Skip to main content
Erschienen in: Forensic Science, Medicine and Pathology 2/2023

Open Access 21.03.2023 | Original Article

Pulmonary thromboembolism and obesity in forensic pathologic case work

verfasst von: Michael Klintschar, Kirsten Wöllner, Lars Hagemeier, Theresa A. Engelmann, Jan Mahlmann, Alessia Lunow, Roman Wolff-Maras

Erschienen in: Forensic Science, Medicine and Pathology | Ausgabe 2/2023

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

328 autopsy cases of fatal pulmonary thromboembolism (PE) were compared to 984 age- and sex-matched controls to evaluate the association between obesity and PE in a forensic context. Both PE and control cases had a mean age of 67,8 years (male 62,9 years, females 71,7 years). The percentage of morbidly obese persons with a body mass index (BMI) of above 40 or abdominal subcutaneous adipose tissue of above 4 cm was higher in the PE group (8,39% vs. 4,67% and 29.45% vs. 23.40%, respectively). On the other side, that of very slim persons (BMI below 18.5 or adipose tissue below 3 cm) was significantly smaller (4,27% vs. 7,52% and 47.55% vs. 56,60%). We thus found a strong association between being overweight and death from PE, while slim persons seem to be at an advantage. As the group of underweight persons includes those suffering from chronic diseases with reduced mobility or hypercoagulability (e.g. tumor kachexia or sarkopenia due to immobilisation), this finding is to some extent unexpected.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Pulmonary embolism (PE) is an (in many instances lethal) complication of venous thromboembolism (VTE). PE is frequently observed when performing forensic autopsies and is thus mentioned in standard textbooks as well as objective of research in forensic medicine [14]. Also genetic factors contributing to the risk of PE have been studied in the forensic context [57].
Besides a genetic component, the many risk factors include cancer, surgery, trauma, immobilization, pregnancy, oral contraceptive use, old age etc. [8].
One further factor discussed to be associated with PE is obesity [9, 10], a condition of increasing frequency throughout the world [11, 12].
As a simple screening tool for differing between normal and abnormal weight, in many instances the Body Mass Index, or BMI, is used. It is defined as a person’s weight in kilograms divided by the square of height in meters. According to the World Health Organization, a BMI of 18.5 to < 25 is considered normal. A BMI of 25.0 to < 30 is considered overweight, while a BMI below 18.5 is underweight. Persons with a BMI of above 30 are considered to be obese and those above 40 morbidly obese.
An association between PE and obesity was initially described in 1927 [13] and was confirmed in large clinical studies such as the Nurses´ Health study [14] (in that women aged 30–55 years with a BMI of above 29 had a relative risk of 2.9 to develop PE compared to women of normal weight). Nevertheless, the association between obesity and PE might be less straightforward than initially assumed, at least when considering the fatal cases: A paradoxical beneficial effect of severe overweight was reported recently with a lower mortality from PE in obese persons compared to persons with normal or low weight [15]. In this study, obese persons with venous thromboembolism showed less than 50% the mortality rate of persons with normal BMI. This mortality paradox was confirmed by several subsequent studies [16, 17].
It is well known that PE is a difficult clinical diagnosis [18] and in many instances deaths from PE are diagnosed only upon autopsy: Among those patients who die of PE, 94% do so before diagnosis [19]. The well known decline in the clinical autopsy rate has thus resulted in an increased number of PE cases remaining undiagnosed [20]. We conclude from this that studies that predominantly rely on clinical data, but not on autopsy data, might be biased.
Up to now, there are only very few studies on the association of obesity and deaths from PE, in which a complete autopsy was performed in all patients: A study on pathologic autopsies of persons deceased in hospitals in Malmö between 1970 and 1982 found an increased risk of death from PE in persons with a BMI of above 22.4 (OR 1.24), in persons with an abdominal subcutaneous fat tissue thickness of more than 20 mm (OR 1.28) and a thoracic subcutaneous fat tissue thickness of more than 9 mm (OR 1.35).
In the forensic context, there is only one pertinent study: Rosenfeld et al. compared 160 deaths from PE and 160 other forensic autopsy cases from Australia and found an average BMI of 30,88 in PE deaths compared to 25,33 in other autopsies [21]. They report very strong correlations between BMI and death from PE.
Nevertheless 160 cases is a rather small group and a larger study might lead to a better estimation of the role of obesity in PE mortality. Therefore, to further deepen the insights into the relation of body weight and risk to die from PE in the forensic case work, we analyzed a considerably larger autopsy population from Germany.

Patients and methods

The Institute of Legal Medicine in Hannover and Oldenburg performed 7150 autopsies in the years January 2012- April 2019. These autopsy protocols were retrospectively studied and altogether 328 cases identified, in which death was unambiguously caused by PE. The cases included 143 male and 185 female persons. Body height and body weight were measured before autopsy. During autopsy the maximal thickness of the abdominal subcutaneous adipose tissue (SC) was measured. Deceased persons with significant putrefaction were excluded from the study as well as persons younger than 18 years. The PE cases had a mean age of 67,8 years (men 62,9 years, females 71,7 years). The autopsy protocols included a forensic/criminalistic/medical case history which included the major preexisting diseases and circumstances of death, but usually not the medication. From these informations 5 major risk factors were identified: physical inactivity, recent trauma, recent operations, tumor disease and other causes. The frequency of these risk factors is given in Table 1
Table 1
The frequency of common risk factors besides obesity in the 328 PE cases (143 males and 185 females)
 
immobilization
surgery
trauma
tumor
others
none
 
male
13,3%
34,3%
18,2%
14,0%
3,5%
36,4%
 
female
10,8%
29,2%
28,1%
11,4%
2,7%
38,9%
 
total
11,9%
31,4%
23,8%
12,5%
3,0%
37,8%
 
As control sample for each PE case three cases that had died from other causes were randomly selected. These samples had the same age (in years) and sex as the causes. The control group thus contained 984 deceased persons of the same age and sex distribution as the cases.

Statistics

The autopsy data were stratified according to sex. Mean BMI and thickness of the subcutaneous adipose tissue (SC) were calculated and compared to the autopsy control group using a chi square test (https://​www.​medcalc.​org/​calc/​comparison_​of_​means.​php).
Relative risks for different weight groups were calculated using the online relative risk calculator (https://​www.​medcalc.​org/​calc/​relative_​risk.​php). Both tools are made available online by MedCalc.

Results

The PE group had an average BMI of 28.75 and a mean adipose tissue thickness of 3,77 cm. The Non-PE group had a significantly smaller BMI of 26.72 and 3.34 cm adipose tissue (Table 2). Interestingly, the BMI differences were more prominent in men than in women (29,25 vs. 26,78; 28,32 vs. 26,67) while they were significant in both groups. The SC fat thickness differences were, however, comparable for men and women (3,69 vs. 3,26; 3,82 vs. 3,40). Moreover, the p-values for the comparisons between PE group and controls for subcutaneous fat tissue were smaller than those for BMI, indicating that BMI might be closer correlated to PE than the SC fat tissue.
Table 2
Body mass index and subcutaneous fat tissue in deaths from PE (cases) and other causes of death (controls). BMI mean body mass index, SC thickness of the subcutaneous fat tissue (cm) SD standard deviation
https://static-content.springer.com/image/art%3A10.1007%2Fs12024-023-00602-9/MediaObjects/12024_2023_602_Tab2_HTML.png
As given in Table 3, the percentage of morbidly obese persons with a BMI above 40 or a SC adipose tissue above 4 was larger in the PE group (in the combined group 8,39% vs. 4,67% and 29.45% vs. 23.40%, respectively), while that of very slim persons (BMI below 18.5 or sc adipose tissue below 3 cm) was smaller (4,27% vs. 7,52% and 47.55% vs. 56,60%). Using these data, relative risks were calculated (Table 4), that were significantly increased for persons (males and females) with a BMI above 40. A deleterious effect of a BMI above 30 or 25 could not be demonstrated. For the SC thickness > 4 cm only in the combined group a significantly increased risk was calculated. Interestingly, we could demonstrate a significant protective influence of being underweight (BMI below 18.5 or sc adipose tissue < 3 cm) in the combined male and female group.
Table 3
The distribution of BMI and subcutaneous tissue thickness groups in cases and controls
BMI
 
< 18.5
18,5–25
25–30
30–40
> 40
Cases
male
2,10%
26,57%
39,16%
23,78%
8,39%
 
female
5,95%
31,89%
28,11%
22,16%
11,89%
 
All
4,27%
29,57%
32,93%
22,87%
10,37%
Controls
male
4,90%
38,46%
31,00%
22,38%
3,26%
 
female
9,55%
35,86%
28,29%
20,54%
5,77%
 
All
7,52%
36,99%
29,47%
21,34%
4,67%
SC
 
<  = 3 cm
3—4 cm
> 4 cm
  
Cases
male
49,65%
23,08%
27,27%
  
 
female
45,90%
22,95%
31,15%
  
 
All
47,55%
23,01%
29,45%
  
Controls
male
57,11%
22,51%
20,38%
  
 
female
56,20%
18,07%
25,73%
  
 
All
56,60%
20,00%
23,40%
  
BMI mean body mass index, SC thickness of the subcutaneous fat tissue (cm)
Table 4
Relative risks calculated from the data in Table 3
BMI
< 18.5
18.5–25
25–30
30–40
> 40
male
n.s
n.s
n.s
n.s
1.2177 to 5.4300 p:0.0133
female
n.s
n.s
n.s
n.s
1.2302 to 3.4578 p:0.006
All
0.325 to 0.991 (p:0.0464)
n.s
n.s
n.s
1.4492 to 3.3927 p:0.0002
SC
<  = 3 cm
3—4 cm
> 4 cm
  
male
n.s
n.s
n.s
  
female
n.s
n.s
n.s
  
All
0.7401–0.9535; p:0.0070
n.s
1.0272–1.5415; p:0.0265
  
n.s. not significant, BMI mean body mass index, SC thickness of the subcutaneous fat tissue (cm)

Discussion

The frequency of PE in autopsy studies, both clinical and forensic, is reported to vary between 3 and 20% [22]. We found a fatal PE in 328 of the 7150 autopsies performed at our institute during more than 7 years (4,5%) and thus PE was relatively rare in our casework. When considering common well known risk factors (besides obesity) like immobilization, trauma, surgery or tumor disease, such factors were reported for more than 2/3 of the cases (Table 1).
For clinical autopsies, the only study was published more than 20 years ago [23]. Also in the forensic context up to now only one such study was published: Rosenfeld et al. compared 160 deaths from PE and 160 other forensic autopsy cases from Australia and found an average BMI of 30,88 in PE deaths compared to 25,33 in other autopsies [21].
Our study with 328 cases and 984 cases is thus the largest autopsy based investigation on the association of pulmonary embolism and adiposity in the forensic case work that has been published do date.
We could confirm the results of the study by Rosenfeld et al. insofar as we also found a strong association between overweight and death from PE. However, our results were less unambiguous: The BMI of our PE cases was lower than that of Rosenfeld et al. (28.75 vs. 30.88), whereas our controls were slightly more adipose (26,72 vs. 25.33). Moreover, in the Australian study a correlation between BMI and death from PE was reported for persons with a BMI of above 30, while in our study the effect was significant with a BMI of above 40, but not in persons with relatively moderate obesity.
On the other hand, we could demonstrate that very slim persons (BMI < 18.5 and SC adipose tissue < 3 cm) are at a decreased risk to succumb from PE. As underweight is in many instances the consequence of chronic diseases with reduced mobility or hypercoagulability (e.g. tumor kachexia or sarkopenia due to immobilisation), this finding is to some extent unexpected: Barba et al. e.g. report a higher mortality in underweight persons [15], although Rahmani reports a protective influence of being underweight against VTE [24]. Although we were able to identify several risk factors in our study group, the number of underweight persons is small (< 5%) and thus no detailed analysis in that respect was possible.
Several reasons could be responsible for the differences between the study by Rosenfeld et al. [21] and our study: On one hand the proportion of obese persons is higher in Australia: According to Wikipedia (https://​en.​wikipedia.​org/​wiki/​List_​of_​countries_​by_​body_​mass_​index), the average BMI is 27.2 in Australia, but 26.3 in Germany. On the other hand, the composition of the cases on which forensic autopsies are performed varies between different centers: Our German group has a high proportion of medical malpractice cases and sudden unexpected deaths, whereas accidents or homicides are relatively rare. The proportion of obese persons in these groups might vary widely. We do not know the composition of the Australian study, but argue that such a difference might explain our weaker association. And finally, our study is significantly larger, a fact that should (positively) influence the informative value.
The mechanism by which obese persons are predisposed to PE is believed to be multifactorial [25]: On one hand, a high BMI is often associated with lack of activity, restricting the emptying of the veins of the leg. Thus, obesity might be an indirect risk factor, via the degree of activity.
On the other hand, visceral obesity causes an increased intra-abdominal pressure, leading to increased pressure in the femoral veins, which favors stasis in the deep veins of the legs [26].
Even more so, adiposity is known to have direct influence on the coagulability of blood. E.g. the thrombozytes are enlarged, which promotes clotting. The adipocytes release adipokines which are bioactive peptides that influence the function of several organ systems. These factors include tumor necrosis factor alpha and interleukin 6 [27], cytokines that mediate an inflammatory reaction, endothelial damage and finally introduce a prothrombotic state [28].
One inherent problem with the BMI is that it cannot discriminate between a person with a high proportion of fatty tissue and a very muscular person. Moreover, it does not account for the distribution of fat tissue over the body. In clinical studies the BMI thus is only one of several anthropomorphic markers use to predict individual disease risks, others include total fat, waist-to –hip ratio or waist circumference [29]. We decided to include the thickness of the abdominal subcutaneous fat tissue into the present study, as done so in a former study on clinical autopsies [23]. Nevertheless, we found this parameter to be an inferior predictor of the relative risk to succumb from PE. We therefore conclude that the BMI (that is very easy to determine) might be a suitable anthropomorphic marker for studies on the correlation between obesity and morbid complications.
In conclusion, we report a significantly higher BMI in persons that had died from PE compared to other deaths in the forensic case work. We did not observe the beneficial effect of increased BMI reported in large clinical studies (without performing autopsies). The subcutaneous fat tissue, a marker that might be more closely related to the waist-to-hip ratio, was also associated with the risk to die from PE, but the correlation was weaker than that of the BMI. We found a lower risk for persons with a BMI below 18.5. This finding should be investigated further in a larger group.

Key points

1.
Pulmonary thromboembolism (PE) is commonly observed in forensic autopsies (3–20%).
 
2.
Morbid obesity (BMI > 40) is a significant risk factor for death from PE.
 
3.
Lack of mobilization, stasis in the femoral veins and higher coagulability via adipokines might all contribute to this risk.
 
4.
At least in the forensic context, the risk of very slim persons (BMI < 18.5) is lower than that of persons with normal weight.
 
5.
Subcutaneous fatty tissue depth is a poorer estimator of the risk to succumb from PE than BMI.
 

Declarations

Conflict of interest

No conflict of interest, this study ís a solely academically funded study.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Lucena J, Rico A, Vázquez R, Marín R, Martínez C, Salguero M, Miguel L. Pulmonary embolism and sudden-unexpected death: prospective study on 2477 forensic autopsies performed at the Institute of Legal Medicine in Seville. J Forensic Leg Med. 2009;16(4):196–201.CrossRefPubMed Lucena J, Rico A, Vázquez R, Marín R, Martínez C, Salguero M, Miguel L. Pulmonary embolism and sudden-unexpected death: prospective study on 2477 forensic autopsies performed at the Institute of Legal Medicine in Seville. J Forensic Leg Med. 2009;16(4):196–201.CrossRefPubMed
2.
Zurück zum Zitat Byard RW. Deep venous thrombosis, pulmonary embolism and long-distance flights. Forensic Sci Med Pathol. 2019;15(1):122–4.CrossRefPubMed Byard RW. Deep venous thrombosis, pulmonary embolism and long-distance flights. Forensic Sci Med Pathol. 2019;15(1):122–4.CrossRefPubMed
4.
Zurück zum Zitat Miller EJ, Marques MB, Simmons GT. Etiology of pulmonary thromboembolism in the absence of commonly recognized risk factors. Am J Forensic Med Pathol. 2003;24(4):329–33.CrossRefPubMed Miller EJ, Marques MB, Simmons GT. Etiology of pulmonary thromboembolism in the absence of commonly recognized risk factors. Am J Forensic Med Pathol. 2003;24(4):329–33.CrossRefPubMed
5.
Zurück zum Zitat Kuismanen K, Savontaus ML, Kozlov A, Vuorio AF, Sajantila A. Coagulation factor V Leiden mutation in sudden fatal pulmonary embolism and in a general northern European population sample. Forensic Sci Int. 1999;106:71–5.CrossRefPubMed Kuismanen K, Savontaus ML, Kozlov A, Vuorio AF, Sajantila A. Coagulation factor V Leiden mutation in sudden fatal pulmonary embolism and in a general northern European population sample. Forensic Sci Int. 1999;106:71–5.CrossRefPubMed
6.
Zurück zum Zitat Brandimarti F, Alessandrini F, Pesaresi M, Catalani C, De Angelis L, Galeazzi R, Giovagnetti S, Gesuita R, Righi E, Giorgetti R, Tagliabracci A. Investigation on genetic thrombophilic factors in FFPE autopsy tissue from subjects who died from pulmonary embolism. Int J Legal Med. 2017;131(2):447–58.CrossRefPubMed Brandimarti F, Alessandrini F, Pesaresi M, Catalani C, De Angelis L, Galeazzi R, Giovagnetti S, Gesuita R, Righi E, Giorgetti R, Tagliabracci A. Investigation on genetic thrombophilic factors in FFPE autopsy tissue from subjects who died from pulmonary embolism. Int J Legal Med. 2017;131(2):447–58.CrossRefPubMed
7.
Zurück zum Zitat Meißner L, Schürmann P, Dörk T, Hagemeier L, Klintschar M. Genetic association study of fatal pulmonary embolism. Int J Legal Med. 2021;135(1):143–51.CrossRefPubMed Meißner L, Schürmann P, Dörk T, Hagemeier L, Klintschar M. Genetic association study of fatal pulmonary embolism. Int J Legal Med. 2021;135(1):143–51.CrossRefPubMed
8.
Zurück zum Zitat Crous-Bou M, Harrington LB, Kabrhel C. Environmental and Genetic Risk Factors Associated with Venous Thromboembolism. Semin Thromb Hemost. 2016;42(8):808–20.CrossRefPubMedPubMedCentral Crous-Bou M, Harrington LB, Kabrhel C. Environmental and Genetic Risk Factors Associated with Venous Thromboembolism. Semin Thromb Hemost. 2016;42(8):808–20.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Stein PD, Beemath A, Olson RE. Obesity as a risk factor in venous thromboembolism. Am J Med. 2005;118:978–80.CrossRefPubMed Stein PD, Beemath A, Olson RE. Obesity as a risk factor in venous thromboembolism. Am J Med. 2005;118:978–80.CrossRefPubMed
10.
Zurück zum Zitat Ageno W, Becattini C, Brighton T, Selby R, Kamphuisen PW. Cardiovascular risk factors and venous thromboembolism: a meta-analysis. Circulation. 2008;117:93–102.CrossRefPubMed Ageno W, Becattini C, Brighton T, Selby R, Kamphuisen PW. Cardiovascular risk factors and venous thromboembolism: a meta-analysis. Circulation. 2008;117:93–102.CrossRefPubMed
11.
Zurück zum Zitat Flegal KM, Carroll MD, Kuczmarski RJ, Johnson CL. Overweight and obesity in the United States: prevalence and trends, 1960–1994. Int J Obes Relat Metab Disord. 1998;22(1):39–47.CrossRefPubMed Flegal KM, Carroll MD, Kuczmarski RJ, Johnson CL. Overweight and obesity in the United States: prevalence and trends, 1960–1994. Int J Obes Relat Metab Disord. 1998;22(1):39–47.CrossRefPubMed
12.
Zurück zum Zitat Haftenberger M, Mensink G, Herzog B, et al. Changes in body weight and obesity status in German adults: results of seven population-based prospective studies. Eur J Clin Nutr. 2016;70:300–5.CrossRefPubMed Haftenberger M, Mensink G, Herzog B, et al. Changes in body weight and obesity status in German adults: results of seven population-based prospective studies. Eur J Clin Nutr. 2016;70:300–5.CrossRefPubMed
13.
Zurück zum Zitat Snell AM. The relation of obesity to fatal postoperative pulmonary embolism. Arch Surg. 1927;15:237–44.CrossRef Snell AM. The relation of obesity to fatal postoperative pulmonary embolism. Arch Surg. 1927;15:237–44.CrossRef
14.
Zurück zum Zitat Goldhaber SZ, Grodstein F, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, Willett WC, Hennekens CH. A prospective study of risk factors for pulmonary embolism in women. JAMA. 1997;277(8):642–5.CrossRefPubMed Goldhaber SZ, Grodstein F, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, Willett WC, Hennekens CH. A prospective study of risk factors for pulmonary embolism in women. JAMA. 1997;277(8):642–5.CrossRefPubMed
15.
Zurück zum Zitat Barba R, Zapatero A, Losa JE, Valdés V, Todolí JA, Di Micco P, Monreal M. Riete Investigators. Body mass index and mortality in patients with acute venous thromboembolism: findings from the RIETE registry. J Thromb Haemost. 2008;6(4):595–600. Barba R, Zapatero A, Losa JE, Valdés V, Todolí JA, Di Micco P, Monreal M. Riete Investigators. Body mass index and mortality in patients with acute venous thromboembolism: findings from the RIETE registry. J Thromb Haemost. 2008;6(4):595–600.
16.
Zurück zum Zitat Keller K, Hobohm L, Münzel T, et al. Survival Benefit of Obese Patients With Pulmonary Embolism. Mayo Clin Proc. 2019;94(10):1960–73.CrossRefPubMed Keller K, Hobohm L, Münzel T, et al. Survival Benefit of Obese Patients With Pulmonary Embolism. Mayo Clin Proc. 2019;94(10):1960–73.CrossRefPubMed
17.
Zurück zum Zitat Stein PD, Matta F, Goldman J. Obesity and pulmonary embolism: the mounting evidence of risk and the mortality paradox. Thromb Res. 2011;128(6):518–23.CrossRefPubMed Stein PD, Matta F, Goldman J. Obesity and pulmonary embolism: the mounting evidence of risk and the mortality paradox. Thromb Res. 2011;128(6):518–23.CrossRefPubMed
18.
Zurück zum Zitat Meyer G. Effective diagnosis and treatment of pulmonary embolism: Improving patient outcomes. Arch Cardiovasc Dis. 2014;107(6–7):406–14.CrossRefPubMed Meyer G. Effective diagnosis and treatment of pulmonary embolism: Improving patient outcomes. Arch Cardiovasc Dis. 2014;107(6–7):406–14.CrossRefPubMed
19.
Zurück zum Zitat Dalen JE. Pulmonary embolism: what have we learned since Virchow? Natural history, pathophysiology, and diagnosis. Chest. 2002;122:1440–1456. Dalen JE. Pulmonary embolism: what have we learned since Virchow? Natural history, pathophysiology, and diagnosis. Chest. 2002;122:1440–1456.
20.
Zurück zum Zitat Micallef MJ. The autopsy and diagnosis of pulmonary thrombo-embolism. Forensic Sci Med Pathol. 2018;14(2):241–3.CrossRefPubMed Micallef MJ. The autopsy and diagnosis of pulmonary thrombo-embolism. Forensic Sci Med Pathol. 2018;14(2):241–3.CrossRefPubMed
21.
Zurück zum Zitat Rosenfeld H, Tsokos M, Byard RW. The association between body mass index and pulmonary thromboembolism in an autopsy population. J Forensic Sci. 2012;57:1336–8.CrossRefPubMed Rosenfeld H, Tsokos M, Byard RW. The association between body mass index and pulmonary thromboembolism in an autopsy population. J Forensic Sci. 2012;57:1336–8.CrossRefPubMed
22.
Zurück zum Zitat Püschel K. Plötzlicher Tod im Erwachsenenalter in: Brinkmann B, Madea B: Handbuch Gerichtliche Medizin. Springer Berlin Heidelberg. 2004;1. Püschel K. Plötzlicher Tod im Erwachsenenalter in: Brinkmann B, Madea B: Handbuch Gerichtliche Medizin. Springer Berlin Heidelberg. 2004;1.
23.
Zurück zum Zitat Ogren M, Eriksson H, Bergqvist D, Sternby NH. Subcutaneous fat accumulation and BMI associated with risk for pulmonary embolism in patients with proximal deep vein thrombosis: a population study based on 23 796 consecutive autopsies. J Intern Med. 2005;258(2):166–71.CrossRefPubMed Ogren M, Eriksson H, Bergqvist D, Sternby NH. Subcutaneous fat accumulation and BMI associated with risk for pulmonary embolism in patients with proximal deep vein thrombosis: a population study based on 23 796 consecutive autopsies. J Intern Med. 2005;258(2):166–71.CrossRefPubMed
24.
Zurück zum Zitat Rahmani J, Haghighian Roudsari A, Bawadi H, Thompson J, Khalooei Fard R, Clark C, Ryan PM, Ajami M, Rahimi Sakak F, Salehisahlabadi A, Abdulazeem HM, Jamali MR, Mirzay RJ. Relationship between body mass index, risk of venous thromboembolism and pulmonary embolism: A systematic review and dose-response meta-analysis of cohort studies among four million participants. Thromb Res. 2020;192:64–72.CrossRefPubMed Rahmani J, Haghighian Roudsari A, Bawadi H, Thompson J, Khalooei Fard R, Clark C, Ryan PM, Ajami M, Rahimi Sakak F, Salehisahlabadi A, Abdulazeem HM, Jamali MR, Mirzay RJ. Relationship between body mass index, risk of venous thromboembolism and pulmonary embolism: A systematic review and dose-response meta-analysis of cohort studies among four million participants. Thromb Res. 2020;192:64–72.CrossRefPubMed
26.
Zurück zum Zitat Willenberg T, Schumacher A, Amann-Vesti B, et al. Impact of obesity on venous hemodynamics of the lower limbs. J Vasc Surg. 2010;52:664–8.CrossRefPubMed Willenberg T, Schumacher A, Amann-Vesti B, et al. Impact of obesity on venous hemodynamics of the lower limbs. J Vasc Surg. 2010;52:664–8.CrossRefPubMed
27.
Zurück zum Zitat Lau WB, Ohashi K, Wang Y, Ogawa H, Murohara T, Ma XL, Ouchi N. Role of Adipokines in Cardiovascular Disease. Circ J. 2017;81(7):920–8.CrossRefPubMed Lau WB, Ohashi K, Wang Y, Ogawa H, Murohara T, Ma XL, Ouchi N. Role of Adipokines in Cardiovascular Disease. Circ J. 2017;81(7):920–8.CrossRefPubMed
28.
29.
Zurück zum Zitat Huxley R, Mendis S, Zheleznyakov E, Reddy S, Chan J. Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk–a review of the literature. Eur J Clin Nutr. 2010;64(1):16–22.CrossRefPubMed Huxley R, Mendis S, Zheleznyakov E, Reddy S, Chan J. Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk–a review of the literature. Eur J Clin Nutr. 2010;64(1):16–22.CrossRefPubMed
Metadaten
Titel
Pulmonary thromboembolism and obesity in forensic pathologic case work
verfasst von
Michael Klintschar
Kirsten Wöllner
Lars Hagemeier
Theresa A. Engelmann
Jan Mahlmann
Alessia Lunow
Roman Wolff-Maras
Publikationsdatum
21.03.2023
Verlag
Springer US
Erschienen in
Forensic Science, Medicine and Pathology / Ausgabe 2/2023
Print ISSN: 1547-769X
Elektronische ISSN: 1556-2891
DOI
https://doi.org/10.1007/s12024-023-00602-9

Weitere Artikel der Ausgabe 2/2023

Forensic Science, Medicine and Pathology 2/2023 Zur Ausgabe

Neu im Fachgebiet Pathologie

Molekularpathologische Untersuchungen im Wandel der Zeit

Open Access Biomarker Leitthema

Um auch an kleinen Gewebeproben zuverlässige und reproduzierbare Ergebnisse zu gewährleisten ist eine strenge Qualitätskontrolle in jedem Schritt des Arbeitsablaufs erforderlich. Eine nicht ordnungsgemäße Prüfung oder Behandlung des …

Vergleichende Pathologie in der onkologischen Forschung

Pathologie Leitthema

Die vergleichende experimentelle Pathologie („comparative experimental pathology“) ist ein Fachbereich an der Schnittstelle von Human- und Veterinärmedizin. Sie widmet sich der vergleichenden Erforschung von Gemeinsamkeiten und Unterschieden von …

Gastrointestinale Stromatumoren

Open Access GIST CME-Artikel

Gastrointestinale Stromatumoren (GIST) stellen seit über 20 Jahren ein Paradigma für die zielgerichtete Therapie mit Tyrosinkinaseinhibitoren dar. Eine elementare Voraussetzung für eine mögliche neoadjuvante oder adjuvante Behandlung bei …

Personalisierte Medizin in der Onkologie

Aufgrund des erheblichen technologischen Fortschritts in der molekularen und genetischen Diagnostik sowie zunehmender Erkenntnisse über die molekulare Pathogenese von Krankheiten hat in den letzten zwei Jahrzehnten ein grundlegender …