Skip to main content
Erschienen in: Child's Nervous System 12/2018

Open Access 12.07.2018 | Original Paper

Raman spectroscopy for medulloblastoma

verfasst von: Bartosz Polis, Anna Imiela, Lech Polis, Halina Abramczyk

Erschienen in: Child's Nervous System | Ausgabe 12/2018

Abstract

Purpose

The aim of the study is to use Raman spectroscopy to analyze the biochemical composition of medulloblastoma and normal tissues from the safety margin of the CNS and to find specific Raman biomarkers capable of differentiating between tumorous and normal tissues.

Methods

The tissue samples consisted of medulloblastoma (grade IV) (n = 11). The tissues from the negative margins were used as normal controls. Raman images were generated by a confocal Raman microscope—WITec alpha 300 RSA.

Results

Raman vibrational signatures can predict which tissue has tumorous biochemistry and can identify medulloblastoma. The Raman technique makes use of the fact that tumors contain large amounts of protein and far less lipids (fatty compounds), while healthy tissue is rich in both.

Conclusion

The ability of Raman spectroscopy and imaging to detect medulloblastoma tumors fills the niche in diagnostics. These powerful analytical techniques are capable of monitoring tissue morphology and biochemistry. Our results demonstrate that RS can be used to discriminate between normal and medulloblastoma tissues.
Medulloblastoma (MB) is the most common embryonal tumor of the central nervous system (CNS) (70% of all). It is located only in the posterior fossa. In the group of patients < 18 years of age, it constitutes 18% of all brain tumors and 30% concerning the posterior fossa. The median of age is 9 years with two occurrence peaks, 2–4 and 6–8 years of age. The frequency of occurrence revolves around 0.5/100,000 children. A more frequent occurrence in the male sex is suggested (♂:♀, 1.8:1).
The basic feature of MB biology is its huge local malice and the ability to spread through cerebrospinal fluid (CSF). The contemporary comprehensive treatment of tumors consists of surgical removal followed by pharmacological chemotherapy and megavoltage CNS therapy. The principle is the use of surgical treatment at the first stage. Radiotherapy is not used in patients under 3 years of age who are treated exclusively with chemotherapy and palliative surgical procedure in primary disseminated disease (M2–M4 Chang classification).
The recurrence of the neoplastic process occurs most frequently during the first 2 years after the end of treatment. As a rule, it occurs at the place of the original location.
The results of the last years’ research quite unequivocally indicate the possibility of improving the effects of MB treatment with the application and appropriate selection of conventional methods. However, the maximum 5-year survival rates achieved at 75–85% for the standard-risk groups and 60–69% in the high-risk groups seem to be the limit.
Although precise delineation of the tumor excision border is a crucial step in patient treatment and survival, there are currently no methods able to differentiate normal tissue from tumor during operation. Traditional methods such as radiography, ultrasonography, computed tomography, and magnetic resonance imaging are insufficient in spatial resolution and have limited intraoperative availability [14, 16]. This could be counteracted by Raman spectroscopy, a promising simple, quick, and non-invasive method.
Raman spectroscopy (RS) and imaging (RI) are methods that measure inelastic scattering of light, providing information about vibrations of tissue components in samples. As a result, Raman spectroscopy can provide biochemical information of tissues without using any contrast agents [1, 3].
Recent years brought a great number of papers indicating usefulness of Raman spectroscopy in brain research on animals [11, 17, 23] as well as preliminary research on human brain [10, 11, 13, 15, 20]. However, the studies included individual cases. Here, we studied 11 cases of medulloblastoma and 3 samples from the safety margin as a control.
The aim of the study is to use Raman spectroscopy to analyze the biochemical composition of medulloblastoma and normal tissues from the safety margin of the CNS and to find specific Raman biomarkers capable of differentiating between tumorous and normal tissues.

Materials and methods

Study participants and tissue preparations

All experiments were performed in compliance with relevant laws and guidelines of the Bioethical Committee at the Polish Mother’s Memorial Hospital Research Institute in Lodz (53/216) and of the Ministry of Health of the Republic of Poland. Written informed consent was obtained from patients. The tissue samples consisted of medulloblastoma (grade IV) (n = 11). The tissues from the negative margins were used as normal controls.
Microtomed 16-μm-thick tissue sections were obtained from frozen blocks of the material removed during surgical operation at the Polish Mother’s Memorial Hospital (Lodz, Poland) and placed on CaF2 substrates (CRYSTAL GmbH, Germany) for Raman spectroscopy and Raman imaging measurements. Parallel 6-μm tissue sections were obtained and stained with H&E followed by histology examination for all the specimens by a certified neuropathologist from the Polish Mother’s Memorial Hospital Research Institute in Lodz. The tissue sections were examined by Raman spectroscopy and Raman imaging. MRI images were used for visualization and location of the tumor region for each patient.

Raman spectroscopy and imaging

Raman images were generated by a confocal Raman microscope—WITec alpha 300 RSA (Ulm, Germany)—consisting of an Olympus microscope coupled with a 300-mm Czerny–Turner monochromator (Princeton Instruments Acton SP23000; 300-mm imaging triple-grating monochromator/spectrograph) and a thermoelectrically cooled CCD camera (ANDOR Newton DU970N-UVB-353; EMCCD chip with a 1600 × 200 pixel format, 16 μm dimension each) operating in the standard mode at − 64 °C with full vertical binning. The excitation laser beam was a second harmonic of the Nd:YAG laser (532 nm) which was focused on the sample with a × 40-magnification objective (NIKON CFI Plan Fluor C ELWD 40×: NA 0.60, WD 3.6–2.8 mm; DIC-M, C.C.0-2) to the laser spot of 1 μm determined by the laser wavelength and microscope objective being used. The average laser excitation power was 10 mW, with a collection (integration) time of 0.5 s and a spectral step of 2 cm−1 in the fingerprint range of 200–1800 cm−1 and high-frequency region of 1800–3600 cm−1. A piezoelectric table was used to record Raman images. The spectra were collected at one acquisition per pixel and a 1200-line-mm−1 diffraction grating with the spectral bandpass varying from about 5.5 cm−1 per pixel at about 200 cm−1 to about 3.3 cm−1 per pixel at 3600 cm−1. Raman images (50 × 50 μm, 100 × 100 points per line) from the fingerprint spectral regions of the human brain tissue from the tumor mass and from the safety margin were constructed.
Detailed methodology on data pre-processing and multivariate data analysis used in the paper is available elsewhere [6, 8, 9].
The percentage of blue and red areas of images presented in the “Results and discussion” section was calculated with Color threshold and Measure option of the ImageJ software (US National Institutes of Health, Bethesda, MD, USA).

Results and discussion

Here we show results of the examination of 11 tissue samples of medulloblastoma compared with normal tissue from the safety margin.
Figure 1 shows MRI, microscopy, and Raman images as well as Raman spectra for medulloblastoma (A) and normal (B) tissues.
First of all, it is important to note that Raman mapping of human tissues can generate images as accurate as histology images with unique spatial resolution, sensitivity, and capabilities [14, 7].
A detailed insight into Fig. 1 shows spectral alterations in the chemical and morphological composition of the diagnosed medulloblastoma compared with normal tissue. The most important differences are in lipid and protein content marked on Raman images and spectra as blue (the band at 2845 cm−1 corresponds to CH2 sym. str. of lipids) and red (the band at 2930 cm−1 corresponds to CH3 sym. str. of lipids) areas, respectively.
The calculated areas of blue and red from Fig. 1 show 29, 24, and 20% of lipids for tumorous tissue and 58% area of lipids for normal tissue.
Figure 2 shows vector-normalized average spectra from Raman imaging for all analyzed samples of medulloblastoma. The results show that the spectra of all samples were highly reproducible.
Figure 3 shows the vector-normalized average spectra for medulloblastoma and normal tissues.
The results presented in Fig. 3 show that the Raman vibrational signatures can predict which tissue has tumorous biochemistry and can identify medulloblastoma. A detailed insight shows significant differences in lipid (1064, 1270, 1304, 1444, and 2845 cm−1) and protein (1240, 1368, 1586, 1658, and 2930 cm−1) content. Abramczyk et al. [1, 7, 26] showed that the Raman technique makes use of the fact that tumors contain large amounts of protein and far less lipids (fatty compounds), while healthy tissue is rich in both. Particularly interesting are the differences at 1586 cm−1, described as a marker of malignancy in tumors [21, 24]. Literature mostly merges this peak with the C=C bending mode of phenylalanine [5, 12, 19, 25], but our latest research shows that this also corresponds with phosphorylation of tyrosine. Also, the amide III band is shifted from 1270 to 1228 cm−1 as a result of phosphorylation. This is consistent with the latest research on phosphorylation inhibitors as a therapy for medulloblastoma [18].
For clinical application, the most important finding of the paper is the ratio of protein to lipid content presented in Table 1. This feature can be used to discriminate between normal and tumorous tissues. Table 1 shows the ratio for high frequencies and for the fingerprint region as well as the ratio calculated from the areas of proteins (Aproteins) and lipids (Alipids) from Raman images.
Table 1
Raman intensity ratios at 2930/2845 cm−1 and 1586/1444 cm−1 for all analyzed medulloblastoma and normal samples
Medulloblastoma patient number
I2930/I2845
I1586/I1444
Aproteins/Alipids
P3
2.74
1.30
1.85
P4
2.76
0.81
8.00
P9
3.2
3.81
3.34
P18
2.97
7.89
1.77
P27
1.90
4.64
4.00
P34
2.56
2.21
3.16
P38
3.25
0.56
2.44
P43
3.42
0.60
4.00
P44
2.86
2.90
2.70
P48
2.89
2.10
3.55
P49
3.17
1.13
6.69
Average for medulloblastoma
2.88 ± 0.26
2.54 ± 0.81
3.74 ± 1.24
Average for normal
1.6 ± 0.63
0.32 ± 0.18
0.77 ± 0.09
One can see that all studied cases of medulloblastoma tissue samples have the ratios I2930/I2845, I1586/I1444, and Aproteins/Alipids significantly higher than those for normal tissue, which demonstrates lower content of lipids in tumors. This is consistent with literature, where chromatography measurements show significantly reduced levels of polyunsaturated fatty acids (PUFA) and phospholipids in CNS tumors [22].
Both the ratios I2930/I2845 and I1586/I1444 can be used for diagnostic purposes. Although the results presented in the paper are highly reproducible, they are carried out on tissue slices, and for medical uses, more in vivo research should be conducted.

Conclusions

The ability of Raman spectroscopy and imaging to detect medulloblastoma tumors fills the niche in diagnostics. These powerful analytical techniques are capable of monitoring tissue morphology and biochemistry. Our results demonstrate that RS can be used to discriminate between normal and medulloblastoma tissues by monitoring alterations in lipid and protein content using I2930/I2845 and I1586/I1444 ratios.

Compliance with ethical standards

All experiments were performed in compliance with relevant laws and guidelines of the Bioethical Committee at the Polish Mother’s Memorial Hospital Research Institute in Lodz (53/216) and of the Ministry of Health of the Republic of Poland.

Conflict of interest

The authors declare that they have no conflict of interest.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Abramczyk H, Brozek-Pluska B (2013) Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem Rev 113:5766–5781CrossRef Abramczyk H, Brozek-Pluska B (2013) Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem Rev 113:5766–5781CrossRef
2.
Zurück zum Zitat Abramczyk H, Brozek-Pluska B (2016) New look inside human breast ducts with Raman imaging. Raman candidates as diagnostic markers for breast cancer prognosis: mammaglobin, palmitic acid and sphingomyelin. Anal Chim Acta 909:91–100CrossRef Abramczyk H, Brozek-Pluska B (2016) New look inside human breast ducts with Raman imaging. Raman candidates as diagnostic markers for breast cancer prognosis: mammaglobin, palmitic acid and sphingomyelin. Anal Chim Acta 909:91–100CrossRef
3.
Zurück zum Zitat Abramczyk H, Brozek-Pluska B, Surmacki J, Jablonska J, Kordek R (2011) Raman ‘optical biopsy’ of human breast cancer. J Mol Liq 164:123–131CrossRef Abramczyk H, Brozek-Pluska B, Surmacki J, Jablonska J, Kordek R (2011) Raman ‘optical biopsy’ of human breast cancer. J Mol Liq 164:123–131CrossRef
4.
Zurück zum Zitat Abramczyk H, Surmacki J, Kopeć M, Olejnik AK, Lubecka-Pietruszewska K, Fabianowska-Majewska K (2015) The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst 140(7):2224–2235CrossRef Abramczyk H, Surmacki J, Kopeć M, Olejnik AK, Lubecka-Pietruszewska K, Fabianowska-Majewska K (2015) The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst 140(7):2224–2235CrossRef
6.
Zurück zum Zitat Brozek-Pluska B, Musial J, Kordek R, Bailo E, Dieing T, Abramczyk H (2012) Raman spectroscopy and imaging: applications in human breast cancer diagnosis. Analyst 137:3773–3780CrossRef Brozek-Pluska B, Musial J, Kordek R, Bailo E, Dieing T, Abramczyk H (2012) Raman spectroscopy and imaging: applications in human breast cancer diagnosis. Analyst 137:3773–3780CrossRef
7.
Zurück zum Zitat Brozek-Pluska B, Kopec M, Abramczyk H (2016) Development of a new diagnostic Raman method for monitoring epigenetic modifications in the cancer cells of human breast tissue. Anal Methods 8:8542–8553CrossRef Brozek-Pluska B, Kopec M, Abramczyk H (2016) Development of a new diagnostic Raman method for monitoring epigenetic modifications in the cancer cells of human breast tissue. Anal Methods 8:8542–8553CrossRef
8.
Zurück zum Zitat Butler HJ, Fogarty SW, Kerns JG, Martin-Hirsch PL, Fullwood NJ, Martin FL (2015) Gold nanoparticles as a substrate in bio-analytical near-infrared surface-enhanced Raman spectroscopy. Analyst 140:3090–3097CrossRef Butler HJ, Fogarty SW, Kerns JG, Martin-Hirsch PL, Fullwood NJ, Martin FL (2015) Gold nanoparticles as a substrate in bio-analytical near-infrared surface-enhanced Raman spectroscopy. Analyst 140:3090–3097CrossRef
9.
Zurück zum Zitat Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, Esmonde-White K, Fullwood NJ, Gardner B, Martin-Hirsch PL, Walsh MJ, McAinsh MR, Stone N, Martin FL (2016) Using Raman spectroscopy to characterize biological materials. Nat Protoc 11:664–687CrossRef Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, Esmonde-White K, Fullwood NJ, Gardner B, Martin-Hirsch PL, Walsh MJ, McAinsh MR, Stone N, Martin FL (2016) Using Raman spectroscopy to characterize biological materials. Nat Protoc 11:664–687CrossRef
10.
Zurück zum Zitat Desroches J, Jermyn M, Pinto M, Picot F, Tremblay MA, Obaid S, Marple E, Urmey K, Trudel D, Soulez G, Guiot MC, Wilson BC, Petrecca K, Leblond F (2018) A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci Rep 8:1792CrossRef Desroches J, Jermyn M, Pinto M, Picot F, Tremblay MA, Obaid S, Marple E, Urmey K, Trudel D, Soulez G, Guiot MC, Wilson BC, Petrecca K, Leblond F (2018) A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci Rep 8:1792CrossRef
11.
Zurück zum Zitat Gajjar K, Heppenstall LD, Pang W, Ashton KM, Trevisan J, Patel II, Llabjani V, Stringfellow HF, Martin-Hirsch PL, Dawson T, Martin FL (2013) Diagnostic segregation of human brain tumors using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Anal Methods 5:89–102CrossRef Gajjar K, Heppenstall LD, Pang W, Ashton KM, Trevisan J, Patel II, Llabjani V, Stringfellow HF, Martin-Hirsch PL, Dawson T, Martin FL (2013) Diagnostic segregation of human brain tumors using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Anal Methods 5:89–102CrossRef
12.
Zurück zum Zitat Ghomi M (2012) Applications of Raman spectroscopy to biology: from basic studies to disease diagnosis. IOS press, ISBN 978-1-60750-999-8 Ghomi M (2012) Applications of Raman spectroscopy to biology: from basic studies to disease diagnosis. IOS press, ISBN 978-1-60750-999-8
13.
Zurück zum Zitat Imiela A, Polis B, Polis L, Abramczyk H (2017) Novel strategies of Raman imaging for brain tumor research. Oncotarget 8:85290–85310 Imiela A, Polis B, Polis L, Abramczyk H (2017) Novel strategies of Raman imaging for brain tumor research. Oncotarget 8:85290–85310
14.
Zurück zum Zitat Jeeves MA (1994) Mind fields: reflections on the science of mind and brain. Baker Books, Grand Rapids, p 21 Jeeves MA (1994) Mind fields: reflections on the science of mind and brain. Baker Books, Grand Rapids, p 21
15.
Zurück zum Zitat Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, Saint-Arnaud K, Bernstein L, Guiot MC, Petrecca K, Leblond F (2015) Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl med 7:274ra19CrossRef Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, Saint-Arnaud K, Bernstein L, Guiot MC, Petrecca K, Leblond F (2015) Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl med 7:274ra19CrossRef
16.
Zurück zum Zitat Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18:829–834CrossRef Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18:829–834CrossRef
17.
Zurück zum Zitat Kirsch M, Schackert G, Salzer R, Krafft C (2010) Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Anal Bioanal Chem 398:1707–1713CrossRef Kirsch M, Schackert G, Salzer R, Krafft C (2010) Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Anal Bioanal Chem 398:1707–1713CrossRef
18.
Zurück zum Zitat Klisch TJ, Vainshtein A, Patel AJ, Zoghbi HY (2017) Jak2-mediated phosphorylation of Atoh1 is critical for medulloblastoma growth. eLife 6:e31181CrossRef Klisch TJ, Vainshtein A, Patel AJ, Zoghbi HY (2017) Jak2-mediated phosphorylation of Atoh1 is critical for medulloblastoma growth. eLife 6:e31181CrossRef
19.
Zurück zum Zitat Lin K, Zheng W, Lim CM, Huang Z (2017) Real-time in vivo diagnosis of nasopharyngeal carcinoma using rapid fiber-optic Raman spectroscopy. Theranostics 7(14):3517–3526CrossRef Lin K, Zheng W, Lim CM, Huang Z (2017) Real-time in vivo diagnosis of nasopharyngeal carcinoma using rapid fiber-optic Raman spectroscopy. Theranostics 7(14):3517–3526CrossRef
20.
Zurück zum Zitat Liu CH, Das BB, Sha Glassman WL, Tang GC, Yoo KM, Zhu HR, Akins DL, Lubicz SS, Cleary J, Prudente R, Celmer E, Caron A, Alfano RR (1992) Raman, fluorescence, and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media. J Photochem Photobiol B 16:187–209CrossRef Liu CH, Das BB, Sha Glassman WL, Tang GC, Yoo KM, Zhu HR, Akins DL, Lubicz SS, Cleary J, Prudente R, Celmer E, Caron A, Alfano RR (1992) Raman, fluorescence, and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media. J Photochem Photobiol B 16:187–209CrossRef
21.
Zurück zum Zitat Maier JS, Demuth JE, Cohen JK, Stewart S, MmcClelland LA (2010) Cytological analysis by Raman spectroscopic imaging. United States Patent. No. US 7,697,576 B2 Maier JS, Demuth JE, Cohen JK, Stewart S, MmcClelland LA (2010) Cytological analysis by Raman spectroscopic imaging. United States Patent. No. US 7,697,576 B2
22.
Zurück zum Zitat Martin DD, Robbins ME, Spector AA, Wen BC, Hussey DH (1996) The fatty acid composition of human glioma differs from that found in nonmalignant brain tissue. Lipids 31:1283–1288CrossRef Martin DD, Robbins ME, Spector AA, Wen BC, Hussey DH (1996) The fatty acid composition of human glioma differs from that found in nonmalignant brain tissue. Lipids 31:1283–1288CrossRef
23.
Zurück zum Zitat Meyer T, Bergner N, Bielecki C, Krafft C, Akimov D, Romeike BF, Reichart R, Kalff R, Dietzek B, Popp J (2011) Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis. J Biomed Opt 16:021–113CrossRef Meyer T, Bergner N, Bielecki C, Krafft C, Akimov D, Romeike BF, Reichart R, Kalff R, Dietzek B, Popp J (2011) Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis. J Biomed Opt 16:021–113CrossRef
24.
Zurück zum Zitat Shapiro A, Gofrit ON, Pizov G, Cohen JK, Maier J (2011) Raman molecular imaging: a novel spectroscopic technique for diagnosis of bladder cancer in urine specimens. Eur Urol 59:106–112CrossRef Shapiro A, Gofrit ON, Pizov G, Cohen JK, Maier J (2011) Raman molecular imaging: a novel spectroscopic technique for diagnosis of bladder cancer in urine specimens. Eur Urol 59:106–112CrossRef
25.
Zurück zum Zitat Stone N, Stavroulaki P, Kendall C, Birchall M, Barr H (2000) Raman spectroscopy for early detection of laryngeal malignancy: preliminary results. Laryngoscope 110:1756–1763CrossRef Stone N, Stavroulaki P, Kendall C, Birchall M, Barr H (2000) Raman spectroscopy for early detection of laryngeal malignancy: preliminary results. Laryngoscope 110:1756–1763CrossRef
26.
Zurück zum Zitat Surmacki J, Brozek-Pluska B, Kordek R, Abramczyk H (2015) The lipid-reactive oxygen species phenotype of breast cancer. Raman spectroscopy and mapping, PCA and PLSDA for invasive ductal carcinoma and invasive lobular carcinoma. Molecular tumorigenic mechanisms beyond Warburg effect. Analyst 140:2121–2133CrossRef Surmacki J, Brozek-Pluska B, Kordek R, Abramczyk H (2015) The lipid-reactive oxygen species phenotype of breast cancer. Raman spectroscopy and mapping, PCA and PLSDA for invasive ductal carcinoma and invasive lobular carcinoma. Molecular tumorigenic mechanisms beyond Warburg effect. Analyst 140:2121–2133CrossRef
Metadaten
Titel
Raman spectroscopy for medulloblastoma
verfasst von
Bartosz Polis
Anna Imiela
Lech Polis
Halina Abramczyk
Publikationsdatum
12.07.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Child's Nervous System / Ausgabe 12/2018
Print ISSN: 0256-7040
Elektronische ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-018-3906-7

Weitere Artikel der Ausgabe 12/2018

Child's Nervous System 12/2018 Zur Ausgabe

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Recycling im OP – möglich, aber teuer

05.05.2024 DCK 2024 Kongressbericht

Auch wenn sich Krankenhäuser nachhaltig und grün geben – sie tragen aktuell erheblich zu den CO2-Emissionen bei und produzieren jede Menge Müll. Ein Pilotprojekt aus Bonn zeigt, dass viele Op.-Abfälle wiederverwertet werden können.

Im OP der Zukunft läuft nichts mehr ohne Kollege Roboter

04.05.2024 DCK 2024 Kongressbericht

Der OP in der Zukunft wird mit weniger Personal auskommen – nicht, weil die Technik das medizinische Fachpersonal verdrängt, sondern weil der Personalmangel es nötig macht.

Nur selten Nachblutungen nach Abszesstonsillektomie

03.05.2024 Tonsillektomie Nachrichten

In einer Metaanalyse von 18 Studien war die Rate von Nachblutungen nach einer Abszesstonsillektomie mit weniger als 7% recht niedrig. Nur rund 2% der Behandelten mussten nachoperiert werden. Die Therapie scheint damit recht sicher zu sein.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.