Skip to main content
Erschienen in: Clinical Pharmacokinetics 8/2016

02.03.2016 | Original Research Article

Quantitative Prediction of Drug Interactions Caused by CYP1A2 Inhibitors and Inducers

verfasst von: Laurence Gabriel, Michel Tod, Sylvain Goutelle

Erschienen in: Clinical Pharmacokinetics | Ausgabe 8/2016

Einloggen, um Zugang zu erhalten

Abstract

Background

A simple method to predict drug–drug interactions mediated by cytochrome P450 enzymes (CYPs) on the basis of in vivo data has been previously applied for several CYP isoforms but not for CYP1A2. The objective of this study was to extend this method to drug interactions caused by CYP1A2 inhibitors and inducers.

Methods

First, initial estimates of the model parameters were obtained using data from the literature. Then, an external validation of these initial estimates was performed by comparing model-based predicted area under the concentration–time curve (AUC) ratios with observations not used in the initial estimation. Third, refined estimates of the model parameters were obtained by Bayesian orthogonal regression using Winbugs software, and predicted AUC ratios were compared with all available observations. Finally, predicted AUC ratios for all possible substrates–inhibitors and substrates–inducers were computed.

Results

A total of 100 AUC ratios were retrieved from the literature. Model parameters were estimated for 19 CYP1A2 substrate drugs, 26 inhibitors and seven inducers, including tobacco smoking. In the external validation, the mean prediction error of the AUC ratios was −0.22, while the mean absolute error was 0.97 (37 %). After the Bayesian estimation step, the mean prediction error was 0.11, while the mean absolute error was 0.43 (22 %). The AUC ratios for 625 possible interactions were computed.

Conclusion

This analysis provides insights into the interaction profiles of drugs poorly studied so far and can help to identify and manage significant interactions in clinical practice. Those results are now available to the community via a web tool (http://​www.​ddi-predictor.​org).
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270:414–23.PubMed Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270:414–23.PubMed
2.
Zurück zum Zitat Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4:825–33.CrossRefPubMed Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4:825–33.CrossRefPubMed
3.
Zurück zum Zitat Rasmussen BB, Brøsen K. Theophylline has no advantages over caffeine as a putative model drug for assessing CYPIA2 activity in humans. Br J Clin Pharmacol. 1997;43:253–8.CrossRefPubMedPubMedCentral Rasmussen BB, Brøsen K. Theophylline has no advantages over caffeine as a putative model drug for assessing CYPIA2 activity in humans. Br J Clin Pharmacol. 1997;43:253–8.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46:681–96.CrossRefPubMed Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46:681–96.CrossRefPubMed
5.
Zurück zum Zitat Ohno Y, Hisaka A, Ueno M, Suzuki H. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet. 2008;47:669–80.CrossRefPubMed Ohno Y, Hisaka A, Ueno M, Suzuki H. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet. 2008;47:669–80.CrossRefPubMed
6.
Zurück zum Zitat Tod M, Goutelle S, Clavel-Grabit F, Nicolas G, Charpiat B. Quantitative prediction of cytochrome P450 (CYP) 2D6-mediated drug interactions. Clin Pharmacokinet. 2011;50:519–30.CrossRefPubMed Tod M, Goutelle S, Clavel-Grabit F, Nicolas G, Charpiat B. Quantitative prediction of cytochrome P450 (CYP) 2D6-mediated drug interactions. Clin Pharmacokinet. 2011;50:519–30.CrossRefPubMed
7.
Zurück zum Zitat Goutelle S, Bourguignon L, Bleyzac N, Berry J, Clavel-Grabit F, Tod M. In vivo quantitative prediction of the effect of gene polymorphisms and drug interactions on drug exposure for CYP2C19 substrates. AAPS J. 2013;15:415–26.CrossRefPubMedPubMedCentral Goutelle S, Bourguignon L, Bleyzac N, Berry J, Clavel-Grabit F, Tod M. In vivo quantitative prediction of the effect of gene polymorphisms and drug interactions on drug exposure for CYP2C19 substrates. AAPS J. 2013;15:415–26.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Castellan A-C, Tod M, Gueyffier F, Audars M, Cambriels F, Kassaï B, et al. Quantitative prediction of the impact of drug interactions and genetic polymorphisms on cytochrome P450 2C9 substrate exposure. Clin Pharmacokinet. 2013;52:199–209.CrossRefPubMed Castellan A-C, Tod M, Gueyffier F, Audars M, Cambriels F, Kassaï B, et al. Quantitative prediction of the impact of drug interactions and genetic polymorphisms on cytochrome P450 2C9 substrate exposure. Clin Pharmacokinet. 2013;52:199–209.CrossRefPubMed
9.
Zurück zum Zitat Carrillo JA, Benitez J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 2000;39:127–53.CrossRefPubMed Carrillo JA, Benitez J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 2000;39:127–53.CrossRefPubMed
10.
Zurück zum Zitat Spiegelhalter D, Thomas A, Best N, Lunn D. Winbugs 1.4.3 user manual. Cambridge: MRC Biostatistics Unit; 2007. Spiegelhalter D, Thomas A, Best N, Lunn D. Winbugs 1.4.3 user manual. Cambridge: MRC Biostatistics Unit; 2007.
11.
Zurück zum Zitat Congdon P. Bayesian statistical modelling. Chichester: Wiley; 2001. Congdon P. Bayesian statistical modelling. Chichester: Wiley; 2001.
12.
Zurück zum Zitat Becquemont L, Ragueneau I, Le Bot MA, Riche C, Funck-Brentano C, Jaillon P. Influence of the CYP1A2 inhibitor fluvoxamine on tacrine pharmacokinetics in humans. Clin Pharmacol Ther. 1997;61:619–27.CrossRefPubMed Becquemont L, Ragueneau I, Le Bot MA, Riche C, Funck-Brentano C, Jaillon P. Influence of the CYP1A2 inhibitor fluvoxamine on tacrine pharmacokinetics in humans. Clin Pharmacol Ther. 1997;61:619–27.CrossRefPubMed
13.
Zurück zum Zitat Buchan P, Wade A, Ward C, Oliver SD, Stewart AJ, Freestone S. Frovatriptan: a review of drug–drug interactions. Headache. 2002;42(Suppl 2):S63–73.CrossRefPubMed Buchan P, Wade A, Ward C, Oliver SD, Stewart AJ, Freestone S. Frovatriptan: a review of drug–drug interactions. Headache. 2002;42(Suppl 2):S63–73.CrossRefPubMed
14.
Zurück zum Zitat Granfors MT, Backman JT, Neuvonen M, Ahonen J, Neuvonen PJ. Fluvoxamine drastically increases concentrations and effects of tizanidine: a potentially hazardous interaction. Clin Pharmacol Ther. 2004;75:331–41.CrossRefPubMed Granfors MT, Backman JT, Neuvonen M, Ahonen J, Neuvonen PJ. Fluvoxamine drastically increases concentrations and effects of tizanidine: a potentially hazardous interaction. Clin Pharmacol Ther. 2004;75:331–41.CrossRefPubMed
15.
Zurück zum Zitat Hägg S, Spigset O, Mjörndal T, Dahlqvist R. Effect of caffeine on clozapine pharmacokinetics in healthy volunteers. Br J Clin Pharmacol. 2000;49:59–63.CrossRefPubMedPubMedCentral Hägg S, Spigset O, Mjörndal T, Dahlqvist R. Effect of caffeine on clozapine pharmacokinetics in healthy volunteers. Br J Clin Pharmacol. 2000;49:59–63.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Härtter S, Nordmark A, Rose D-M, Bertilsson L, Tybring G, Laine K. Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity. Br J Clin Pharmacol. 2003;56:679–82.CrossRefPubMedPubMedCentral Härtter S, Nordmark A, Rose D-M, Bertilsson L, Tybring G, Laine K. Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity. Br J Clin Pharmacol. 2003;56:679–82.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Kaye CM, Nicholls B. Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet. 2000;39:243–54.CrossRefPubMed Kaye CM, Nicholls B. Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet. 2000;39:243–54.CrossRefPubMed
18.
Zurück zum Zitat Klein A, Sami M, Selinger K. Mexiletine kinetics in healthy subjects taking cimetidine. Clin Pharmacol Ther. 1985;37:669–73.CrossRefPubMed Klein A, Sami M, Selinger K. Mexiletine kinetics in healthy subjects taking cimetidine. Clin Pharmacol Ther. 1985;37:669–73.CrossRefPubMed
19.
Zurück zum Zitat Kletzl H, Zwanziger E, Kirkpatrick C, Luedin E. Effect of ciprofloxacin on the systemic exposure to erlotinib [abstract]. J Clin Oncol. 2008;26(Suppl):abstract no. 19047. Kletzl H, Zwanziger E, Kirkpatrick C, Luedin E. Effect of ciprofloxacin on the systemic exposure to erlotinib [abstract]. J Clin Oncol. 2008;26(Suppl):abstract no. 19047.
20.
Zurück zum Zitat Kunii T, Fukasawa T, Yasui-Furukori N, Aoshima T, Suzuki A, Tateishi T, et al. Interaction study between enoxacin and fluvoxamine. Ther Drug Monit. 2005;27:349–53.CrossRefPubMed Kunii T, Fukasawa T, Yasui-Furukori N, Aoshima T, Suzuki A, Tateishi T, et al. Interaction study between enoxacin and fluvoxamine. Ther Drug Monit. 2005;27:349–53.CrossRefPubMed
21.
Zurück zum Zitat Lahu G, Nassr N, Herzog R, Elmlinger M, Ruth P, Hinder M, et al. Effect of steady-state enoxacin on single-dose pharmacokinetics of roflumilast and roflumilast N-oxide. J Clin Pharmacol. 2011;51:586–93.CrossRefPubMed Lahu G, Nassr N, Herzog R, Elmlinger M, Ruth P, Hinder M, et al. Effect of steady-state enoxacin on single-dose pharmacokinetics of roflumilast and roflumilast N-oxide. J Clin Pharmacol. 2011;51:586–93.CrossRefPubMed
22.
Zurück zum Zitat Lobo ED, Bergstrom RF, Reddy S, Quinlan T, Chappell J, Hong Q, et al. In vitro and in vivo evaluations of cytochrome P450 1A2 interactions with duloxetine. Clin Pharmacokinet. 2008;47:191–202.CrossRefPubMed Lobo ED, Bergstrom RF, Reddy S, Quinlan T, Chappell J, Hong Q, et al. In vitro and in vivo evaluations of cytochrome P450 1A2 interactions with duloxetine. Clin Pharmacokinet. 2008;47:191–202.CrossRefPubMed
23.
Zurück zum Zitat Mirghani RA, Hellgren U, Westerberg PA, Ericsson O, Bertilsson L, Gustafsson LL. The roles of cytochrome P450 3A4 and 1A2 in the 3-hydroxylation of quinine in vivo. Clin Pharmacol Ther. 1999;66:454–60.CrossRefPubMed Mirghani RA, Hellgren U, Westerberg PA, Ericsson O, Bertilsson L, Gustafsson LL. The roles of cytochrome P450 3A4 and 1A2 in the 3-hydroxylation of quinine in vivo. Clin Pharmacol Ther. 1999;66:454–60.CrossRefPubMed
24.
Zurück zum Zitat Orlando R, Padrini R, Perazzi M, De Martin S, Piccoli P, Palatini P. Liver dysfunction markedly decreases the inhibition of cytochrome P450 1A2-mediated theophylline metabolism by fluvoxamine. Clin Pharmacol Ther. 2006;79:489–99.CrossRefPubMed Orlando R, Padrini R, Perazzi M, De Martin S, Piccoli P, Palatini P. Liver dysfunction markedly decreases the inhibition of cytochrome P450 1A2-mediated theophylline metabolism by fluvoxamine. Clin Pharmacol Ther. 2006;79:489–99.CrossRefPubMed
30.
Zurück zum Zitat Backman JT, Karjalainen MJ, Neuvonen M, Laitila J, Neuvonen PJ. Rofecoxib is a potent inhibitor of cytochrome P450 1A2: studies with tizanidine and caffeine in healthy subjects. Br J Clin Pharmacol. 2006;62:345–57.CrossRefPubMedPubMedCentral Backman JT, Karjalainen MJ, Neuvonen M, Laitila J, Neuvonen PJ. Rofecoxib is a potent inhibitor of cytochrome P450 1A2: studies with tizanidine and caffeine in healthy subjects. Br J Clin Pharmacol. 2006;62:345–57.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Balogh A, Klinger G, Henschel L, Börner A, Vollanth R, Kuhnz W. Influence of ethinylestradiol-containing combination oral contraceptives with gestodene or levonorgestrel on caffeine elimination. Eur J Clin Pharmacol. 1995;48:161–6.CrossRefPubMed Balogh A, Klinger G, Henschel L, Börner A, Vollanth R, Kuhnz W. Influence of ethinylestradiol-containing combination oral contraceptives with gestodene or levonorgestrel on caffeine elimination. Eur J Clin Pharmacol. 1995;48:161–6.CrossRefPubMed
32.
Zurück zum Zitat Bapiro TE, Sayi J, Hasler JA, Jande M, Rimoy G, Masselle A, et al. Artemisinin and thiabendazole are potent inhibitors of cytochrome P450 1A2 (CYP1A2) activity in humans. Eur J Clin Pharmacol. 2005;61:755–61.CrossRefPubMed Bapiro TE, Sayi J, Hasler JA, Jande M, Rimoy G, Masselle A, et al. Artemisinin and thiabendazole are potent inhibitors of cytochrome P450 1A2 (CYP1A2) activity in humans. Eur J Clin Pharmacol. 2005;61:755–61.CrossRefPubMed
33.
Zurück zum Zitat Bendriss EK, Bechtel Y, Bendriss A, Humbert PH, Paintaud G, Magnette J, et al. Inhibition of caffeine metabolism by 5-methoxypsoralen in patients with psoriasis. Br J Clin Pharmacol. 1996;41:421–4.CrossRefPubMedPubMedCentral Bendriss EK, Bechtel Y, Bendriss A, Humbert PH, Paintaud G, Magnette J, et al. Inhibition of caffeine metabolism by 5-methoxypsoralen in patients with psoriasis. Br J Clin Pharmacol. 1996;41:421–4.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Brazier JL, Descotes J, Lery N, Ollagnier M, Evreux JC. Inhibition by idrocilamide of the disposition of caffeine. Eur J Clin Pharmacol. 1980;17:37–43.CrossRefPubMed Brazier JL, Descotes J, Lery N, Ollagnier M, Evreux JC. Inhibition by idrocilamide of the disposition of caffeine. Eur J Clin Pharmacol. 1980;17:37–43.CrossRefPubMed
35.
Zurück zum Zitat Carbó M, Segura J, De la Torre R, Badenas JM, Camí J. Effect of quinolones on caffeine disposition. Clin Pharmacol Ther. 1989;45:234–40.CrossRefPubMed Carbó M, Segura J, De la Torre R, Badenas JM, Camí J. Effect of quinolones on caffeine disposition. Clin Pharmacol Ther. 1989;45:234–40.CrossRefPubMed
36.
Zurück zum Zitat Christensen M, Tybring G, Mihara K, Yasui-Furokori N, Carrillo JA, Ramos SI, et al. Low daily 10-mg and 20-mg doses of fluvoxamine inhibit the metabolism of both caffeine (cytochrome P4501A2) and omeprazole (cytochrome P4502C19). Clin Pharmacol Ther. 2002;71:141–52.CrossRefPubMed Christensen M, Tybring G, Mihara K, Yasui-Furokori N, Carrillo JA, Ramos SI, et al. Low daily 10-mg and 20-mg doses of fluvoxamine inhibit the metabolism of both caffeine (cytochrome P4501A2) and omeprazole (cytochrome P4502C19). Clin Pharmacol Ther. 2002;71:141–52.CrossRefPubMed
37.
Zurück zum Zitat Efthymiopoulos C, Bramer SL, Maroli A, Blum B. Theophylline and warfarin interaction studies with grepafloxacin. Clin Pharmacokinet. 1997;33(Suppl 1):39–46.CrossRefPubMed Efthymiopoulos C, Bramer SL, Maroli A, Blum B. Theophylline and warfarin interaction studies with grepafloxacin. Clin Pharmacokinet. 1997;33(Suppl 1):39–46.CrossRefPubMed
38.
Zurück zum Zitat Jonkman JH, Sollie FA, Sauter R, Steinijans VW. The influence of caffeine on the steady-state pharmacokinetics of theophylline. Clin Pharmacol Ther. 1991;49:248–55.CrossRefPubMed Jonkman JH, Sollie FA, Sauter R, Steinijans VW. The influence of caffeine on the steady-state pharmacokinetics of theophylline. Clin Pharmacol Ther. 1991;49:248–55.CrossRefPubMed
39.
Zurück zum Zitat Kinzig-Schippers M, Fuhr U, Zaigler M, Dammeyer J, Rüsing G, Labedzki A, et al. Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2. Clin Pharmacol Ther. 1999;65:262–74.CrossRefPubMed Kinzig-Schippers M, Fuhr U, Zaigler M, Dammeyer J, Rüsing G, Labedzki A, et al. Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2. Clin Pharmacol Ther. 1999;65:262–74.CrossRefPubMed
40.
Zurück zum Zitat Lake CR, Rosenberg D, Quirk R. Phenylpropanolamine and caffeine use among diet center clients. Int J Obes. 1990;14:575–82.PubMed Lake CR, Rosenberg D, Quirk R. Phenylpropanolamine and caffeine use among diet center clients. Int J Obes. 1990;14:575–82.PubMed
41.
Zurück zum Zitat Liu L, Pan X, Liu H, Liu X, Yang H, Xie L, et al. Modulation of pharmacokinetics of theophylline by antofloxacin, a novel 8-amino-fluoroquinolone, in humans. Acta Pharmacol Sin. 2011;32:1285–93.CrossRefPubMedPubMedCentral Liu L, Pan X, Liu H, Liu X, Yang H, Xie L, et al. Modulation of pharmacokinetics of theophylline by antofloxacin, a novel 8-amino-fluoroquinolone, in humans. Acta Pharmacol Sin. 2011;32:1285–93.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat May DC, Jarboe CH, VanBakel AB, Williams WM. Effects of cimetidine on caffeine disposition in smokers and nonsmokers. Clin Pharmacol Ther. 1982;31:656–61.CrossRefPubMed May DC, Jarboe CH, VanBakel AB, Williams WM. Effects of cimetidine on caffeine disposition in smokers and nonsmokers. Clin Pharmacol Ther. 1982;31:656–61.CrossRefPubMed
43.
Zurück zum Zitat Mays DC, Camisa C, Cheney P, Pacula CM, Nawoot S, Gerber N. Methoxsalen is a potent inhibitor of the metabolism of caffeine in humans. Clin Pharmacol Ther. 1987;42:621–6.CrossRefPubMed Mays DC, Camisa C, Cheney P, Pacula CM, Nawoot S, Gerber N. Methoxsalen is a potent inhibitor of the metabolism of caffeine in humans. Clin Pharmacol Ther. 1987;42:621–6.CrossRefPubMed
44.
Zurück zum Zitat Michaud V, Mouksassi MS, Labbé L, Bélanger P-M, Ferron LA, Gilbert M, et al. Inhibitory effects of propafenone on the pharmacokinetics of caffeine in humans. Ther Drug Monit. 2006;28:779–83.CrossRefPubMed Michaud V, Mouksassi MS, Labbé L, Bélanger P-M, Ferron LA, Gilbert M, et al. Inhibitory effects of propafenone on the pharmacokinetics of caffeine in humans. Ther Drug Monit. 2006;28:779–83.CrossRefPubMed
45.
Zurück zum Zitat Momo K, Homma M, Osaka Y, Inomata S, Tanaka M, Kohda Y. Effects of mexiletine, a CYP1A2 inhibitor, on tizanidine pharmacokinetics and pharmacodynamics. J Clin Pharmacol. 2010;50:331–7.CrossRefPubMed Momo K, Homma M, Osaka Y, Inomata S, Tanaka M, Kohda Y. Effects of mexiletine, a CYP1A2 inhibitor, on tizanidine pharmacokinetics and pharmacodynamics. J Clin Pharmacol. 2010;50:331–7.CrossRefPubMed
46.
Zurück zum Zitat Nicolau DP, Nightingale CH, Tessier PR, Fu Q, Xuan DW, Esguerra EM, et al. The effect of fleroxacin and ciprofloxacin on the pharmacokinetics of multiple dose caffeine. Drugs. 1995;49(Suppl 2):357–9.CrossRefPubMed Nicolau DP, Nightingale CH, Tessier PR, Fu Q, Xuan DW, Esguerra EM, et al. The effect of fleroxacin and ciprofloxacin on the pharmacokinetics of multiple dose caffeine. Drugs. 1995;49(Suppl 2):357–9.CrossRefPubMed
47.
Zurück zum Zitat Peng W-X, Li H-D, Zhou H-H. Effect of daidzein on CYP1A2 activity and pharmacokinetics of theophylline in healthy volunteers. Eur J Clin Pharmacol. 2003;59:237–41.CrossRefPubMed Peng W-X, Li H-D, Zhou H-H. Effect of daidzein on CYP1A2 activity and pharmacokinetics of theophylline in healthy volunteers. Eur J Clin Pharmacol. 2003;59:237–41.CrossRefPubMed
48.
Zurück zum Zitat Sofowora GG, Choo EF, Mayo G, Shyr Y, Wilkinson GR. In vivo inhibition of human CYP1A2 activity by oltipraz. Cancer Chemother Pharmacol. 2001;47:505–10.CrossRefPubMed Sofowora GG, Choo EF, Mayo G, Shyr Y, Wilkinson GR. In vivo inhibition of human CYP1A2 activity by oltipraz. Cancer Chemother Pharmacol. 2001;47:505–10.CrossRefPubMed
49.
Zurück zum Zitat Takagi K, Hasegawa T, Ogura Y, Suzuki R, Yamaki K, Watanabe T, et al. Comparative studies on interaction between theophylline and quinolones. J Asthma. 1988;25:63–71.CrossRefPubMed Takagi K, Hasegawa T, Ogura Y, Suzuki R, Yamaki K, Watanabe T, et al. Comparative studies on interaction between theophylline and quinolones. J Asthma. 1988;25:63–71.CrossRefPubMed
50.
Zurück zum Zitat Trépanier EF, Nafziger AN, Amsden GW. Effect of terbinafine on theophylline pharmacokinetics in healthy volunteers. Antimicrob Agents Chemother. 1998;42:695–7.PubMedPubMedCentral Trépanier EF, Nafziger AN, Amsden GW. Effect of terbinafine on theophylline pharmacokinetics in healthy volunteers. Antimicrob Agents Chemother. 1998;42:695–7.PubMedPubMedCentral
52.
Zurück zum Zitat Backman JT, Granfors MT, Neuvonen PJ. Rifampicin is only a weak inducer of CYP1A2-mediated presystemic and systemic metabolism: studies with tizanidine and caffeine. Eur J Clin Pharmacol. 2006;62:451–61.CrossRefPubMed Backman JT, Granfors MT, Neuvonen PJ. Rifampicin is only a weak inducer of CYP1A2-mediated presystemic and systemic metabolism: studies with tizanidine and caffeine. Eur J Clin Pharmacol. 2006;62:451–61.CrossRefPubMed
53.
Zurück zum Zitat Backman JT, Schröder MT, Neuvonen PJ. Effects of gender and moderate smoking on the pharmacokinetics and effects of the CYP1A2 substrate tizanidine. Eur J Clin Pharmacol. 2008;64:17–24.CrossRefPubMed Backman JT, Schröder MT, Neuvonen PJ. Effects of gender and moderate smoking on the pharmacokinetics and effects of the CYP1A2 substrate tizanidine. Eur J Clin Pharmacol. 2008;64:17–24.CrossRefPubMed
54.
Zurück zum Zitat Darwish M, Kirby M, Robertson P, Hellriegel ET. Interaction profile of armodafinil with medications metabolized by cytochrome P450 enzymes 1A2, 3A4 and 2C19 in healthy subjects. Clin Pharmacokinet. 2008;47:61–74.CrossRefPubMed Darwish M, Kirby M, Robertson P, Hellriegel ET. Interaction profile of armodafinil with medications metabolized by cytochrome P450 enzymes 1A2, 3A4 and 2C19 in healthy subjects. Clin Pharmacokinet. 2008;47:61–74.CrossRefPubMed
55.
Zurück zum Zitat Dilger K, Zheng Z, Klotz U. Lack of drug interaction between omeprazole, lansoprazole, pantoprazole and theophylline. Br J Clin Pharmacol. 1999;48:438–44.CrossRefPubMedPubMedCentral Dilger K, Zheng Z, Klotz U. Lack of drug interaction between omeprazole, lansoprazole, pantoprazole and theophylline. Br J Clin Pharmacol. 1999;48:438–44.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Gillum JG, Sesler JM, Bruzzese VL, Israel DS, Polk RE. Induction of theophylline clearance by rifampin and rifabutin in healthy male volunteers. Antimicrob Agents Chemother. 1996;40:1866–9.PubMedPubMedCentral Gillum JG, Sesler JM, Bruzzese VL, Israel DS, Polk RE. Induction of theophylline clearance by rifampin and rifabutin in healthy male volunteers. Antimicrob Agents Chemother. 1996;40:1866–9.PubMedPubMedCentral
57.
Zurück zum Zitat Lucas RA, Gilfillan DJ, Bergstrom RF. A pharmacokinetic interaction between carbamazepine and olanzapine: observations on possible mechanism. Eur J Clin Pharmacol. 1998;54:639–43.CrossRefPubMed Lucas RA, Gilfillan DJ, Bergstrom RF. A pharmacokinetic interaction between carbamazepine and olanzapine: observations on possible mechanism. Eur J Clin Pharmacol. 1998;54:639–43.CrossRefPubMed
58.
Zurück zum Zitat Bachmann K, White D, Jauregui L, Schwartz JI, Agrawal NGB, Mazenko R, et al. An evaluation of the dose-dependent inhibition of CYP1A2 by rofecoxib using theophylline as a CYP1A2 probe. J Clin Pharmacol. 2003;43:1082–90.CrossRefPubMed Bachmann K, White D, Jauregui L, Schwartz JI, Agrawal NGB, Mazenko R, et al. An evaluation of the dose-dependent inhibition of CYP1A2 by rofecoxib using theophylline as a CYP1A2 probe. J Clin Pharmacol. 2003;43:1082–90.CrossRefPubMed
59.
Zurück zum Zitat Batty KT, Davis TM, Ilett KF, Dusci LJ, Langton SR. The effect of ciprofloxacin on theophylline pharmacokinetics in healthy subjects. Br J Clin Pharmacol. 1995;39:305–11.CrossRefPubMedPubMedCentral Batty KT, Davis TM, Ilett KF, Dusci LJ, Langton SR. The effect of ciprofloxacin on theophylline pharmacokinetics in healthy subjects. Br J Clin Pharmacol. 1995;39:305–11.CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Beckmann J, Elsässer W, Gundert-Remy U, Hertrampf R. Enoxacin—a potent inhibitor of theophylline metabolism. Eur J Clin Pharmacol. 1987;33:227–30.CrossRefPubMed Beckmann J, Elsässer W, Gundert-Remy U, Hertrampf R. Enoxacin—a potent inhibitor of theophylline metabolism. Eur J Clin Pharmacol. 1987;33:227–30.CrossRefPubMed
62.
Zurück zum Zitat Fukasawa T, Yasui-Furukori N, Suzuki A, Ishii G, Inoue Y, Tateishi T, et al. Effects of caffeine on the kinetics of fluvoxamine and its major metabolite in plasma after a single oral dose of the drug. Ther Drug Monit. 2006;28:308–11.CrossRefPubMed Fukasawa T, Yasui-Furukori N, Suzuki A, Ishii G, Inoue Y, Tateishi T, et al. Effects of caffeine on the kinetics of fluvoxamine and its major metabolite in plasma after a single oral dose of the drug. Ther Drug Monit. 2006;28:308–11.CrossRefPubMed
63.
Zurück zum Zitat Fulton B, Goa KL. Olanzapine: a review of its pharmacological properties and therapeutic efficacy in the management of schizophrenia and related psychoses. Drugs. 1997;53:281–98.CrossRefPubMed Fulton B, Goa KL. Olanzapine: a review of its pharmacological properties and therapeutic efficacy in the management of schizophrenia and related psychoses. Drugs. 1997;53:281–98.CrossRefPubMed
64.
Zurück zum Zitat Gardner MJ, Tornatore KM, Jusko WJ, Kanarkowski R. Effects of tobacco smoking and oral contraceptive use on theophylline disposition. Br J Clin Pharmacol. 1983;16:271–80.CrossRefPubMedPubMedCentral Gardner MJ, Tornatore KM, Jusko WJ, Kanarkowski R. Effects of tobacco smoking and oral contraceptive use on theophylline disposition. Br J Clin Pharmacol. 1983;16:271–80.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Granfors MT, Backman JT, Laitila J, Neuvonen PJ. Oral contraceptives containing ethinyl estradiol and gestodene markedly increase plasma concentrations and effects of tizanidine by inhibiting cytochrome P450 1A2. Clin Pharmacol Ther. 2005;78:400–11.CrossRefPubMed Granfors MT, Backman JT, Laitila J, Neuvonen PJ. Oral contraceptives containing ethinyl estradiol and gestodene markedly increase plasma concentrations and effects of tizanidine by inhibiting cytochrome P450 1A2. Clin Pharmacol Ther. 2005;78:400–11.CrossRefPubMed
66.
Zurück zum Zitat Granfors MT, Backman JT, Neuvonen M, Neuvonen PJ. Ciprofloxacin greatly increases concentrations and hypotensive effect of tizanidine by inhibiting its cytochrome P450 1A2-mediated presystemic metabolism. Clin Pharmacol Ther. 2004;76:598–606.CrossRefPubMed Granfors MT, Backman JT, Neuvonen M, Neuvonen PJ. Ciprofloxacin greatly increases concentrations and hypotensive effect of tizanidine by inhibiting its cytochrome P450 1A2-mediated presystemic metabolism. Clin Pharmacol Ther. 2004;76:598–606.CrossRefPubMed
67.
Zurück zum Zitat Hamilton M, Wolf JL, Rusk J, Beard SE, Clark GM, Witt K, et al. Effects of smoking on the pharmacokinetics of erlotinib. Clin Cancer Res. 2006;12:2166–71.CrossRefPubMed Hamilton M, Wolf JL, Rusk J, Beard SE, Clark GM, Witt K, et al. Effects of smoking on the pharmacokinetics of erlotinib. Clin Cancer Res. 2006;12:2166–71.CrossRefPubMed
68.
Zurück zum Zitat Healy DP, Polk RE, Kanawati L, Rock DT, Mooney ML. Interaction between oral ciprofloxacin and caffeine in normal volunteers. Antimicrob Agents Chemother. 1989;33:474–8.CrossRefPubMedPubMedCentral Healy DP, Polk RE, Kanawati L, Rock DT, Mooney ML. Interaction between oral ciprofloxacin and caffeine in normal volunteers. Antimicrob Agents Chemother. 1989;33:474–8.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Hurwitz A, Vacek JL, Botteron GW, Sztern MI, Hughes EM, Jayaraj A. Mexiletine effects on theophylline disposition. Clin Pharmacol Ther. 1991;50:299–307.CrossRefPubMed Hurwitz A, Vacek JL, Botteron GW, Sztern MI, Hughes EM, Jayaraj A. Mexiletine effects on theophylline disposition. Clin Pharmacol Ther. 1991;50:299–307.CrossRefPubMed
70.
Zurück zum Zitat Jeppesen U, Loft S, Poulsen HE, Brśen K. A fluvoxamine–caffeine interaction study. Pharmacogenetics. 1996;6:213–22.CrossRefPubMed Jeppesen U, Loft S, Poulsen HE, Brśen K. A fluvoxamine–caffeine interaction study. Pharmacogenetics. 1996;6:213–22.CrossRefPubMed
71.
Zurück zum Zitat Joeres R, Klinker H, Heusler H, Epping J, Richter E. Influence of mexiletine on caffeine elimination. Pharmacol Ther. 1987;33:163–9.CrossRefPubMed Joeres R, Klinker H, Heusler H, Epping J, Richter E. Influence of mexiletine on caffeine elimination. Pharmacol Ther. 1987;33:163–9.CrossRefPubMed
72.
Zurück zum Zitat Kusumoto M, Ueno K, Tanaka K, Takeda K, Mashimo K, Kameda T, et al. Lack of pharmacokinetic interaction between mexiletine and omeprazole. Ann Pharmacother. 1998;32:182–4.CrossRefPubMed Kusumoto M, Ueno K, Tanaka K, Takeda K, Mashimo K, Kameda T, et al. Lack of pharmacokinetic interaction between mexiletine and omeprazole. Ann Pharmacother. 1998;32:182–4.CrossRefPubMed
73.
Zurück zum Zitat Labbé L, Abolfathi Z, Robitaille NM, St-Maurice F, Gilbert M, Turgeon J. Stereoselective disposition of the antiarrhythmic agent mexiletine during the concomitant administration of caffeine. Ther Drug Monit. 1999;21:191–9.CrossRefPubMed Labbé L, Abolfathi Z, Robitaille NM, St-Maurice F, Gilbert M, Turgeon J. Stereoselective disposition of the antiarrhythmic agent mexiletine during the concomitant administration of caffeine. Ther Drug Monit. 1999;21:191–9.CrossRefPubMed
74.
Zurück zum Zitat Labbé L, Robitaille NM, Lefez C, Potvin D, Gilbert M, O’Hara G, et al. Effects of ciprofloxacin on the stereoselective disposition of mexiletine in man. Ther Drug Monit. 2004;26:492–8.CrossRefPubMed Labbé L, Robitaille NM, Lefez C, Potvin D, Gilbert M, O’Hara G, et al. Effects of ciprofloxacin on the stereoselective disposition of mexiletine in man. Ther Drug Monit. 2004;26:492–8.CrossRefPubMed
75.
Zurück zum Zitat Larsen JT, Hansen LL, Spigset O, Brøsen K. Fluvoxamine is a potent inhibitor of tacrine metabolism in vivo. Eur J Clin Pharmacol. 1999;55:375–82.CrossRefPubMed Larsen JT, Hansen LL, Spigset O, Brøsen K. Fluvoxamine is a potent inhibitor of tacrine metabolism in vivo. Eur J Clin Pharmacol. 1999;55:375–82.CrossRefPubMed
76.
Zurück zum Zitat Mahr G, Sörgel F, Granneman GR, Kinzig M, Muth P, Patterson K, et al. Effects of temafloxacin and ciprofloxacin on the pharmacokinetics of caffeine. Clin Pharmacokinet. 1992;22(Suppl 1):90–7.CrossRefPubMed Mahr G, Sörgel F, Granneman GR, Kinzig M, Muth P, Patterson K, et al. Effects of temafloxacin and ciprofloxacin on the pharmacokinetics of caffeine. Clin Pharmacokinet. 1992;22(Suppl 1):90–7.CrossRefPubMed
77.
78.
Zurück zum Zitat Pentikäinen PJ, Koivula IH, Hiltunen HA. Effect of rifampicin treatment on the kinetics of mexiletine. Eur J Clin Pharmacol. 1982;23:261–6.CrossRefPubMed Pentikäinen PJ, Koivula IH, Hiltunen HA. Effect of rifampicin treatment on the kinetics of mexiletine. Eur J Clin Pharmacol. 1982;23:261–6.CrossRefPubMed
79.
Zurück zum Zitat Rasmussen BB, Jeppesen U, Gaist D, Brøsen K. Griseofulvin and fluvoxamine interactions with the metabolism of theophylline. Ther Drug Monit. 1997;19:56–62.CrossRefPubMed Rasmussen BB, Jeppesen U, Gaist D, Brøsen K. Griseofulvin and fluvoxamine interactions with the metabolism of theophylline. Ther Drug Monit. 1997;19:56–62.CrossRefPubMed
80.
Zurück zum Zitat Robson RA, Begg EJ, Atkinson HC, Saunders DA, Frampton CM. Comparative effects of ciprofloxacin and lomefloxacin on the oxidative metabolism of theophylline. Br J Clin Pharmacol. 1990;29:491–3.CrossRefPubMedPubMedCentral Robson RA, Begg EJ, Atkinson HC, Saunders DA, Frampton CM. Comparative effects of ciprofloxacin and lomefloxacin on the oxidative metabolism of theophylline. Br J Clin Pharmacol. 1990;29:491–3.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Rost KL, Fuhr U, Thomsen T, Zaigler M, Brockmöller J, Bohnemeier H, et al. Omeprazole weakly inhibits CYP1A2 activity in man. Int J Clin Pharmacol Ther. 1999;37:567–74.PubMed Rost KL, Fuhr U, Thomsen T, Zaigler M, Brockmöller J, Bohnemeier H, et al. Omeprazole weakly inhibits CYP1A2 activity in man. Int J Clin Pharmacol Ther. 1999;37:567–74.PubMed
82.
Zurück zum Zitat Schwartz J, Jauregui L, Lettieri J, Bachmann K. Impact of ciprofloxacin on theophylline clearance and steady-state concentrations in serum. Antimicrob Agents Chemother. 1988;32:75–7.CrossRefPubMedPubMedCentral Schwartz J, Jauregui L, Lettieri J, Bachmann K. Impact of ciprofloxacin on theophylline clearance and steady-state concentrations in serum. Antimicrob Agents Chemother. 1988;32:75–7.CrossRefPubMedPubMedCentral
83.
Zurück zum Zitat Spigset O, Carleborg L, Hedenmalm K, Dahlqvist R. Effect of cigarette smoking on fluvoxamine pharmacokinetics in humans. Clin Pharmacol Ther. 1995;58:399–403.CrossRefPubMed Spigset O, Carleborg L, Hedenmalm K, Dahlqvist R. Effect of cigarette smoking on fluvoxamine pharmacokinetics in humans. Clin Pharmacol Ther. 1995;58:399–403.CrossRefPubMed
84.
Zurück zum Zitat Stille W, Harder S, Mieke S, Beer C, Shah PM, Frech K, et al. Decrease of caffeine elimination in man during co-administration of 4-quinolones. J Antimicrob Chemother. 1987;20:729–34.CrossRefPubMed Stille W, Harder S, Mieke S, Beer C, Shah PM, Frech K, et al. Decrease of caffeine elimination in man during co-administration of 4-quinolones. J Antimicrob Chemother. 1987;20:729–34.CrossRefPubMed
85.
Zurück zum Zitat Stoysich AM, Mohiuddin SM, Destache CJ, Nipper HC, Hilleman DE. Influence of mexiletine on the pharmacokinetics of theophylline in healthy volunteers. J Clin Pharmacol. 1991;31:354–7.CrossRefPubMed Stoysich AM, Mohiuddin SM, Destache CJ, Nipper HC, Hilleman DE. Influence of mexiletine on the pharmacokinetics of theophylline in healthy volunteers. J Clin Pharmacol. 1991;31:354–7.CrossRefPubMed
86.
Zurück zum Zitat Von Richter O, Lahu G, Huennemeyer A, Herzog R, Zech K, Hermann R. Effect of fluvoxamine on the pharmacokinetics of roflumilast and roflumilast N-oxide. Clin Pharmacokinet. 2007;46:613–22.CrossRef Von Richter O, Lahu G, Huennemeyer A, Herzog R, Zech K, Hermann R. Effect of fluvoxamine on the pharmacokinetics of roflumilast and roflumilast N-oxide. Clin Pharmacokinet. 2007;46:613–22.CrossRef
87.
Zurück zum Zitat Tod M, Goutelle S, Gagnieu MC. Genotype-based quantitative prediction of drug exposure for drugs metabolized by CYP2D6. Clin Pharmacol Ther. 2011;90:582–7.CrossRefPubMed Tod M, Goutelle S, Gagnieu MC. Genotype-based quantitative prediction of drug exposure for drugs metabolized by CYP2D6. Clin Pharmacol Ther. 2011;90:582–7.CrossRefPubMed
88.
Zurück zum Zitat Tod M, Nkoud-Mongo C, Gueyffier F. Impact of genetic polymorphism on drug–drug interactions mediated by cytochromes: a general approach. AAPS J. 2013;15:1242–52.CrossRefPubMedPubMedCentral Tod M, Nkoud-Mongo C, Gueyffier F. Impact of genetic polymorphism on drug–drug interactions mediated by cytochromes: a general approach. AAPS J. 2013;15:1242–52.CrossRefPubMedPubMedCentral
89.
Zurück zum Zitat Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug–drug interactions from in vitro data. Br J Clin Pharmacol. 2004;57:473–86.CrossRefPubMedPubMedCentral Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug–drug interactions from in vitro data. Br J Clin Pharmacol. 2004;57:473–86.CrossRefPubMedPubMedCentral
90.
Zurück zum Zitat Obach RS, Walsky RL, Venkatakrishnan K, Gaman EA, Houston JB, Tremaine LM. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug–drug interactions. J Pharmacol Exp Ther. 2006;316:336–48.CrossRefPubMed Obach RS, Walsky RL, Venkatakrishnan K, Gaman EA, Houston JB, Tremaine LM. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug–drug interactions. J Pharmacol Exp Ther. 2006;316:336–48.CrossRefPubMed
91.
Zurück zum Zitat Marsousi N, Daali Y, Rudaz S, Almond L, Humphries H, Desmeules J, et al. Prediction of metabolic interactions with oxycodone via CYP2D6 and CYP3A inhibition using a physiologically based pharmacokinetic model. CPT Pharmacometrics Syst Pharmacol. 2014;3:e152.CrossRefPubMedPubMedCentral Marsousi N, Daali Y, Rudaz S, Almond L, Humphries H, Desmeules J, et al. Prediction of metabolic interactions with oxycodone via CYP2D6 and CYP3A inhibition using a physiologically based pharmacokinetic model. CPT Pharmacometrics Syst Pharmacol. 2014;3:e152.CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Karjalainen MJ, Neuvonen PJ, Backman JT. In vitro inhibition of CYP1A2 by model inhibitors, anti-inflammatory analgesics and female sex steroids: predictability of in vivo interactions. Basic Clin Pharmacol Toxicol. 2008;103(2):157–65.CrossRefPubMed Karjalainen MJ, Neuvonen PJ, Backman JT. In vitro inhibition of CYP1A2 by model inhibitors, anti-inflammatory analgesics and female sex steroids: predictability of in vivo interactions. Basic Clin Pharmacol Toxicol. 2008;103(2):157–65.CrossRefPubMed
93.
Zurück zum Zitat Karjalainen MJ, Neuvonen PJ, Backman JT. Tolfenamic acid is a potent CYP1A2 inhibitor in vitro but does not interact in vivo: correction for protein binding is needed for data interpretation. Eur J Clin Pharmacol. 2007;63(9):829–36.CrossRefPubMed Karjalainen MJ, Neuvonen PJ, Backman JT. Tolfenamic acid is a potent CYP1A2 inhibitor in vitro but does not interact in vivo: correction for protein binding is needed for data interpretation. Eur J Clin Pharmacol. 2007;63(9):829–36.CrossRefPubMed
95.
Zurück zum Zitat Faber MS, Jetter A, Fuhr U. Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol. 2005;97:125–34.CrossRefPubMed Faber MS, Jetter A, Fuhr U. Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol. 2005;97:125–34.CrossRefPubMed
96.
Zurück zum Zitat Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brøsen K. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol. 1996;51(1):73–8.CrossRefPubMed Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brøsen K. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol. 1996;51(1):73–8.CrossRefPubMed
97.
Zurück zum Zitat Obach RS, Ryder TF. Metabolism of ramelteon in human liver microsomes and correlation with the effect of fluvoxamine on ramelteon pharmacokinetics. Drug Metab Dispos. 2010;38:1381–91.CrossRefPubMed Obach RS, Ryder TF. Metabolism of ramelteon in human liver microsomes and correlation with the effect of fluvoxamine on ramelteon pharmacokinetics. Drug Metab Dispos. 2010;38:1381–91.CrossRefPubMed
98.
Zurück zum Zitat Zhou S-F, Yang L-P, Zhou Z-W, Liu Y-H, Chan E. Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. AAPS J. 2009;11:481–94.CrossRefPubMedPubMedCentral Zhou S-F, Yang L-P, Zhou Z-W, Liu Y-H, Chan E. Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. AAPS J. 2009;11:481–94.CrossRefPubMedPubMedCentral
Metadaten
Titel
Quantitative Prediction of Drug Interactions Caused by CYP1A2 Inhibitors and Inducers
verfasst von
Laurence Gabriel
Michel Tod
Sylvain Goutelle
Publikationsdatum
02.03.2016
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 8/2016
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-016-0371-x

Weitere Artikel der Ausgabe 8/2016

Clinical Pharmacokinetics 8/2016 Zur Ausgabe