 Zur Ausgabe

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

Real-World-Daten sprechen eher für Dupilumab als für Op.

14.05.2024 Rhinosinusitis Nachrichten

Zur Behandlung schwerer Formen der chronischen Rhinosinusitis mit Nasenpolypen (CRSwNP) stehen seit Kurzem verschiedene Behandlungsmethoden zur Verfügung, darunter Biologika, wie Dupilumab, und die endoskopische Sinuschirurgie (ESS). Beim Vergleich der beiden Therapieoptionen war Dupilumab leicht im Vorteil.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.