Skip to main content
Erschienen in: Journal of Translational Medicine 1/2023

Open Access 01.12.2023 | Review

Recent advances of exosomal circRNAs in cancer and their potential clinical applications

verfasst von: Qian Yi, Jiaji Yue, Yang Liu, Houyin Shi, Wei Sun, Jianguo Feng, Weichao Sun

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2023

Abstract

Circular RNA (circRNA) is a type of non-coding RNA that forms a covalently closed, uninterrupted loop. The expression of circRNA differs among cell types and tissues, and various circRNAs are aberrantly expressed in a variety of diseases, including cancer. Aberrantly expressed circRNAs contribute to disease progression by acting as microRNA sponges, functional protein sponges, or novel templates for protein translation. Recent studies have shown that circRNAs are enriched in exosomes. Exosomes are spherical bilayer vesicles released by cells into extracellular spaces that mediate intercellular communication by delivering cargoes. These cargoes include metabolites, proteins, lipids, and RNA molecules. Exosome-mediated cell-cell or cell-microenvironment communications influence the progression of carcinogenesis by regulating cell proliferation, angiogenesis, metastasis as well as immune escape. In this review, we summarize the current knowledge about exosomal circRNAs in cancers and discuss their specific functions in tumorigenesis. Additionally, we discuss the potential value of exosomal circRNAs as diagnostic biomarkers and the potential applications of exosomal circRNA-based cancer therapy.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
circRNA
Circular RNA
lncRNAs
Long non-coding RNAs
AUC
Area under the curve
CAFs
Cancer-associated fibroblasts
CRC
Colorectal cancer
EC
Esophageal cancer
BC
Breast cancer
PC
Prostate cancer
HCC
Hepatocellular carcinoma
PCa
Pancreatic cancer
GC
Gastric cancer
TAMs
Tumor-associated macrophages
RCC
Renal cell carcinoma
NSCLC
Non-small cell lung cancer
SCLC
Small cell lung cancer
MM
Multiple myeloma
EMT
Epithelial-mesenchymal transition
HUVECs
Human umbilical vein endothelial cells
NAA10
N-α-acetyltransferase 10
TMZ
Temozolomide
BM-MSCs
Bone marrow-derived mesenchymal stem cells
PDAC
Pancreatic ductal adenocarcinoma
NPC
Nasopharyngeal carcinoma
CCA
Cholangiocarcinoma
AC
Endometrial adenocarcinoma
OSCC
Oral squamous cell carcinoma
GBM
Glioblastoma multiforme
PTC
Papillary thyroid carcinoma
ESCC
Esophageal squamous carcinoma
CCA
Cholangiocarcinoma

Introduction

Cancer is a leading cause of death worldwide, particularly because of its high morbidity and mortality, and it has caused enormous pain to individuals, imposed a tremendous burden on families and health systems [1]. Conventional blood biomarkers are widely used for cancer diagnosis, but their low sensitivity and specificity limit their application. The early symptoms of many malignant tumors are not obvious, and most patients are diagnosed at an advanced stage of the disease [2, 3]. Therefore, it is crucial to explore new non-invasive biomarkers for the early diagnosis of malignant cancers. Currently, liquid biopsy was developed for detecting novel, highly accurate biomarkers in human body fluids [4, 5]. It is non-invasive, simpler, faster, and more accurate compared to traditional histological biopsy [6]. In addition, more dynamic monitoring of disease progression and recurrence is allowed through repeated sampling via liquid biopsy [7, 8].
Exosomes are spherical bilayer vesicles released by a variety of cells into extracellular spaces. They mediate the cell-cell or cell-environments’ communications by delivering cargoes, such as circular RNAs (circRNAs), microRNAs, mRNAs, DNAs, long non-coding RNAs (lncRNAs), proteins, and lipids [9, 10]. Exosomes are one of the main detection materials for liquid biopsy because they are present in almost all body fluids, including blood, saliva, urine, and cerebrospinal fluid [11]. CircRNA is a type of non-coding RNA with a covalently closed, uninterrupted loop [12]. Due to their special loop structure, circRNAs are relatively stable and not easily degraded when compared to linear RNAs [13]. Moreover, circRNAs are enriched in exosomes, and their expression remarkably changes under physiological or pathological conditions [14, 15]. These studies suggest that circRNAs in the exosomes of body fluids potentially represent novel biomarkers for monitoring cancer progression and predicting prognosis [16].
In this review, we summarize the biological functions of exosomal circRNAs and their significance in cancer progression. We also review the potential clinical applications of exosomal circRNAs as biomarkers in cancer diagnosis, disease judgement, and prognosis observation. In addition, we discuss the potential value of exosome-based circRNA delivery for targeted cancer treatment.

Exosomes

Exosome is one kind of extracellular vehicles with a spherical bilayer membrane structure and a diameter of approximately 50–150 nm [17] (Fig. 1). Traditionally, exosomes are formed from endosomal compartment invaginations and are secreted from the plasma membrane [18]. It was found that almost all types of cells can normally secrete exosomes, which play a crucial role in regulating communication among cells, organs, tissues, and cellular microenvironments. Exosomes contain various molecular constituents, such as circRNAs, microRNAs, DNAs, long non-coding RNAs (lncRNA), proteins, lipids, and so on [19]. The special lipid bilayer structure of exosomes ensures that these contents cannot be degraded and can be easily absorbed by recipient cells [20]. Several studies have reported that the contents of exosomes change remarkably under pathological conditions and that cells can regulate each other’s biological processes via exosomes [21, 22]. For example, tumor-derived exosomes can contribute to angiogenesis and tumor metastasis by delivering these contents to human vascular endothelial cells [23]. Cancer-associated fibroblasts (CAFs) promote chemotherapy resistance of tumor cells via delivering microRNAs through exosomes [24]. CAFs-derived exosomal lncRNA H19 promotes the stemness and chemoresistance of colorectal cancer (CRC) [25]. Moreover, exosomes are widely present in body fluids including blood, saliva, urine, cerebrospinal fluid, and synovial fluid, implying that they could serve as primary detection materials for liquid biopsy [26, 27]. For example, Lydia et al. reported the role of exosomes and circulating miRNAs as a source of liquid biopsy biomarkers in ovarian cancer diagnosis [28]. Xiao et al. showed that circulating plasma exosomal lncRNAs could serve as prospective biomarkers in acute myeloid leukemia [29]. Exosomal circ-SCL38A1 can distinguish bladder cancer patients from healthy individuals, with a diagnostic accuracy of 0.878 [30]. These studies indicate that exosomes, especially exosomal RNA molecules, play an important role in cancer diagnosis and treatment.

Biological functions of exosomal circRNAs in cancer

General characteristics of circRNA

CircRNA is a type of non-coding RNA formed by back-splicing in which a downstream splice donor site is joined with an upstream splice acceptor site to form a covalently closed, uninterrupted loop [31, 32] (Fig. 1). It was first reported by Dr. Hsu, and it was thought to have no valuable biological functions [33]. However, some recent studies revealed that more than 180,000 circRNAs are present in human transcriptomes and that their expression is associated with both normal cellular biological processes and disease progression [34, 35]. Based on their origin, circRNAs are classified into three major types: circular intronic RNAs, exon-intron circRNAs and exonic circRNAs [12, 36]. CircRNA were confirmed to play multiple roles in the biological processes through acting microRNAs or RNA binding proteins sponges to regulate target gene expression, regulating gene transcription or splicing and acting as templates for protein translation [3739]. Research has shown that dysregulated circRNAs are associated with the pathogenesis of many human diseases, particularly cancer. Such as, circRNAs has been reported contribute to cancer metastasis and immune escape [40, 41].
Recently, circRNAs were found to be localized to exosomes and capable of being transferred between cells via exosomes, thereby affecting tumor progression. For example, exosome-derived circ-TFDP2 promotes the proliferation of prostate cancer (PC) cells by inhibiting caspase-3-dependent cleavage of PARP1 and DNA damage [42]. Furthermore, Zhao et al. reported that exosome-mediated transfer of circ_0000338 enhances 5-fluorouracil resistance in CRC by regulating microRNA-217/485-3p [43]. Exosomal circ-GSE1 promoteS immune escape of hepatocellular carcinoma (HCC) by inducing the expansion of regulatory T cells via the regulation of miR-324-5p/TGFBR1/Smad3/Tregs axis [44]. Importantly, circRNAs have the potential to serve as biomarkers for cancer diagnosis due to their exosome localization and enrichment. Such as, exosomal circ_0004771 has been reported to be overexpressed in CRC, with area under the curve (AUC) values of 0.86 and 0.88 used to differentiate stage I/II CRC patients and CRC patients from healthy controls, respectively [45].

Exosomal circRNAs and proliferation of cancer cells

Various exosomal circRNAs have been reported to regulate the proliferation of cancer cells. For example, exosomal circ-PDK1 promotes pancreatic cancer (PCa) cell proliferation by sponging miR-628-3p to activate the BPTF/c-Myc axis during hypoxia [46]. Furthermore, exosomal circ-PRRX1 promotes cell proliferation in vitro and tumor growth in vivo by sponging miR-596 and activating the NF-κB signaling pathway in gastric cancer (GC) [47]. According to a previous study, cancer-derived exosomal circ-SERPINE2 is shuttled to tumor-associated macrophages (TAMs), and it enhances IL-6 secretion, leading to increased proliferation of breast cancer cells [48]. TAM-secreted exosomal circ_0020256 promotes the proliferation and progression of cholangiocarcinoma by modulating the miR-432-5p/E2F3 axis [49]. In renal cell carcinoma (RCC), tumor-derived exosomal circ-PPKCI increases tumor cell proliferation via the miR-545-3p/CCND1 signaling pathway [50]. In HCC, adipocyte-derived exosomal circ-DB promotes tumor growth by suppressing miR-34a and activating the USP7/Cyclin A2 signaling pathway [51]. Furthermore, hepatic stellate cell-derived exosomal circ-WDR25 facilitates HCC cell proliferation by regulating the miR-4474-3p/ALOX15 axis [52]. Exosomal circ-RACGAP1 recruiteS PTBP1 to induce RIF1 deacetylation, which then activates the Wnt/β-catenin pathway and prmotes the proliferation of non-small cell lung cancer (NSCLC) cells [53]. Interesting, multiple myeloma (MM)-derived exosomal circ-HNRNPU encodes a novel 603-aa peptide, which regulates the bone marrow microenvironment and promotes cell proliferation [54].
However, Circ-LPAR1 expression in plasma exosomes was decreased in CRC and it suppressed the tumor cell proliferation by suppressing the translation of oncogene BRD4 [55]. Exosomal circ-PTPRA induced CRC cell cycle arrest and inhibited cell proliferation by enriching the level of SMAD4 via competitively binding to miR-671-5p [56]. Chen et al. reported that circ_0051443 was transmitted from normal cells to HCC cells via exosomes and suppressed the cell proliferation and malignant biological progression [57]. In oral squamous cell carcinoma (OSCC), exosomal circ-GDI2 was downregulated and its upregulation weakened the cell proliferation by regulating miR-424-5p/SCAI axis [58]. In addition, Chen et al. reported that tumor-suppressive circ-RHOBTB3 could be excreted out of CRC cells via exosomes and circ-RHOBTB3 suppressed cell growth and metastasis [59]. Besides, exosomal circ-BTG2 or circ_0004658 secreted from RBP-J overexpressed-macrophages inhibited glioma or HCC progression by regulating miR-25-3p/PTEN or miR-499b-5p/JAM3 pathway, respectively [60, 61].

Exosomal circRNAs in metastasis

Exosomal circRNAs also have crucial function in regulating tumor metastasis. Circ-PACRGL is secreted by CRC cells, and acts as a miR-142-3p/ miR-506-3p sponge to activate the TGF-β-related signaling and promote metastasis [62]. In HCC, exosome-transmitted circMMP2 induced metastasis by sponging miR-136-5p and increasing MMP2 expression [63]. Moreover, exosomal circRAPGEF5 promoted the metastasis of lung adenocarcinoma through the miR-1236-3p/ZEB1 axis [64]. Tumor-derived exosomal circPSMA1 facilitated the metastasis in triple-negative breast cancer through the regulation of miR-637/Akt1/β-catenin regulatory axis [65]. Furthermore, exosomal circ_0081234 promoted the epithelial-mesenchymal transition (EMT) of PC cells [66]. Circ_0003028 induced EMT of HCC cells by exosome pathway via microRNA-498/ODC1 signaling [67]. And exosomal circ_007293 promoted EMT of papillary thyroid carcinoma cells via the regulation of the miR-653-5p/PAX6 axis [68]. In addition, the metastatic ability of HCC cells could be enhanced by transferring exosomal circRNA-100,338 to human umbilical vein endothelial cells (HUVECs), and promoting angiogenesis [69]. In GC, tumor-derived exosomal circ_0044366 promoted tube formation of HUVECs and enhanced cancer migration [70]. In ovarian cancer, exosomal circ-NFIX increased angiogenesis via miR-518a-3p/TRIM44/JAK/STAT1 pathway [71]. In esophageal squamous carcinoma, exosomal circ_0026611 contributed to LNM by interacting with N-α-acetyltransferase 10 (NAA10) to inhibit NAA10-mediated PROX1 acetylation [72].
However, Chen et al. reported that CAFs directly transferred circ-IFNGR2 into ovarian cancer cells and suppressed metastasis by activating miR-378/ST5 [73]. Moreover, bone marrow mesenchymal stem cell-derived exosomal circ_0006790 suppressed metastasis of pancreatic ductal adenocarcinoma by binding to CBX7 and regulating S100A11 DNA methylation [74]. Lin et al. found that exosomal circ_0072088 suppressed migration and invasion of hepatic carcinoma cells by regulating miR-375/MMP-16 [75]. In GC, the expression of exosomal circ-ITCH and circ-STAU2 were significantly downregulated, they suppressed the metastasis of GC by regulating miR-199a-5p/Klotho axis or miR-589/ CAPZA1 respectively [76, 77].

Exosomal circRNAs in drug resistance

Exosomal circRNAs were associated with the drug resistance of cancers. Exosomal circ_0076305 promoted cisplatin (DDP) resistance of non-small cell lung cancer cell (NSCLC) by enhancing ABCC1 expression [78]. Circ-VMP1 and circ_0014235 were elevated in DDP-resistant NSCLC exosomes, they facilitated DPP resistance by regulating miR-524-5p/METTL3/SOX2 or miR-520a-5p/CDK4 axis, respectively [79]. In osteosarcoma, exosomal circ_103801 conferred DDP resistance by increasing the expression of MRP1 and p-glycoprotein [80]. Warburg effect promoted temozolomide (TMZ) resistant glioma cells releasing exosomal circ_0072083, which induced TMZ resistance of sensitive cells by regulating miR-1252-5p/NANOG [81]. Circ-ZNF91 was remarkably increased in exosomes of PCa under hypoxia condition and promoted gemcitabine resistance of normoxic PCa cells via regulating miR-23b-3p/SIRT1 and enhancing glycolysis [82]. In neuroblastoma, exosomal circ-DLGAP4 enhanced glycolysis and doxorubicin resistance via miR-143-HK2 axis [83]. Oxaliplatin-resistant CRC cells delivered exosomal circ_0005963 to sensitive cells, promoted drug resistance by miR-122 sponging and PKM2 upregulation [84]. Furthermore, exosomal circ_0091741 promoted oxaliplatin resistance of GC cells via the miR-330-3p/ TRIM14/Dvl2/Wnt/β-catenin pathway [85]. Exosomal circ-SFMBT2 and circ-XIAP were upregulated in docetaxel-resistant PC cells, their knockdown enhanced docetaxel sensitivity by regulating miR-136-5p/TRIB1 or miR-1182/TDP52 axis [86, 87]. Pan et al. reveled that exosomal circATG4B induced oxaliplatin resistance in CRC by encoding a novel protein to increase autophagy [88].
However, Xu et al. found that exosomal circ-FBXW7 led resistant cells sensitive to oxaliplatin and suppressed oxaliplatin efflux via sponging miR-18b-5p in CRC [89]. Moreover, circRNA-CREIT could be packaged into exosomes and disseminate doxorubicin sensitivity among TNBC cells by destabilizing PKR [90]. In liver cancer, transarterial chemoembolization increased the expression of exosomal circ-G004213, which promoted DDP sensitivity by regulating miR-513b-5p/PRPF39 axis [91].
We summarized exosomal circRNAs and their function in tumorigenesis in Table 1.
Table 1
Exosomal circRNAs and their function in tumorigenesis
Tumor type
circRNA
Target molecules
Function
References
NSCLC
Circ-RACGAP1
Wnt/β-catenin
Proliferation
[53]
NSCLC
Circ_0076305
miR-186-5p/ABCC1
DDP resistance
[78]
NSCLC
Circ-VMP1
Circ_0014235
miR-524-5p/SOX2
miR-520a-5p/CDK4
DDP resistance
[79]
NSCLC
Circ-STAB2
miR-330-5p/PEAK1
Progression
[92, 93]
NSCLC
Circ_0007385
miR-1253/FAM83A
Proliferation, stemness
[94]
NSCLC
Circ_0008717
miR-1287-5p/PAK2
Tumorigenicity
[95]
NSCLC
Circ-ARHGAP10
miR-638/FAM83F
Progression
[96]
NSCLC
Circ_102481
miR-30a-5p/ROR1
EGFR-TKIs resistance
[97]
NSCLC
Circ-PLK1
miR-1294/HMGA1
Progression
[98]
NSCLC
Circ_0014235
miR-520a-5p/CDK4
DDP resistance
[99]
NSCLC
Circ_0002130
miR-498
Osimertinib resistance
[100]
NSCLC
Circ-CCDC134
miR-625-5p/NFAT5
Progression
[101]
Lung cancer
Circ-DNER
miR-139-5p/ITGB8
Paclitaxel resistance
[102]
LUAD
CircRAPGEF5
miR-1236-3p/ZEB1
Metastasis
[64]
CRC
Circ-PACRGL
miR-142-3p/miR-506-3p
Metastasis
[62]
CRC
Circ_0005963
miR-122
Oxaliplatin resistance
[84]
CRC
CircATG4B
Autophagy
Oxaliplatin resistance
[88]
CRC
Circ_0007334
miR/KLF12
Progression
[103]
CRC
Circ-COG2
miR-1305/TGF-β2/smad3
Progression
[104]
CRC
Circ-FMN2
miR-338-3p/MSI1
Progression
[105]
CRC
CircCOL1A2
miR-665/LASP1
Progression
[106]
CRC
Circ_0005615
miR-873-5p/FOSL2
Progression
[107]
CRC
Circ_0000395
miR-432-5p/MYH9
Progression
[108]
CRC
Circ-TUBGCP4
miR-146b-3p/PDK/Akt
Metastasis
[109]
CRC
Circ-PABPC1
miR-874/microRNA-1929
Metastasis
[110]
CRC
Circ-133a
miR-133a/GEF-H1/RhoA
Metastasis
[111]
HCC
Circ-DB
miR-34a/USP7/Cyclin A2
Proliferation
[51]
HCC
Circ-WDR25
miR-4474-3p/ALOX15
Proliferation
[52]
HCC
CircMMP2
miR-136-5p/MMP2
Metastasis
[63]
HCC
Circ_0003028
miR-498/ODC1
EMT process
[67]
HCC
Circ_100338
Angiogenesis
Metastasis
[69]
HCC
Circ-Cdr1as
miR-1270
Progression
[112]
HCC
Circ-TTLL5
miR-136-5p/KIAA1522
Metastasis
[113]
HCC
Circ-SORE
YBX1
Sorafenib resistance
[114]
HCC
Circ-PAK1
YAP
Lenvatinib resistance
[115]
HCC
Circ-ZFR
STAT3/NF-κB pathway
DDP resistance
[116]
Breast cancer
Circ-SERPINE2
/
Proliferation
[48]
Breast cancer
CircPSMA1
miR-637/Akt1/β-catenin
Metastasis
[65]
Breast cancer
Circ-MMP11
miR-153-3P/ANLN
Lapatinib resistance
[117]
Breast cancer
CCirc-UBE2D2
miR-200a-3p
Tamoxifen resistance
[118]
Breast cancer
Circ-CARM1
miR-1252-5p/PFKFB2
Glycolysis, progression
[119]
Breast cancer
Circ-EGFR
miR-1299/EGFR
Pirarubicin resistance
[120]
Gastric cancer
Circ-PRRX1
miR-596
Proliferation
[47]
Gastric cancer
Circ_0044366
/
Metastasis
[70]
Gastric cancer
Circ_0091741
miR-330-3p/ TRIM14
Oxaliplatin resistance
[85]
Gastric cancer
Circ-NRIP1
miR-145-5p/AKT1/mTOR
Metastasis
[121]
Gastric cancer
Circ_0001789
miR-140-3p/PAK2
Progression
[122]
Gastric cancer
Circ_0063562
miR-449a/SHMT2
DDP resistance
[123]
Gastric cancer
Circ-PVT1
miR-301-5p/YAP1
DDP resistance
[124]
Gastric cancer
Circ-LDLRAD3
miR-588/SOX5
DDP resistance
[125]
Gastric cancer
Circ_0032821
miR-515-5p/SOX9
Oxaliplatin resistance
[126]
Glioma
Circ_0072083
miR-1252-5p/NANOG
TMZ resistance
[81]
Glioma
Circ-WDR62
miR-370-3p/MGMT
TMZ resistance
[127]
Glioma
Circ-GLS3
miR − 548 m/MED31
TMZ resistance
[128]
Glioma
Circ_0043949
miR-876-3p/ITGA1
TMZ resistance
[129]
Glioblastoma
Circ-AHCY
miR-1294/ Wnt/β-catenin
Proliferation
[130]
Glioblastoma
Circ_0012381
miR-340-5p/CCL2/CCR2
Proliferation
[131]
Glioblastoma
Circ-KIF18A
FOXC2/PI3K/AKT
Angiogenesis
[132]
Prostate cancer
Circ_0081234
/
EMT process
[66]
Prostate cancer
Circ-SFMBT2
miR-136-5p/TRIB1
Docetaxel resistance
[86]
Prostate cancer
Circ-XIAP
miR-1182/TDP52
Docetaxel resistance
[87]
Prostate cancer
Circ-KDM4A
miR-338-3p/CUL4B
Malignancy
[133]
Ovarian cancer
Circ-NFIX
miR-518a-3p/TRIM44
Angiogenesis
[71]
Ovarian cancer
Circ-PIP5K1A
miR-942/NFIB
DDP resistance
[134]
Ovarian cancer
Circ-Foxp1
miR-22/miR-150-3p
DDP resistance
[135]
Ovarian cancer
Circ_0007841
miR-532-5p/NFIB
DDP resistance
[136]
PCa
Circ-PDK1
miR-628-3p/BPTF/c-Myc
Proliferation
[46]
PCa
Circ-ZNF91
miR-23b-3p/SIRT1
Gemcitabine resistance
[82]
PCa
Circ-IARS
miR-122
Metastasis
[137]
EC
Circ_0000337
miR-337-3p
DDP resistance
[138]
CCA
Circ_0020256
miR-432-5p/E2F3
Proliferation
[49]
RCC
Circ-PRKCI
miR-545-3p/CCND1
Proliferation
[50]
MM
Circ-HNRNPU
/
Proliferation
[54]
PTC
Circ_007293
miR-653-5p/PAX6
EMT process
[68]
ESCC
Circ_0026611
/
LNM
[72]
Osteosarcoma
Circ_103801
/
DDP resistance
[80]
Neuroblastoma
Circ-DLGAP4
miR-143-HK2
Doxorubicin resistance
[83]
Cervical cancer
Circ_0074269
miR-485-5p/TUFT1
DDP resistance
[139]
Melanoma
Circ_0001005
miRs sponges
Vemurafenib resistance
[140]
NPC
Circ-PARD3
miR-579-3p/SIRT1
Cisplatin resistance
[141]
CCA
Circ-CCAC1
EZH2
Angiogenesis
[142]

Exosomal circRNAs in tumor immunity

Exosomal circRNAs mediate the communication between tumor cells and immune cells (Fig. 2). In bladder cancer, exosome-derived circ-TRPS1 promotes CD8 + T cell exhaustion and the malignant phenotype by sponging miR-141-3p [143]. In NSCLC, upregulated plasma exosomal circ-USP7 inhibites CD8 + T cell function by sponging miR-934 and increasing SHP2 expression [144]. In LUAD, exosomal circ_002178 can be delivered to CD8 + T cells to induce PD1 expression and T cell exhaustion [145]. In ovarian cancer, exosomal circ-0001068 can be delivered to T cells and induced PD1 expression by sponging miR-28-5p [146]. In HCC, exosomal circ-CCAR1 promotes CD8 + T cell dysfunction by stabilizing the PD1 protein [147]. In OSCC, the transfer of circ_0069313 to Treg cells promotes immune escape by inhibiting miR-325-3p-induced Foxp3 degradation [148]. Moreover, CAF-derived exosomal circ-EIF3K increases the PD-L1 expression in CRC [149].
In NSCLC, exosomal circ-SHKBP1 or circ-FARSA promotes M2 polarization and cancer progression via the miR-1294/PKM2 or PTEN/PI3K/AKT pathway [150, 151]. In glioma, exosomal circ-NEL3 induces macrophage immunosuppressive polarization by stabilizing the oncogenic protein IGF2BP3 [152]. In LUAD, exosomal circ-ZNF451 restrains anti-PD1 treatment by polarizing macrophages and complexing with TRIM56 and FXR1 [153]. In breast cancer, exosomal circ_0001142 is released by cancer cells under endoplasmic reticulum stress, and it induces M2 polarization of macrophages [154]. In RCC, exosomal circ-SAFB2 reshapes the tumor environment, mediates M2 macrophage polarization, and promotes tumor progression [155]. In esophageal squamous cell carcinoma, tumor-derived exosomal circ_0048117 facilitates M2 macrophage polarization by regulating microRNA-140/TLR4 axis [156].
In HCC, cancer cells secrete exosomal circ-UHRF1, which induces natural killer cell exhaustion and promotes immune therapy resistance by regulating the miR-449c-5p/TIM3 axis [157]. CRC-derived exosomal circ-PACRGL regulates the differentiation of N1/N2 neutrophils [62]. Wang et al. reported that upregulated expression of plasma exosomal circ-ADAMTS6 is positively related to neutrophil extracellular traps in cholangiocarcinoma [158].

Potential clinical applications of exosomal circRNAs

Exosomal circRNAs in cancer diagnosis

CircRNAs have a special stable tertiary structure, and it has been reported that their expression is not significantly altered after 24 h of incubation at room temperature [14]. Furthermore, circRNAs were found to be dysregulated under pathological conditions and enriched in exosomes, which could be detected in body fluids such as blood, serum, urine, saliva, and cerebrospinal fluid [14, 15]. These features indicate that exosomal circRNAs can serve as biomarkers for cancer diagnosis. Xu et al. found that the expression of circ_0109046 and circ_0002577 were higher in exosomes isolated from serum samples of patients with stage III endometrial adenocarcinoma compared to healthy controls [159]. Xu et al. reported that circ-SHKBP1 is a promising circulating biomarker for GC diagnosis and prognosis due to its upregulation in serum and positive relationship with advanced TNM stage and poor survival [160]. Deng et al. reported that oral squamous cell carcinoma patients with higher expression of exosomal circ_047733 showed a lower risk of LNM [161]. Plasma exosome-derived circ_0055202, circ_0074920, and circ_0043722 are upregulated in glioblastoma multiforme and associated with tumor progression [162]. Furthermore, Hong et al. revealed that circ_0006220 and circ_0001666 are highly expressed in exosomes in the plasma of PCa patients compared to healthy controls and that they are associated LNM and tumor size. The AUC values were 0.7817 for circ_0006220, 0.8062 for circ_0001666, and 0.884 for the combined diagnosis [163]. The expressions of circ_0001492, circ_0001439, and circ_0000896 were significantly higher in the serum exosomes of LUAD patients, and the combination of these exosomal circRNAs had diagnostic sensitivity and specificity with an AUC value of 0.805 [164]. Furthermore, circ_0028861 was identified as a novel biomarker for HCC diagnosis, with an AUC of 0.79, and was capable of detecting small (AUC = 0.81), early-stage (AUC = 0.82), and AFP-negative (AUC = 0.78) tumors [165]. What’s more, exosomal circ_0015286 has an oncogenic function in GC, and its expression is closely associated with tumor size, TNM stage, LNM, and overall survival of GC patients [166]. Besides, clinical data have shown that exosomal circ_0000437 is enriched in the serum of GC patients and associated with LNM [167]. In addition, Wang et al. identified circ-SLC38A1 in the serum exosomes of bladder cancer patients, which could distinguish bladder cancer patients from healthy individuals with a diagnostic accuracy of 0.878 [30].
Other exosomal circRNAs that could serve as potential biomarkers for cancer diagnosis are summarized in Table 2.
Table 2
Exosomal circRNAs in body fluids for cancer diagnosis
Cancer
circRNAs
Level
Function
References
CRC
Circ-LPAR1
Down
Diagnostic biomarker (AUC 0.875)
[55]
CRC
Circ-GAPVD1
Up
Diagnostic biomarker (AUC 0.7662)
[168]
CRC
Circ-HIPK3
Up
Diagnostic biomarker (AUC 0.771)
[169]
CRC
Circ-PNN
Up
Early-stage diagnosis (AUC 0.854)
[170]
GC
Circ_0015286
Up
Diagnostic biomarker
[166]
GC
Circ_0000437
Up
Associated with LNM
[167]
GC
Circ-CDR1as
Up
Diagnostic biomarker (AUC 0.536)
[171]
GC
Circ_0065149
Down
Early diagnosis and prognosis prediction (AUC 0.64)
[172]
GC
Circ-KIA1244
Down
TNM stage and lymphatic metastasis (AUC 0.7481)
[173]
GC
Circ_0000419
Down
Diagnostic biomarker (AUC 0.84)
[174]
BC
Circ-MMP11
Up
Diagnostic biomarker (AUC 0.9444)
[117]
BC
Circ-HIF1A
Up
Diagnostic biomarker (AUC 0.897)
[175]
BC
Circ_0000615
Up
Diagnostic biomarker (AUC 0.904)
[176]
NSCLC
Circ_0047921, Circ_0056285, Circ_0007761
-
Diagnostic biomarker in the Chinese population (AUC 0.89, 0.820)
[177]
NSCLC
Circ_0048856
Up
Diagnostic biomarker (AUC 0.943)
[178]
NSCLC
Circ_0069313
Up
Diagnostic biomarker (AUC 0.749)
[179]
NSCLC
Circ-ERBB2IP
Up
Positively correlated with malignant (AUC 0.9168)
[180]
LUAD
Circ_0001492, Circ_0001439, Circ_0000896
Up
Diagnostic biomarker (AUC 0.805)
[164]
LUAD
Circ_0056616
Up
Biomarker for lymph node metastasis (AUC 0.812)
[181]
LUAD
Circ_0013958
Up
TNM stage and lymphatic metastasis (AUC 0.815)
[182]
LUSC
Circ_0014235, Circ_0025580
Up
Diagnostic biomarker (AUC 0.8)
[183]
Lung cancer
Circ_0002490, Circ_0087357, Circ_0004891, Circ_0074368
Down
Diagnostic biomarker (AUC 0.833, 0.793, 0.773, 0.730)
[184]
HCC
Circ_0051443
Down
Diagnostic biomarker (AUC 0.8089)
[57]
HCC
Circ_0028861
Down
Diagnostic biomarker
[165]
HCC
Circ-SMARCA5
Down
Diagnostic biomarker (AUC 0.862)
[185]
HCC
Circ_0006602
Up
Diagnostic biomarker (AUC 0.907)
[186]
HCC
Circ_0004001, Circ_0004123, Circ_0075792
Positively correlated with the TNM stage and tumor size
[187]
ESCC
Circ_0026611
Up
Lymph node-metastatic biomarker (AUC 0.724)
[188]
ESCC
Circ_0001946
Up
Predict the recurrence and prognosis (AUC 0.894)
[189]
MM
Circ-MYC
Up
Recurrence and Bortezomib resistance (AUC 0.924)
[190]
Ovarian
Circ_0001068
Up
Diagnostic biomarker (AUC 0.9697)
[146]
AC
Circ_0109049
Circ_0002577
Up
Diagnostic stage III biomarker
[159]
OSCC
Circ_047733
Down
Negatively with LNM
[161]
GBM
Circ_0055202, Circ_0074920, Circ_0043722
Up
Predict the tumor progression
[162]
PCa
Circ_0006220 Circ_0001666
Up
Diagnostic biomarker (AUC 0.884)
[163]

Exosome-based circRNA delivery for cancer therapy

Exosomes can transport RNA molecules and deliver therapeutic drugs to cancer cells with good histocompatibility, high efficiency, and low cytotoxicity. Researchers have reported that some circRNAs have tumor suppressor functions, and the therapeutic delivery of exosomal circRNAs could suppress the proliferation, metastasis, drug resistance and progression of malignant tumors. Circ-EPB41L2 is downregulated in the exosomes of CRC patients, and exosome-mediated circ-EPB41L2 suppresses tumor progression by regulating the PTEN/AKT signaling pathway [191]. Zhang et al. reported that exosome-delivered circ-STAU2 inhibites the progression of GC by targeting the miR-589/CAPZA1 axis [77]. Moreover, Sang et al. reported that the exosomal transmission of circ-RELL1 suppresses the proliferation, invasion, and migration of GC cells [192]. Circ-DIDO1 is downregulated in GC, and circ-loaded, RGD-modified engineering exosomes significantly inhibit the proliferation, migration, and invasion of GC cells both in vivo and in vitro [193]. Furthermore, Circ-CREIT is aberrantly downregulated in doxorubicin-resistant TNBC cells and is associated with a poor prognosis. The exosomal transmission of circ-CREIT could disseminate doxorubicin sensitivity among these cells by destabilizing PKR [90]. Circ_0094343 is significantly downregulated in CRC, and exosome-carried circ_0094343 playes a tumor suppressor role and improves the chemosensitivity of tumor cells to 5-fluorouracil, oxaliplatin and doxorubicin [194].
Tumor microenvironment-associated cells also play tumor suppressor roles by delivering exosomal circRNAs to cancer cells. For example, CAF-derived exosomes deliver circ-IFNGR2 to ovarian cancer cells and inhibit malignant tumor progression by regulating the microRNA-378/ST5 axis [73]. Moreover, RBP-J-overexpressed- macrophage-derived exosomal circ-BTG2 or circ_0004658 inhibit glioma or HCC progression [60, 61]. Furthermore, Yao et al. reported that exosomal circ_0030167 derived from bone marrow-derived mesenchymal stem cells (BM-MSCs) exhibit significant tumor suppressor function in PCa by sponging microRNA-338-3p and targeting the Wif1/Wnt8/β-catenin axis [195]. BM-MSC-derived exosomal circ_0006790 inhibits growth, metastasis, and immune escape in pancreatic ductal adenocarcinoma [74].
Besides, Nanoparticles or exosomes mediated circRNAs silencing also a potential strategy for cancer treatment. For example, nanoparticles delivery si-circ-ROBO1 to hepatocellular carcinoma cells circ-ROBO1 inhibited tumor progression by modulating circ-ROBO1/miR-130a-5p/CCNT2 Axis[196]. And natural compound matrine blocked circ-SLC7A6 exosome secretion from CAFs, and then inhibited CRC cell proliferation and invasion[197]. These studies indicate that exosomal delivery of tumor-suppressing circRNAs or exosomal circRNAs-based engineering of exosomes or exosome circRNAs release inhibition may be novel cancer therapies.
The recent data reporter about “exosome-based circRNA delivery for cancer therapy” were summarized in Table 3.
Table 3
Exosome-based circRNA delivery for cancer therapy
Cancer
circRNAs
Source
Function
References
SCLC
Circ-SH3PXD2A
Circ-SH3PXD2A-overexpressing cells
Decreased chemoresistance and cell proliferation
[198]
Lung
Circ-RABL2B
Circ-RABL2B-overexpressing cells
Impoverished stemness, and promoted erlotinib sensitivity
[199]
CRC
Circ-PTPRA
Circ-PTPRA transfected cells
Inhibited tumorigenesis and promoted radiosensitivity
[56]
CRC
Circ-RHOBTB3
ASOs treated CRC
Inhibited CRC growth and metastasis
[59]
CRC
Circ-FBXW7
circ-FBXW7-transfected FHC cells
Ameliorated chemoresistance to oxaliplatin
[89]
CRC
Circ-EPB41L2
Circ-EPB41L2 transfected cells
Inhibited proliferation and metastasis
[191]
CRC
Circ_0094343
NCM460
Improved chemosensitivity
[194]
HCC
Circ_0051443
HL-7702 cell
Suppressed tumor progression
[57]
HCC
Circ_0004658
RBP-J-overexpressed- macrophage
Inhibited the progression
[61]
HCC
Circ_0072088
HCC cells
Suppressed the metastasis
[75]
HCC
Circ-G004213
/
Promoted cisplatin sensitivity
[91]
PDAC
Circ_0006790
BMSC
Inhibited growth, metastasis, and immune escape
[74]
PDAC
Circ_0012634
Pancreatic ductal epithelial cel1l
Restrained PDAC progression
[200]
Gastric
Circ-ITCH
Circ-ITCH-transfected cells
Suppressed the metastasis
[76]
Gastric
CircSTAU2
GES-1 cells
Inhibited the progression
[77]
Gastric
Circ_0017252
GC cells
Inhibited macrophage M2 polarization
[201]
Gastric
Circ-RELL1
/
Suppressed the malignant behavior
[192]
Gastric
Circ-DIDO1
Circ-DIDO1 transfected 293T
Suppressed tumor progression
[193]
Glioma
Circ-BTG2
RBP-J-overexpressed- macrophage
Inhibited the progression
[60]
Ovarian
CircIFNGR2
CAF
Inhibited the malignant progression
[73]
PCa
Circ_0030167
BMSCs
Inhibited the stemness
[195]
TNBC
Circ-CREIT
/
Overcome doxorubicin resistance
[90]
OSCC
Cicr-GDI2
Circ-GDI2-transfected CAL27 cells
Suppressed tumor progression
[58]
RCC
Circ-SPIRE1
Circ-SPIRE1 over-expressed cells
Suppressed angiogenesis and metastasis
[202]
NPC
Circ-FIP1L1
Guggulsterone treated HNE1 cells
Repressed HUVECs angiogenesis
[203]

Discussion and conclusion

In this review, we comprehensively summarized current knowledge about the crucial function of exosomal circRNAs in tumor cell proliferation, metastasis, drug resistance, and progression. Several studies have mainly focused their research on tumor-derived exosomal circRNAs, but cancer cells exist in a complex and comprehensive microenvironment, and tumor progression involves the participation of various types of cells. Further research needs to focus on the role of exosomal circRNAs that derived from CAF, TAM, and other immune cells in tumor initiation, development, and progression.
Although numerous studies have revealed the abundance and diverse contributions of exosomal circRNAs to tumorigenesis, many questions remain unanswered. CircRNAs are mainly synthesized and retained in the nucleus, and the regulatory mechanisms of exosomes localization of circRNAs are not fully understood. A recent study reported that N6-methyladenosine modification facilitates the cytoplasmic export of circRNAs [204], indicating that m6A modification may regulate the exosome sorting of circRNAs. Moreover, it has been reported that some RNA-binding proteins, such as Argonaute and mannose-binding lectin can bind to circRNAs [205], and exosome sorting of microRNAs is dependent on the ESCRT complex, with Ago2 being the critical protein [206], indicating that exosome-associated RBPs may regulate the exosome sorting of circRNAs. In addition, hnRNPA2B1 mediates the exosome sorting of circ-NEIL3 and circ-CCAR1 [147, 152]. Additional studies are needed to illustrate the regulatory mechanisms of exosomes localization of circRNAs.
Currently, a large number of studies have proved that exosomal circRNAs have a potential value in cancer diagnosis and prognosis observation due to their highly conserved structure and tissue-specific expression patterns. More experimental verification, larger cohorts, and sufficient theoretical results are warranted to prove the clinical applicable of exosomal circRNAs as biomarkers. Besides, research into engineered exosomes as an approach for targeted cancer treatment is still in its infancy, future efforts should focus on identifying specific exosomal circRNAs and developing efficient and safe engineered exosomes for clinical application.
In conclusion, we comprehensively reviewed current knowledge about the crucial function of exosomal circRNAs in cancer progression, discussed their potential value in cancer diagnosis and prognosis observation, and described the potential utility of engineered exosomes for targeted cancer treatment.

Acknowledgements

We thank Bullet Edits Limited for the linguistic editing and proofreading of the manuscript.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Collaborators GBDRF. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1659–724.CrossRef Collaborators GBDRF. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1659–724.CrossRef
3.
4.
Zurück zum Zitat Reimers N, Pantel K. Liquid biopsy: novel technologies and clinical applications. Clin Chem Lab Med. 2019;57(3):312–6.PubMedCrossRef Reimers N, Pantel K. Liquid biopsy: novel technologies and clinical applications. Clin Chem Lab Med. 2019;57(3):312–6.PubMedCrossRef
5.
Zurück zum Zitat Alix-Panabieres C, Pantel K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 2021;11(4):858–73.PubMedCrossRef Alix-Panabieres C, Pantel K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 2021;11(4):858–73.PubMedCrossRef
6.
Zurück zum Zitat Mathai RA, et al. Potential utility of liquid biopsy as a diagnostic and prognostic tool for the assessment of solid tumors: implications in the precision oncology. J Clin Med. 2019;8(3):373.PubMedPubMedCentralCrossRef Mathai RA, et al. Potential utility of liquid biopsy as a diagnostic and prognostic tool for the assessment of solid tumors: implications in the precision oncology. J Clin Med. 2019;8(3):373.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Heitzer E, et al. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20(2):71–88.PubMedCrossRef Heitzer E, et al. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20(2):71–88.PubMedCrossRef
8.
Zurück zum Zitat Pardini B, et al. Noncoding RNAs in extracellular fluids as cancer biomarkers: the new frontier of liquid biopsies. Cancers (Basel). 2019;11(8):1170.PubMedPubMedCentralCrossRef Pardini B, et al. Noncoding RNAs in extracellular fluids as cancer biomarkers: the new frontier of liquid biopsies. Cancers (Basel). 2019;11(8):1170.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Kok VC, Yu CC. Cancer-derived exosomes: their role in cancer biology and biomarker development. Int J Nanomed. 2020;15:8019–36.CrossRef Kok VC, Yu CC. Cancer-derived exosomes: their role in cancer biology and biomarker development. Int J Nanomed. 2020;15:8019–36.CrossRef
11.
Zurück zum Zitat Yu W, et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol. 2021;32(4):466–77.PubMedCrossRef Yu W, et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol. 2021;32(4):466–77.PubMedCrossRef
12.
Zurück zum Zitat Yi Q, et al. Circular RNAs in chemotherapy resistance of lung cancer and their potential therapeutic application. IUBMB Life. 2023;75(3):225–37.PubMedCrossRef Yi Q, et al. Circular RNAs in chemotherapy resistance of lung cancer and their potential therapeutic application. IUBMB Life. 2023;75(3):225–37.PubMedCrossRef
14.
15.
17.
Zurück zum Zitat Huang T, et al. The roles of extracellular vesicles in gastric cancer development, microenvironment, anti-cancer drug resistance, and therapy. Mol Cancer. 2019;18(1):62.PubMedPubMedCentralCrossRef Huang T, et al. The roles of extracellular vesicles in gastric cancer development, microenvironment, anti-cancer drug resistance, and therapy. Mol Cancer. 2019;18(1):62.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Baietti MF, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677–85.PubMedCrossRef Baietti MF, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677–85.PubMedCrossRef
20.
Zurück zum Zitat van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.PubMedCrossRef van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.PubMedCrossRef
21.
Zurück zum Zitat Wu P, et al. Exosomes derived from hypoxic glioma cells reduce the sensitivity of glioma cells to temozolomide through carrying miR-106a-5p. Drug Des Devel Ther. 2022;16:3589–98.PubMedPubMedCentralCrossRef Wu P, et al. Exosomes derived from hypoxic glioma cells reduce the sensitivity of glioma cells to temozolomide through carrying miR-106a-5p. Drug Des Devel Ther. 2022;16:3589–98.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Elewaily MI, Elsergany AR. Emerging role of exosomes and exosomal microRNA in cancer: pathophysiology and clinical potential. J Cancer Res Clin Oncol. 2021;147(3):637–48.PubMedCrossRef Elewaily MI, Elsergany AR. Emerging role of exosomes and exosomal microRNA in cancer: pathophysiology and clinical potential. J Cancer Res Clin Oncol. 2021;147(3):637–48.PubMedCrossRef
23.
24.
Zurück zum Zitat Hu JL, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 2019;18(1):91.PubMedPubMedCentralCrossRef Hu JL, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 2019;18(1):91.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Ren J, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 2018;8(14):3932–48.PubMedPubMedCentralCrossRef Ren J, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 2018;8(14):3932–48.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Cao Y, et al. Exosomes and cancer immunotherapy: a review of recent cancer research. Front Oncol. 2022;12:1118101.PubMedCrossRef Cao Y, et al. Exosomes and cancer immunotherapy: a review of recent cancer research. Front Oncol. 2022;12:1118101.PubMedCrossRef
27.
Zurück zum Zitat Zhou Y, et al. The role of exosomes and their applications in Cancer. Int J Mol Sci. 2021;22(22):12204.CrossRef Zhou Y, et al. The role of exosomes and their applications in Cancer. Int J Mol Sci. 2021;22(22):12204.CrossRef
28.
Zurück zum Zitat Giannopoulou L, et al. Liquid biopsy in ovarian cancer: the potential of circulating miRNAs and exosomes. Transl Res. 2019;205:77–91.PubMedCrossRef Giannopoulou L, et al. Liquid biopsy in ovarian cancer: the potential of circulating miRNAs and exosomes. Transl Res. 2019;205:77–91.PubMedCrossRef
29.
Zurück zum Zitat Xiao Q, et al. Circulating plasma exosomal long non-coding RNAs LINC00265, LINC00467, UCA1, and SNHG1 as biomarkers for diagnosis and treatment monitoring of acute myeloid leukemia. Front Oncol. 2022;12: 1033143.PubMedPubMedCentralCrossRef Xiao Q, et al. Circulating plasma exosomal long non-coding RNAs LINC00265, LINC00467, UCA1, and SNHG1 as biomarkers for diagnosis and treatment monitoring of acute myeloid leukemia. Front Oncol. 2022;12: 1033143.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Li P, et al. Characterization of circSCL38A1 as a novel oncogene in bladder cancer via targeting ILF3/TGF-beta2 signaling axis. Cell Death Dis. 2023;14(1):59.PubMedPubMedCentralCrossRef Li P, et al. Characterization of circSCL38A1 as a novel oncogene in bladder cancer via targeting ILF3/TGF-beta2 signaling axis. Cell Death Dis. 2023;14(1):59.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Meng X, et al. Circular RNA: an emerging key player in RNA world. Brief Bioinform. 2017;18(4):547–57.PubMed Meng X, et al. Circular RNA: an emerging key player in RNA world. Brief Bioinform. 2017;18(4):547–57.PubMed
33.
Zurück zum Zitat Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979;280(5720):339–40.PubMedCrossRef Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979;280(5720):339–40.PubMedCrossRef
34.
Zurück zum Zitat Dong R, et al. CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison. Genomics Proteom Bioinf. 2018;16(4):226–33.CrossRef Dong R, et al. CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison. Genomics Proteom Bioinf. 2018;16(4):226–33.CrossRef
35.
Zurück zum Zitat Arnaiz E, et al. CircRNAs and cancer: biomarkers and master regulators. Semin Cancer Biol. 2019;58:90–9.PubMedCrossRef Arnaiz E, et al. CircRNAs and cancer: biomarkers and master regulators. Semin Cancer Biol. 2019;58:90–9.PubMedCrossRef
36.
Zurück zum Zitat Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17(4):205–11.PubMedCrossRef Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17(4):205–11.PubMedCrossRef
38.
Zurück zum Zitat Kristensen LS, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91.PubMedCrossRef Kristensen LS, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91.PubMedCrossRef
39.
Zurück zum Zitat Wang C, et al. CircRNAs in lung cancer - biogenesis, function and clinical implication. Cancer Lett. 2020;492:106–15.PubMedCrossRef Wang C, et al. CircRNAs in lung cancer - biogenesis, function and clinical implication. Cancer Lett. 2020;492:106–15.PubMedCrossRef
40.
41.
42.
Zurück zum Zitat Ding L, et al. Exosome-derived circTFDP2 promotes prostate cancer progression by preventing PARP1 from caspase-3-dependent cleavage. Clin Transl Med. 2023;13(1):e1156.PubMedPubMedCentralCrossRef Ding L, et al. Exosome-derived circTFDP2 promotes prostate cancer progression by preventing PARP1 from caspase-3-dependent cleavage. Clin Transl Med. 2023;13(1):e1156.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Zhao K, et al. Exosome-mediated transfer of circ_0000338 enhances 5-fluorouracil resistance in colorectal cancer through regulating microRNA 217 (miR-217) and miR-485-3p. Mol Cell Biol. 2021;41(5):e00517–20.PubMedPubMedCentralCrossRef Zhao K, et al. Exosome-mediated transfer of circ_0000338 enhances 5-fluorouracil resistance in colorectal cancer through regulating microRNA 217 (miR-217) and miR-485-3p. Mol Cell Biol. 2021;41(5):e00517–20.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Huang M, Huang X, Huang N. Exosomal circGSE1 promotes immune escape of hepatocellular carcinoma by inducing the expansion of regulatory T cells. Cancer Sci. 2022;113(6):1968–83.PubMedPubMedCentralCrossRef Huang M, Huang X, Huang N. Exosomal circGSE1 promotes immune escape of hepatocellular carcinoma by inducing the expansion of regulatory T cells. Cancer Sci. 2022;113(6):1968–83.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Pan B, et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet. 2019;10: 1096.PubMedPubMedCentralCrossRef Pan B, et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet. 2019;10: 1096.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Lin J, et al. Hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation by modulating miR-628-3p/BPTF axis and degrading BIN1. J Hematol Oncol. 2022;15(1):128.PubMedPubMedCentralCrossRef Lin J, et al. Hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation by modulating miR-628-3p/BPTF axis and degrading BIN1. J Hematol Oncol. 2022;15(1):128.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat He Y, et al. Exosomal circPRRX1 functions as a ceRNA for miR-596 to promote the proliferation, migration, invasion, and reduce radiation sensitivity of gastric cancer cells via the upregulation of NF-kappaB activating protein. Anticancer Drugs. 2022;33(10):1114–25.PubMedCrossRef He Y, et al. Exosomal circPRRX1 functions as a ceRNA for miR-596 to promote the proliferation, migration, invasion, and reduce radiation sensitivity of gastric cancer cells via the upregulation of NF-kappaB activating protein. Anticancer Drugs. 2022;33(10):1114–25.PubMedCrossRef
48.
Zurück zum Zitat Zhou B, et al. Targeting tumor exosomal circular RNA cSERPINE2 suppresses breast cancer progression by modulating MALT1-NF. J Exp Clin Cancer Res. 2023;42(1):48.PubMedPubMedCentralCrossRef Zhou B, et al. Targeting tumor exosomal circular RNA cSERPINE2 suppresses breast cancer progression by modulating MALT1-NF. J Exp Clin Cancer Res. 2023;42(1):48.PubMedPubMedCentralCrossRef
49.
50.
Zurück zum Zitat Qian Y et al. Tumor cell-derived exosomal circ-PRKCI promotes proliferation of renal cell carcinoma via regulating miR-545-3p/CCND1. Axis Cancers (Basel). 2022; 15(1). Qian Y et al. Tumor cell-derived exosomal circ-PRKCI promotes proliferation of renal cell carcinoma via regulating miR-545-3p/CCND1. Axis Cancers (Basel). 2022; 15(1).
51.
Zurück zum Zitat Zhang H, et al. Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene. 2019;38(15):2844–59.PubMedCrossRef Zhang H, et al. Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene. 2019;38(15):2844–59.PubMedCrossRef
52.
Zurück zum Zitat Liu L, et al. Hepatic stellate cell exosome-derived circWDR25 promotes the progression of hepatocellular carcinoma via the miRNA-4474-3P-ALOX-15 and EMT axes. Biosci Trends. 2022;16(4):267–81.PubMedCrossRef Liu L, et al. Hepatic stellate cell exosome-derived circWDR25 promotes the progression of hepatocellular carcinoma via the miRNA-4474-3P-ALOX-15 and EMT axes. Biosci Trends. 2022;16(4):267–81.PubMedCrossRef
53.
Zurück zum Zitat Xiong H, et al. circ_rac GTPase-activating protein 1 facilitates stemness and metastasis of non-small cell lung cancer via polypyrimidine tract-binding protein 1 recruitment to promote Sirtuin-3-mediated replication timing regulatory factor 1 deacetylation. Lab Invest. 2023;103(1): 100010.PubMedCrossRef Xiong H, et al. circ_rac GTPase-activating protein 1 facilitates stemness and metastasis of non-small cell lung cancer via polypyrimidine tract-binding protein 1 recruitment to promote Sirtuin-3-mediated replication timing regulatory factor 1 deacetylation. Lab Invest. 2023;103(1): 100010.PubMedCrossRef
54.
Zurück zum Zitat Tang X, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85.PubMedPubMedCentralCrossRef Tang X, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Zheng R, et al. Exosomal circLPAR1 functions in colorectal cancer diagnosis and tumorigenesis through suppressing BRD4 via METTL3-eIF3h interaction. Mol Cancer. 2022;21(1):49.PubMedPubMedCentralCrossRef Zheng R, et al. Exosomal circLPAR1 functions in colorectal cancer diagnosis and tumorigenesis through suppressing BRD4 via METTL3-eIF3h interaction. Mol Cancer. 2022;21(1):49.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Yang Y, Yang N, Jiang J. Exosomal circ_PTPRA inhibits tumorigenesis and promotes radiosensitivity in colorectal cancer by enriching the level of SMAD4 via competitively binding to miR-671-5. Cytotechnology. 2022;74(1):51–64.PubMedPubMedCentralCrossRef Yang Y, Yang N, Jiang J. Exosomal circ_PTPRA inhibits tumorigenesis and promotes radiosensitivity in colorectal cancer by enriching the level of SMAD4 via competitively binding to miR-671-5. Cytotechnology. 2022;74(1):51–64.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Chen W, et al. Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression. Cancer Lett. 2020;475:119–28.PubMedCrossRef Chen W, et al. Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression. Cancer Lett. 2020;475:119–28.PubMedCrossRef
58.
Zurück zum Zitat Zhang Y, et al. Exosomal CircGDI2 suppresses oral squamous cell carcinoma progression through the regulation of MiR-424-5p/SCAI Axis. Cancer Manag Res. 2020;12:7501–14.PubMedPubMedCentralCrossRef Zhang Y, et al. Exosomal CircGDI2 suppresses oral squamous cell carcinoma progression through the regulation of MiR-424-5p/SCAI Axis. Cancer Manag Res. 2020;12:7501–14.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Chen C, et al. Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness. Mol Cancer. 2022;21(1):46.PubMedPubMedCentralCrossRef Chen C, et al. Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness. Mol Cancer. 2022;21(1):46.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Shi L, et al. Exosomal circRNA BTG2 derived from RBP-J overexpressed-macrophages inhibits glioma progression via miR-25-3p/PTEN. Cell Death Dis. 2022;13(5):506.PubMedPubMedCentralCrossRef Shi L, et al. Exosomal circRNA BTG2 derived from RBP-J overexpressed-macrophages inhibits glioma progression via miR-25-3p/PTEN. Cell Death Dis. 2022;13(5):506.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Zhang L, et al. Exosomal hsa_circ_0004658 derived from RBPJ overexpressed-macrophages inhibits hepatocellular carcinoma progression via miR-499b-5p/JAM3. Cell Death Dis. 2022;13(1):32.PubMedPubMedCentralCrossRef Zhang L, et al. Exosomal hsa_circ_0004658 derived from RBPJ overexpressed-macrophages inhibits hepatocellular carcinoma progression via miR-499b-5p/JAM3. Cell Death Dis. 2022;13(1):32.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Shang A, et al. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miRi>-506-3p- TGF-beta1 axis. Mol Cancer. 2020;19(1):117.PubMedPubMedCentralCrossRef Shang A, et al. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miRi>-506-3p- TGF-beta1 axis. Mol Cancer. 2020;19(1):117.PubMedPubMedCentralCrossRef
63.
64.
Zurück zum Zitat Zhou H, et al. CircRAPGEF5 promotes the proliferation and metastasis of lung adenocarcinoma through the miR-1236-3p/ZEB1 Axis and serves as a potential biomarker. Int J Biol Sci. 2022;18(5):2116–31.PubMedPubMedCentralCrossRef Zhou H, et al. CircRAPGEF5 promotes the proliferation and metastasis of lung adenocarcinoma through the miR-1236-3p/ZEB1 Axis and serves as a potential biomarker. Int J Biol Sci. 2022;18(5):2116–31.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Yang SJ, et al. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/beta-catenin (cyclin D1) axis. Cell Death Dis. 2021;12(5):420.PubMedPubMedCentralCrossRef Yang SJ, et al. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/beta-catenin (cyclin D1) axis. Cell Death Dis. 2021;12(5):420.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Zhang G, et al. Inhibition of circ_0081234 reduces prostate cancer tumor growth and metastasis via the miR-1/MAP 3 K1 axis. J Gene Med. 2022;24(8):e3376.PubMedCrossRef Zhang G, et al. Inhibition of circ_0081234 reduces prostate cancer tumor growth and metastasis via the miR-1/MAP 3 K1 axis. J Gene Med. 2022;24(8):e3376.PubMedCrossRef
67.
Zurück zum Zitat Zhang T, et al. Circular RNA circ_0003028 regulates cell development through modulating miR-498/ornithine decarboxylase 1 axis in hepatocellular carcinoma. Anticancer Drugs. 2023;34(4):507–18.PubMedCrossRef Zhang T, et al. Circular RNA circ_0003028 regulates cell development through modulating miR-498/ornithine decarboxylase 1 axis in hepatocellular carcinoma. Anticancer Drugs. 2023;34(4):507–18.PubMedCrossRef
68.
Zurück zum Zitat Lin Q, et al. Exosomal circular RNA hsa_circ_007293 promotes proliferation, migration, invasion, and epithelial-mesenchymal transition of papillary thyroid carcinoma cells through regulation of the microRNA-653-5p/paired box 6 axis. Bioengineered. 2021;12(2):10136–49.PubMedPubMedCentralCrossRef Lin Q, et al. Exosomal circular RNA hsa_circ_007293 promotes proliferation, migration, invasion, and epithelial-mesenchymal transition of papillary thyroid carcinoma cells through regulation of the microRNA-653-5p/paired box 6 axis. Bioengineered. 2021;12(2):10136–49.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Huang XY, et al. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 2020;39(1):20.PubMedPubMedCentralCrossRef Huang XY, et al. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 2020;39(1):20.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Li S, et al. Gastric cancer derived exosomes mediate the delivery of circRNA to promote angiogenesis by targeting miR-29a/VEGF axis in endothelial cells. Biochem Biophys Res Commun. 2021;560:37–44.PubMedCrossRef Li S, et al. Gastric cancer derived exosomes mediate the delivery of circRNA to promote angiogenesis by targeting miR-29a/VEGF axis in endothelial cells. Biochem Biophys Res Commun. 2021;560:37–44.PubMedCrossRef
71.
Zurück zum Zitat Ye H, et al. Exosomal circNFIX promotes angiogenesis in ovarian cancer via miR-518a-3p/TRIM44 axis. Kaohsiung J Med Sci. 2023;39(1):26–39.PubMedCrossRef Ye H, et al. Exosomal circNFIX promotes angiogenesis in ovarian cancer via miR-518a-3p/TRIM44 axis. Kaohsiung J Med Sci. 2023;39(1):26–39.PubMedCrossRef
72.
Zurück zum Zitat Yao W, et al. Exosomal circ_0026611 contributes to lymphangiogenesis by reducing PROX1 acetylation and ubiquitination in human lymphatic endothelial cells (HLECs). Cell Mol Biol Lett. 2023;28(1):13.PubMedPubMedCentralCrossRef Yao W, et al. Exosomal circ_0026611 contributes to lymphangiogenesis by reducing PROX1 acetylation and ubiquitination in human lymphatic endothelial cells (HLECs). Cell Mol Biol Lett. 2023;28(1):13.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Chen X, et al. Exosome-transmitted circIFNGR2 modulates ovarian cancer metastasis via miR-378/ST5 Axis. Mol Cell Biol. 2023;43(1):22–42.PubMedCrossRef Chen X, et al. Exosome-transmitted circIFNGR2 modulates ovarian cancer metastasis via miR-378/ST5 Axis. Mol Cell Biol. 2023;43(1):22–42.PubMedCrossRef
74.
Zurück zum Zitat Gao G, Wang L, Li C. Circ_0006790 carried by bone marrow mesenchymal stem cell-derived exosomes regulates S100A11 DNA methylation through binding to CBX7 in pancreatic ductal adenocarcinoma. Am J Cancer Res. 2022;12(5):1934–59.PubMedPubMedCentral Gao G, Wang L, Li C. Circ_0006790 carried by bone marrow mesenchymal stem cell-derived exosomes regulates S100A11 DNA methylation through binding to CBX7 in pancreatic ductal adenocarcinoma. Am J Cancer Res. 2022;12(5):1934–59.PubMedPubMedCentral
75.
Zurück zum Zitat Lin Y, et al. Tumor cell-derived exosomal Circ-0072088 suppresses migration and invasion of hepatic carcinoma cells through regulating MMP-16. Front Cell Dev Biol. 2021;9: 726323.PubMedPubMedCentralCrossRef Lin Y, et al. Tumor cell-derived exosomal Circ-0072088 suppresses migration and invasion of hepatic carcinoma cells through regulating MMP-16. Front Cell Dev Biol. 2021;9: 726323.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Wang Y, et al. Circular RNA ITCH suppresses metastasis of gastric cancer via regulating miR-199a-5p/Klotho axis. Cell Cycle. 2021;20(5–6):522–36.PubMedPubMedCentralCrossRef Wang Y, et al. Circular RNA ITCH suppresses metastasis of gastric cancer via regulating miR-199a-5p/Klotho axis. Cell Cycle. 2021;20(5–6):522–36.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Zhang C, et al. Exosome-delivered circSTAU2 inhibits the progression of gastric cancer by targeting the miR-589/CAPZA1 Axis. Int J Nanomed. 2023;18:127–42.CrossRef Zhang C, et al. Exosome-delivered circSTAU2 inhibits the progression of gastric cancer by targeting the miR-589/CAPZA1 Axis. Int J Nanomed. 2023;18:127–42.CrossRef
78.
Zurück zum Zitat Wang X, et al. Circular RNAcirc_0076305 promotes cisplatin (DDP) resistance of non-small cell lung cancer cells by regulating ABCC1 through miR-186-5p. Cancer Biother Radiopharm. 2021;38(5):293–304.PubMed Wang X, et al. Circular RNAcirc_0076305 promotes cisplatin (DDP) resistance of non-small cell lung cancer cells by regulating ABCC1 through miR-186-5p. Cancer Biother Radiopharm. 2021;38(5):293–304.PubMed
79.
Zurück zum Zitat Xie H, et al. Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug Deliv. 2022;29(1):1257–71.PubMedPubMedCentralCrossRef Xie H, et al. Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug Deliv. 2022;29(1):1257–71.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Pan Y, Lin Y, Mi C. Cisplatin-resistant osteosarcoma cell-derived exosomes confer cisplatin resistance to recipient cells in an exosomal circ_103801-dependent manner. Cell Biol Int. 2021;45(4):858–68.PubMedCrossRef Pan Y, Lin Y, Mi C. Cisplatin-resistant osteosarcoma cell-derived exosomes confer cisplatin resistance to recipient cells in an exosomal circ_103801-dependent manner. Cell Biol Int. 2021;45(4):858–68.PubMedCrossRef
81.
Zurück zum Zitat Ding C, et al. Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res. 2021;40(1):164.PubMedPubMedCentralCrossRef Ding C, et al. Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res. 2021;40(1):164.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Zeng Z, et al. Hypoxic exosomal HIF-1alpha-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene. 2021;40(36):5505–17.PubMedCrossRef Zeng Z, et al. Hypoxic exosomal HIF-1alpha-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene. 2021;40(36):5505–17.PubMedCrossRef
83.
Zurück zum Zitat Tan WQ, et al. Exosome-delivered circular RNA DLGAP4 induces chemoresistance via mir-143-HK2 axis in neuroblastoma. Cancer Biomark. 2022;34(3):375–84.PubMedCrossRef Tan WQ, et al. Exosome-delivered circular RNA DLGAP4 induces chemoresistance via mir-143-HK2 axis in neuroblastoma. Cancer Biomark. 2022;34(3):375–84.PubMedCrossRef
84.
Zurück zum Zitat Wang X, et al. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the mir-122-PKM2 axis in colorectal cancer. Mol Oncol. 2020;14(3):539–55.PubMedPubMedCentralCrossRef Wang X, et al. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the mir-122-PKM2 axis in colorectal cancer. Mol Oncol. 2020;14(3):539–55.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Chen Y, et al. Exosomal circ_0091741 promotes gastric cancer cell autophagy and chemoresistance via the miR-330-3pi>/TRIM14/Dvl2/Wnt/beta-catenin axis. Hum Cell. 2023;36(1):258–75.PubMedCrossRef Chen Y, et al. Exosomal circ_0091741 promotes gastric cancer cell autophagy and chemoresistance via the miR-330-3pi>/TRIM14/Dvl2/Wnt/beta-catenin axis. Hum Cell. 2023;36(1):258–75.PubMedCrossRef
86.
Zurück zum Zitat Tan X, et al. Exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) enhances the docetaxel resistance of prostate cancer via the microRNA-136-5p/tribbles homolog 1 pathway. Anticancer Drugs. 2022;33(9):871–82.PubMedCrossRef Tan X, et al. Exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) enhances the docetaxel resistance of prostate cancer via the microRNA-136-5p/tribbles homolog 1 pathway. Anticancer Drugs. 2022;33(9):871–82.PubMedCrossRef
87.
Zurück zum Zitat Zhang H, et al. Exosomal Circ-XIAP promotes docetaxel resistance in prostate cancer by regulating miR-1182/TPD52 Axis. Drug Des Dev Ther. 2021;15:1835–49.CrossRef Zhang H, et al. Exosomal Circ-XIAP promotes docetaxel resistance in prostate cancer by regulating miR-1182/TPD52 Axis. Drug Des Dev Ther. 2021;15:1835–49.CrossRef
88.
Zurück zum Zitat Pan Z, et al. A Novel protein encoded by Exosomal CircATG4B induces Oxaliplatin Resistance in Colorectal Cancer by promoting Autophagy. Adv Sci (Weinh). 2022;9(35):e2204513.PubMedCrossRef Pan Z, et al. A Novel protein encoded by Exosomal CircATG4B induces Oxaliplatin Resistance in Colorectal Cancer by promoting Autophagy. Adv Sci (Weinh). 2022;9(35):e2204513.PubMedCrossRef
89.
Zurück zum Zitat Xu Y, et al. Exosomal transfer of circular RNA FBXW7 ameliorates the chemoresistance to oxaliplatin in colorectal cancer by sponging miR-18b-5p. Neoplasma. 2021;68(1):108–18.PubMedCrossRef Xu Y, et al. Exosomal transfer of circular RNA FBXW7 ameliorates the chemoresistance to oxaliplatin in colorectal cancer by sponging miR-18b-5p. Neoplasma. 2021;68(1):108–18.PubMedCrossRef
90.
Zurück zum Zitat Wang X, et al. CircRNA-CREIT inhibits stress granule assembly and overcomes doxorubicin resistance in TNBC by destabilizing PKR. J Hematol Oncol. 2022;15(1):122.PubMedPubMedCentralCrossRef Wang X, et al. CircRNA-CREIT inhibits stress granule assembly and overcomes doxorubicin resistance in TNBC by destabilizing PKR. J Hematol Oncol. 2022;15(1):122.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Qin L, et al. Hsa–circRNA–G004213 promotes cisplatin sensitivity by regulating miR–513b–5p/PRPF39 in liver cancer. Mol Med Rep. 2021;23(6):421.PubMedPubMedCentralCrossRef Qin L, et al. Hsa–circRNA–G004213 promotes cisplatin sensitivity by regulating miR–513b–5p/PRPF39 in liver cancer. Mol Med Rep. 2021;23(6):421.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Zhu J, et al. Exosome-delivered circSATB2 targets the miR-330-5p/PEAK1 axis to regulate proliferation, migration and invasion of lung cancer cells. Thorac Cancer. 2022;13(21):3007–17.PubMedPubMedCentralCrossRef Zhu J, et al. Exosome-delivered circSATB2 targets the miR-330-5p/PEAK1 axis to regulate proliferation, migration and invasion of lung cancer cells. Thorac Cancer. 2022;13(21):3007–17.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Ning Z, et al. Exosomal circ_0007385 enhances non-small cell lung cancer cell proliferation and stemness via regulating miR-1253/FAM83A axis. Anticancer Drugs. 2022;33(1):61–74.PubMedCrossRef Ning Z, et al. Exosomal circ_0007385 enhances non-small cell lung cancer cell proliferation and stemness via regulating miR-1253/FAM83A axis. Anticancer Drugs. 2022;33(1):61–74.PubMedCrossRef
95.
Zurück zum Zitat Wang H, et al. Cancer-released exosomal circular RNA circ_0008717 promotes cell tumorigenicity through microRNA-1287-5p/P21-activated kinase 2 (PAK2) axis in non-small cell lung cancer. Bioengineered. 2022;13(4):8937–49.PubMedPubMedCentralCrossRef Wang H, et al. Cancer-released exosomal circular RNA circ_0008717 promotes cell tumorigenicity through microRNA-1287-5p/P21-activated kinase 2 (PAK2) axis in non-small cell lung cancer. Bioengineered. 2022;13(4):8937–49.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Fang K, et al. Serum-derived exosomes-mediated circular RNA ARHGAP10 modulates the progression of Non-Small Cell Lung Cancer through the miR-638/FAM83F Axis. Cancer Biother Radiopharm. 2022;37(2):96–110.PubMed Fang K, et al. Serum-derived exosomes-mediated circular RNA ARHGAP10 modulates the progression of Non-Small Cell Lung Cancer through the miR-638/FAM83F Axis. Cancer Biother Radiopharm. 2022;37(2):96–110.PubMed
97.
Zurück zum Zitat Yang B, et al. Tumor-derived exosomal circRNA_102481 contributes to EGFR-TKIs resistance via the miR-30a-5p/ROR1 axis in non-small cell lung cancer. Aging. 2021;13(9):13264–86.PubMedPubMedCentralCrossRef Yang B, et al. Tumor-derived exosomal circRNA_102481 contributes to EGFR-TKIs resistance via the miR-30a-5p/ROR1 axis in non-small cell lung cancer. Aging. 2021;13(9):13264–86.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Li C, et al. Upregulation of exosomal circPLK1 promotes the development of non-small cell lung cancer through the miR-1294/ high mobility group protein A1 axis. Bioengineered. 2022;13(2):4185–200.PubMedPubMedCentralCrossRef Li C, et al. Upregulation of exosomal circPLK1 promotes the development of non-small cell lung cancer through the miR-1294/ high mobility group protein A1 axis. Bioengineered. 2022;13(2):4185–200.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Xu X, et al. Exosome-transferred hsa_circ_0014235 promotes DDP chemoresistance and deteriorates the development of non-small cell lung cancer by mediating the miR-520a-5p/CDK4 pathway. Cancer Cell Int. 2020;20(1):552.PubMedPubMedCentralCrossRef Xu X, et al. Exosome-transferred hsa_circ_0014235 promotes DDP chemoresistance and deteriorates the development of non-small cell lung cancer by mediating the miR-520a-5p/CDK4 pathway. Cancer Cell Int. 2020;20(1):552.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Ma J, Qi G, Li L. A novel serum exosomes-based biomarker hsa_circ_0002130 facilitates osimertinib-resistance in non-small cell lung cancer by sponging miR-498. Onco Targets Ther. 2020;13:5293–307.PubMedPubMedCentralCrossRef Ma J, Qi G, Li L. A novel serum exosomes-based biomarker hsa_circ_0002130 facilitates osimertinib-resistance in non-small cell lung cancer by sponging miR-498. Onco Targets Ther. 2020;13:5293–307.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Tong Z, et al. A novel molecular mechanism mediated by circCCDC134 regulates non-small cell lung cancer progression. Thorac Cancer. 2023;14(20):1958–68.PubMedPubMedCentralCrossRef Tong Z, et al. A novel molecular mechanism mediated by circCCDC134 regulates non-small cell lung cancer progression. Thorac Cancer. 2023;14(20):1958–68.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Li J, et al. Exosomal circDNER enhances paclitaxel resistance and tumorigenicity of lung cancer via targeting miR-139-5p/ITGB8 Thorac. Cancer. 2022;13(9):1381–90. Li J, et al. Exosomal circDNER enhances paclitaxel resistance and tumorigenicity of lung cancer via targeting miR-139-5p/ITGB8 Thorac. Cancer. 2022;13(9):1381–90.
103.
Zurück zum Zitat Bai L, et al. Circular noncoding RNA circ_0007334 sequestrates miR-577 to derepress KLF12 and accelerate colorectal cancer progression. Anticancer Drugs. 2022;33(1):e409-22.PubMedCrossRef Bai L, et al. Circular noncoding RNA circ_0007334 sequestrates miR-577 to derepress KLF12 and accelerate colorectal cancer progression. Anticancer Drugs. 2022;33(1):e409-22.PubMedCrossRef
104.
Zurück zum Zitat Gao L, et al. Exosome-transmitted circCOG2 promotes colorectal cancer progression via miR-1305/TGF-beta2/SMAD3 pathway. Cell Death Discov. 2021;7(1):281.PubMedPubMedCentralCrossRef Gao L, et al. Exosome-transmitted circCOG2 promotes colorectal cancer progression via miR-1305/TGF-beta2/SMAD3 pathway. Cell Death Discov. 2021;7(1):281.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Miao Z, Zhao X, Liu X. Exosomal circCOL1A2 from cancer cells accelerates colorectal cancer progression via regulating miR-665/LASP1 signal axis. Eur J Pharmacol. 2023;950: 175722.PubMedCrossRef Miao Z, Zhao X, Liu X. Exosomal circCOL1A2 from cancer cells accelerates colorectal cancer progression via regulating miR-665/LASP1 signal axis. Eur J Pharmacol. 2023;950: 175722.PubMedCrossRef
108.
Zurück zum Zitat Fan L, Li W, Jiang H. Circ_0000395 promoted CRC progression via elevating MYH9 expression by sequestering miR-432-5p. Biochem Genet. 2023;61(1):116–37.PubMedCrossRef Fan L, Li W, Jiang H. Circ_0000395 promoted CRC progression via elevating MYH9 expression by sequestering miR-432-5p. Biochem Genet. 2023;61(1):116–37.PubMedCrossRef
109.
Zurück zum Zitat Chen C, et al. Exosomal circTUBGCP4 promotes vascular endothelial cell tipping and colorectal cancer metastasis by activating akt signaling pathway. J Exp Clin Cancer Res. 2023;42(1):46.PubMedPubMedCentralCrossRef Chen C, et al. Exosomal circTUBGCP4 promotes vascular endothelial cell tipping and colorectal cancer metastasis by activating akt signaling pathway. J Exp Clin Cancer Res. 2023;42(1):46.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Li Y, et al. Exosomal circPABPC1 promotes colorectal cancer liver metastases by regulating HMGA2 in the nucleus and BMP4/ADAM19 in the cytoplasm. Cell Death Discov. 2022;8(1):335.PubMedPubMedCentralCrossRef Li Y, et al. Exosomal circPABPC1 promotes colorectal cancer liver metastases by regulating HMGA2 in the nucleus and BMP4/ADAM19 in the cytoplasm. Cell Death Discov. 2022;8(1):335.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Yang H, et al. Hypoxia induced exosomal circRNA promotes metastasis of colorectal cancer via targeting GEF-H1/RhoA axis. Theranostics. 2020;10(18):8211–26.PubMedPubMedCentralCrossRef Yang H, et al. Hypoxia induced exosomal circRNA promotes metastasis of colorectal cancer via targeting GEF-H1/RhoA axis. Theranostics. 2020;10(18):8211–26.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Su Y, et al. CircRNA Cdr1as functions as a competitive endogenous RNA to promote hepatocellular carcinoma progression. Aging. 2019;11(19):8183–203.PubMedCrossRef Su Y, et al. CircRNA Cdr1as functions as a competitive endogenous RNA to promote hepatocellular carcinoma progression. Aging. 2019;11(19):8183–203.PubMedCrossRef
113.
Zurück zum Zitat Liu C, et al. Exosome-mediated circTTLL5 transfer promotes hepatocellular carcinoma malignant progression through miR-136-5p/KIAA1522 axis. Pathol Res Pract. 2023;241: 154276.PubMedCrossRef Liu C, et al. Exosome-mediated circTTLL5 transfer promotes hepatocellular carcinoma malignant progression through miR-136-5p/KIAA1522 axis. Pathol Res Pract. 2023;241: 154276.PubMedCrossRef
114.
Zurück zum Zitat Xu J, et al. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther. 2020;5(1):298.PubMedPubMedCentralCrossRef Xu J, et al. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther. 2020;5(1):298.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Hao X, et al. CircPAK1 promotes the progression of hepatocellular carcinoma via modulation of YAP nucleus localization by interacting with 14-3-3zeta. J Exp Clin Cancer Res. 2022;41(1):281.PubMedPubMedCentralCrossRef Hao X, et al. CircPAK1 promotes the progression of hepatocellular carcinoma via modulation of YAP nucleus localization by interacting with 14-3-3zeta. J Exp Clin Cancer Res. 2022;41(1):281.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Zhou Y, et al. Cancer-associated fibroblast exosomes promote chemoresistance to cisplatin in hepatocellular carcinoma through circZFR targeting signal transducers and activators of transcription (STAT3)/ nuclear factor -kappa B (NF-kappaB) pathway. Bioengineered. 2022;13(3):4786–97.PubMedPubMedCentralCrossRef Zhou Y, et al. Cancer-associated fibroblast exosomes promote chemoresistance to cisplatin in hepatocellular carcinoma through circZFR targeting signal transducers and activators of transcription (STAT3)/ nuclear factor -kappa B (NF-kappaB) pathway. Bioengineered. 2022;13(3):4786–97.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Wu X, et al. Circular RNA circ-MMP11 contributes to lapatinib resistance of breast cancer cells by regulating the miR-153-3p/ANLN Axis. Front Oncol. 2021;11: 639961.PubMedPubMedCentralCrossRef Wu X, et al. Circular RNA circ-MMP11 contributes to lapatinib resistance of breast cancer cells by regulating the miR-153-3p/ANLN Axis. Front Oncol. 2021;11: 639961.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Hu K, et al. Exosomes mediated transfer of Circ_UBE2D2 enhances the resistance of breast cancer to tamoxifen by binding to MiR-200a-3p. Med Sci Monit. 2020;26: e922253.PubMedPubMedCentralCrossRef Hu K, et al. Exosomes mediated transfer of Circ_UBE2D2 enhances the resistance of breast cancer to tamoxifen by binding to MiR-200a-3p. Med Sci Monit. 2020;26: e922253.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Liu Y, et al. Correction: exosomal circCARM1 from spheroids reprograms cell metabolism by regulating PFKFB2 in breast cancer. Oncogene. 2022;41(14):2137.PubMedCrossRef Liu Y, et al. Correction: exosomal circCARM1 from spheroids reprograms cell metabolism by regulating PFKFB2 in breast cancer. Oncogene. 2022;41(14):2137.PubMedCrossRef
120.
Zurück zum Zitat Ma J, et al. CircEGFR reduces the sensitivity of pirarubicin and regulates the malignant progression of triple-negative breast cancer via the miR-1299/EGFR axis. Int J Biol Macromol. 2023;244: 125295.PubMedCrossRef Ma J, et al. CircEGFR reduces the sensitivity of pirarubicin and regulates the malignant progression of triple-negative breast cancer via the miR-1299/EGFR axis. Int J Biol Macromol. 2023;244: 125295.PubMedCrossRef
121.
Zurück zum Zitat Zhang X, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 2019;18(1):20.PubMedPubMedCentralCrossRef Zhang X, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 2019;18(1):20.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat You J, et al. Circular RNA 0001789 sponges mir-140-3p and regulates PAK2 to promote the progression of gastric cancer. J Transl Med. 2023;21(1):83.PubMedPubMedCentralCrossRef You J, et al. Circular RNA 0001789 sponges mir-140-3p and regulates PAK2 to promote the progression of gastric cancer. J Transl Med. 2023;21(1):83.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Yang G, et al. Exosome-mediated transfer of circ_0063526 enhances cisplatin resistance in gastric cancer cells via regulating miR-449a/SHMT2 axis. Anticancer Drugs. 2022;33(10):1047–57.PubMedCrossRef Yang G, et al. Exosome-mediated transfer of circ_0063526 enhances cisplatin resistance in gastric cancer cells via regulating miR-449a/SHMT2 axis. Anticancer Drugs. 2022;33(10):1047–57.PubMedCrossRef
124.
Zurück zum Zitat Yao W, et al. Exosome-derived Circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1 axis in gastric cancer cells. Cancer Biother Radiopharm. 2021;36(4):347–59.PubMed Yao W, et al. Exosome-derived Circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1 axis in gastric cancer cells. Cancer Biother Radiopharm. 2021;36(4):347–59.PubMed
125.
Zurück zum Zitat Liang Q, et al. circ-LDLRAD3 knockdown reduces cisplatin chemoresistance and inhibits the development of gastric cancer with cisplatin resistance through miR-588 enrichment-mediated SOX5 inhibition. Gut Liver. 2022;17:389–403.PubMedPubMedCentralCrossRef Liang Q, et al. circ-LDLRAD3 knockdown reduces cisplatin chemoresistance and inhibits the development of gastric cancer with cisplatin resistance through miR-588 enrichment-mediated SOX5 inhibition. Gut Liver. 2022;17:389–403.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Zhong Y, et al. Circular RNA circ_0032821 contributes to oxaliplatin (OXA) resistance of gastric cancer cells by regulating SOX9 via miR-515-5. Biotechnol Lett. 2021;43(2):339–51.PubMedCrossRef Zhong Y, et al. Circular RNA circ_0032821 contributes to oxaliplatin (OXA) resistance of gastric cancer cells by regulating SOX9 via miR-515-5. Biotechnol Lett. 2021;43(2):339–51.PubMedCrossRef
127.
Zurück zum Zitat Geng X, et al. Exosomal circWDR62 promotes temozolomide resistance and malignant progression through regulation of the miR-370-3p/MGMT axis in glioma. Cell Death Dis. 2022;13(7):596.PubMedPubMedCentralCrossRef Geng X, et al. Exosomal circWDR62 promotes temozolomide resistance and malignant progression through regulation of the miR-370-3p/MGMT axis in glioma. Cell Death Dis. 2022;13(7):596.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Li G, Lan Q. Exosome-mediated transfer of circ-GLIS3 enhances Temozolomide resistance in glioma cells through the miR-548m/MED31 Axis. Cancer Biother Radiopharm. 2023;38(1):62–73.PubMed Li G, Lan Q. Exosome-mediated transfer of circ-GLIS3 enhances Temozolomide resistance in glioma cells through the miR-548m/MED31 Axis. Cancer Biother Radiopharm. 2023;38(1):62–73.PubMed
129.
Zurück zum Zitat Li X, et al. Hsa_circ_0043949 reinforces temozolomide resistance via upregulating oncogene ITGA1 axis in glioblastoma. Metab Brain Dis. 2022;37(8):2979–93.PubMedCrossRef Li X, et al. Hsa_circ_0043949 reinforces temozolomide resistance via upregulating oncogene ITGA1 axis in glioblastoma. Metab Brain Dis. 2022;37(8):2979–93.PubMedCrossRef
130.
Zurück zum Zitat Li Y, et al. Exosomal circ-AHCY promotes glioblastoma cell growth via Wnt/beta-catenin signaling pathway. Ann Clin Transl Neurol. 2023;10(6):865–78.PubMedPubMedCentralCrossRef Li Y, et al. Exosomal circ-AHCY promotes glioblastoma cell growth via Wnt/beta-catenin signaling pathway. Ann Clin Transl Neurol. 2023;10(6):865–78.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Zhang C, et al. Radiated glioblastoma cell-derived exosomal circ_0012381 induce M2 polarization of microglia to promote the growth of glioblastoma by CCL2/CCR2 axis. J Transl Med. 2022;20(1):388.PubMedPubMedCentralCrossRef Zhang C, et al. Radiated glioblastoma cell-derived exosomal circ_0012381 induce M2 polarization of microglia to promote the growth of glioblastoma by CCL2/CCR2 axis. J Transl Med. 2022;20(1):388.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Jiang Y, et al. Glioblastoma-associated microglia-derived exosomal circKIF18A promotes angiogenesis by targeting FOXC2. Oncogene. 2022;41(26):3461–73.PubMedCrossRef Jiang Y, et al. Glioblastoma-associated microglia-derived exosomal circKIF18A promotes angiogenesis by targeting FOXC2. Oncogene. 2022;41(26):3461–73.PubMedCrossRef
133.
Zurück zum Zitat Huang G, et al. Exosomal circKDM4A induces CUL4B to promote prostate cancer cell malignancy in a mir-338-3p-Dependent manner. Biochem Genet. 2023;61(1):390–409.PubMedCrossRef Huang G, et al. Exosomal circKDM4A induces CUL4B to promote prostate cancer cell malignancy in a mir-338-3p-Dependent manner. Biochem Genet. 2023;61(1):390–409.PubMedCrossRef
134.
Zurück zum Zitat Sheng H, Wang X. Knockdown of circ-PIP5K1A overcomes resistance to cisplatin in ovarian cancer by miR-942-5p/NFIB axis. Anticancer Drugs. 2023;34(2):214–26.PubMedCrossRef Sheng H, Wang X. Knockdown of circ-PIP5K1A overcomes resistance to cisplatin in ovarian cancer by miR-942-5p/NFIB axis. Anticancer Drugs. 2023;34(2):214–26.PubMedCrossRef
135.
136.
Zurück zum Zitat Gao Y, Huang Y. Circ_0007841 knockdown confers cisplatin sensitivity to ovarian cancer cells by down-regulation of NFIB expression in a mir-532-5p-dependent manner. J Chemother. 2023;35(2):117–30.PubMedCrossRef Gao Y, Huang Y. Circ_0007841 knockdown confers cisplatin sensitivity to ovarian cancer cells by down-regulation of NFIB expression in a mir-532-5p-dependent manner. J Chemother. 2023;35(2):117–30.PubMedCrossRef
137.
Zurück zum Zitat Li J, et al. Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res. 2018;37(1):177.PubMedPubMedCentralCrossRef Li J, et al. Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res. 2018;37(1):177.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Zang R, et al. Exosomes mediated transfer of Circ_0000337 contributes to cisplatin (CDDP) resistance of esophageal cancer by regulating JAK2 via miR-377-3p front cell. Dev Biol. 2021;9: 673237. Zang R, et al. Exosomes mediated transfer of Circ_0000337 contributes to cisplatin (CDDP) resistance of esophageal cancer by regulating JAK2 via miR-377-3p front cell. Dev Biol. 2021;9: 673237.
139.
Zurück zum Zitat Chen J, et al. Hsa_circ_0074269-mediated upregulation of TUFT1 through mir-485-5p increases cisplatin resistance in cervical cancer. Reprod Sci. 2022;29(8):2236–50.PubMedCrossRef Chen J, et al. Hsa_circ_0074269-mediated upregulation of TUFT1 through mir-485-5p increases cisplatin resistance in cervical cancer. Reprod Sci. 2022;29(8):2236–50.PubMedCrossRef
140.
Zurück zum Zitat Wang X, Cheng Q. Suppression of exosomal hsa_circ_0001005 eliminates the Vemurafenib resistance of melanoma. J Cancer Res Clin Oncol. 2023;149(9):5921–36.PubMedCrossRef Wang X, Cheng Q. Suppression of exosomal hsa_circ_0001005 eliminates the Vemurafenib resistance of melanoma. J Cancer Res Clin Oncol. 2023;149(9):5921–36.PubMedCrossRef
141.
Zurück zum Zitat Ai J, et al. Exosomes loaded with circPARD3 promotes EBV-miR-BART4-induced stemness and cisplatin resistance in nasopharyngeal carcinoma side population cells through the miR-579-3p/SIRT1/SSRP1 axis. Cell Biol Toxicol. 2023;39(2):537–56.PubMedCrossRef Ai J, et al. Exosomes loaded with circPARD3 promotes EBV-miR-BART4-induced stemness and cisplatin resistance in nasopharyngeal carcinoma side population cells through the miR-579-3p/SIRT1/SSRP1 axis. Cell Biol Toxicol. 2023;39(2):537–56.PubMedCrossRef
142.
Zurück zum Zitat Xu Y, et al. A circular RNA, cholangiocarcinoma-associated circular RNA 1, contributes to cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers. Hepatology. 2021;73(4):1419–35.PubMedCrossRef Xu Y, et al. A circular RNA, cholangiocarcinoma-associated circular RNA 1, contributes to cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers. Hepatology. 2021;73(4):1419–35.PubMedCrossRef
143.
Zurück zum Zitat Yang C, et al. Exosome-derived circTRPS1 promotes malignant phenotype and CD8 + T cell exhaustion in bladder cancer microenvironments. Mol Ther. 2022;30(3):1054–70.PubMedPubMedCentralCrossRef Yang C, et al. Exosome-derived circTRPS1 promotes malignant phenotype and CD8 + T cell exhaustion in bladder cancer microenvironments. Mol Ther. 2022;30(3):1054–70.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Chen SW, et al. Cancer cell-derived exosomal circUSP7 induces CD8(+) T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC. Mol Cancer. 2021;20(1):144.PubMedPubMedCentralCrossRef Chen SW, et al. Cancer cell-derived exosomal circUSP7 induces CD8(+) T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC. Mol Cancer. 2021;20(1):144.PubMedPubMedCentralCrossRef
145.
146.
Zurück zum Zitat Wang X, Yao Y, Jin M. Circ-0001068 is a novel biomarker for ovarian cancer and inducer of PD1 expression in T cells. Aging. 2020;12(19):19095–106.PubMedPubMedCentralCrossRef Wang X, Yao Y, Jin M. Circ-0001068 is a novel biomarker for ovarian cancer and inducer of PD1 expression in T cells. Aging. 2020;12(19):19095–106.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Hu Z, et al. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer. 2023;22(1):55.PubMedPubMedCentralCrossRef Hu Z, et al. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer. 2023;22(1):55.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Chen Y, et al. CircRNA has_circ_0069313 induced OSCC immunity escape by mir-325-3p-Foxp3 axes in both OSCC cells and Treg cells. Aging. 2022;14(10):4376–89.PubMedPubMedCentralCrossRef Chen Y, et al. CircRNA has_circ_0069313 induced OSCC immunity escape by mir-325-3p-Foxp3 axes in both OSCC cells and Treg cells. Aging. 2022;14(10):4376–89.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Yang K, Zhang J, Bao C. Exosomal circEIF3K from cancer-associated fibroblast promotes colorectal cancer (CRC) progression via miR-214/PD-L1 axis. BMC Cancer. 2021;21(1):933.PubMedPubMedCentralCrossRef Yang K, Zhang J, Bao C. Exosomal circEIF3K from cancer-associated fibroblast promotes colorectal cancer (CRC) progression via miR-214/PD-L1 axis. BMC Cancer. 2021;21(1):933.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Chen W, et al. Exosomal circSHKBP1 participates in non-small cell lung cancer progression through PKM2-mediated glycolysis. Mol Ther Oncolytics. 2022;24:470–85.PubMedPubMedCentralCrossRef Chen W, et al. Exosomal circSHKBP1 participates in non-small cell lung cancer progression through PKM2-mediated glycolysis. Mol Ther Oncolytics. 2022;24:470–85.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Chen T, et al. Tumor-derived exosomal circFARSA mediates M2 macrophage polarization via the PTEN/PI3K/AKT pathway to promote non-small cell lung cancer metastasis. Cancer Treat Res Commun. 2021;28:100412.PubMedCrossRef Chen T, et al. Tumor-derived exosomal circFARSA mediates M2 macrophage polarization via the PTEN/PI3K/AKT pathway to promote non-small cell lung cancer metastasis. Cancer Treat Res Commun. 2021;28:100412.PubMedCrossRef
152.
Zurück zum Zitat Pan Z, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer. 2022;21(1):16.PubMedPubMedCentralCrossRef Pan Z, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer. 2022;21(1):16.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Gao J, et al. Exosomal circZNF451 restrains anti-PD1 treatment in lung adenocarcinoma via polarizing macrophages by complexing with TRIM56 and FXR1. J Exp Clin Cancer Res. 2022;41(1):295.PubMedPubMedCentralCrossRef Gao J, et al. Exosomal circZNF451 restrains anti-PD1 treatment in lung adenocarcinoma via polarizing macrophages by complexing with TRIM56 and FXR1. J Exp Clin Cancer Res. 2022;41(1):295.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Lu C, et al. Endoplasmic reticulum stress promotes breast cancer cells to release exosomes circ_0001142 and induces M2 polarization of macrophages to regulate tumor progression. Pharmacol Res. 2022;177: 106098.PubMedCrossRef Lu C, et al. Endoplasmic reticulum stress promotes breast cancer cells to release exosomes circ_0001142 and induces M2 polarization of macrophages to regulate tumor progression. Pharmacol Res. 2022;177: 106098.PubMedCrossRef
155.
Zurück zum Zitat Huang X, et al. Exosomal Circsafb2 reshaping tumor environment to promote renal cell carcinoma progression by mediating M2 macrophage polarization. Front Oncol. 2022;12: 808888.PubMedPubMedCentralCrossRef Huang X, et al. Exosomal Circsafb2 reshaping tumor environment to promote renal cell carcinoma progression by mediating M2 macrophage polarization. Front Oncol. 2022;12: 808888.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Lu Q, et al. Hypoxic tumor-derived exosomal Circ0048117 facilitates M2 macrophage polarization acting as miR-140 sponge in esophageal squamous cell carcinoma. Onco Targets Ther. 2020;13:11883–97.PubMedPubMedCentralCrossRef Lu Q, et al. Hypoxic tumor-derived exosomal Circ0048117 facilitates M2 macrophage polarization acting as miR-140 sponge in esophageal squamous cell carcinoma. Onco Targets Ther. 2020;13:11883–97.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Zhang PF, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 2020;19(1):110.PubMedPubMedCentralCrossRef Zhang PF, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 2020;19(1):110.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Wang X, et al. Exosomal circ-PTPN22 and circ-ADAMTS6 mark T cell exhaustion and neutrophil extracellular traps in asian intrahepatic cholangiocarcinoma. Mol Ther Nucleic Acids. 2023;31:151–63.PubMedCrossRef Wang X, et al. Exosomal circ-PTPN22 and circ-ADAMTS6 mark T cell exhaustion and neutrophil extracellular traps in asian intrahepatic cholangiocarcinoma. Mol Ther Nucleic Acids. 2023;31:151–63.PubMedCrossRef
159.
Zurück zum Zitat Xu H, et al. Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics. 2018;10(2):187–97.PubMedCrossRef Xu H, et al. Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics. 2018;10(2):187–97.PubMedCrossRef
160.
Zurück zum Zitat Xie M, et al. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer. 2020;19(1):112.PubMedPubMedCentralCrossRef Xie M, et al. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer. 2020;19(1):112.PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Deng Q, et al. Exosomal hsa_circRNA_047733 integrated with clinical features for preoperative prediction of lymph node metastasis risk in oral squamous cell carcinoma. J Oral Pathol Med. 2023;52(1):37–46.PubMedCrossRef Deng Q, et al. Exosomal hsa_circRNA_047733 integrated with clinical features for preoperative prediction of lymph node metastasis risk in oral squamous cell carcinoma. J Oral Pathol Med. 2023;52(1):37–46.PubMedCrossRef
163.
Zurück zum Zitat Hong L, et al. Exosomal circular RNA hsa_circ_0006220, and hsa_circ_0001666 as biomarkers in the diagnosis of pancreatic cancer. J Clin Lab Anal. 2022;36(6): e24447.PubMedPubMedCentralCrossRef Hong L, et al. Exosomal circular RNA hsa_circ_0006220, and hsa_circ_0001666 as biomarkers in the diagnosis of pancreatic cancer. J Clin Lab Anal. 2022;36(6): e24447.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Kang Y, et al. Serum and serum exosomal CircRNAs hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 as diagnostic biomarkers for lung adenocarcinoma. Front Oncol. 2022;12: 912246.PubMedPubMedCentralCrossRef Kang Y, et al. Serum and serum exosomal CircRNAs hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 as diagnostic biomarkers for lung adenocarcinoma. Front Oncol. 2022;12: 912246.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Wang Y, et al. The potential of serum exosomal hsa_circ_0028861 as the Novel Diagnostic Biomarker of HBV-Derived Hepatocellular Cancer. Front Genet. 2021;12: 703205.PubMedPubMedCentralCrossRef Wang Y, et al. The potential of serum exosomal hsa_circ_0028861 as the Novel Diagnostic Biomarker of HBV-Derived Hepatocellular Cancer. Front Genet. 2021;12: 703205.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Zheng P, et al. Plasma exosomal hsa_circ_0015286 as a potential diagnostic and prognostic biomarker for gastric Cancer. Pathol Oncol Res. 2022;28: 1610446.PubMedPubMedCentralCrossRef Zheng P, et al. Plasma exosomal hsa_circ_0015286 as a potential diagnostic and prognostic biomarker for gastric Cancer. Pathol Oncol Res. 2022;28: 1610446.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Shen X, et al. Hsa_circ_0000437 promotes pathogenesis of gastric cancer and lymph node metastasis. Oncogene. 2022;41(42):4724–35.PubMedCrossRef Shen X, et al. Hsa_circ_0000437 promotes pathogenesis of gastric cancer and lymph node metastasis. Oncogene. 2022;41(42):4724–35.PubMedCrossRef
168.
169.
Zurück zum Zitat Barbagallo C, et al. LncRNA UCA1, upregulated in CRC Biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol Ther Nucleic Acids. 2018;12:229–41.PubMedPubMedCentralCrossRef Barbagallo C, et al. LncRNA UCA1, upregulated in CRC Biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol Ther Nucleic Acids. 2018;12:229–41.PubMedPubMedCentralCrossRef
170.
Zurück zum Zitat Xie Y, et al. RNA-Seq profiling of serum exosomal circular RNAs reveals Circ-PNN as a potential biomarker for human colorectal Cancer. Front Oncol. 2020;10: 982.PubMedPubMedCentralCrossRef Xie Y, et al. RNA-Seq profiling of serum exosomal circular RNAs reveals Circ-PNN as a potential biomarker for human colorectal Cancer. Front Oncol. 2020;10: 982.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Li R, et al. CircRNA CDR1as: a novel diagnostic and prognostic biomarker for gastric cancer. Biomarkers. 2023;28(5):448–57.PubMedCrossRef Li R, et al. CircRNA CDR1as: a novel diagnostic and prognostic biomarker for gastric cancer. Biomarkers. 2023;28(5):448–57.PubMedCrossRef
172.
Zurück zum Zitat Shao Y, et al. Hsa_circ_0065149 is an Indicator for early gastric cancer screening and prognosis prediction. Pathol Oncol Res. 2020;26(3):1475–82.PubMedCrossRef Shao Y, et al. Hsa_circ_0065149 is an Indicator for early gastric cancer screening and prognosis prediction. Pathol Oncol Res. 2020;26(3):1475–82.PubMedCrossRef
173.
Zurück zum Zitat Tang W, et al. CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol Cancer. 2018;17(1):137.PubMedPubMedCentralCrossRef Tang W, et al. CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol Cancer. 2018;17(1):137.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Tao X, et al. Clinical significance of hsa_circ_0000419 in gastric cancer screening and prognosis estimation. Pathol Res Pract. 2020;216(1): 152763.PubMedCrossRef Tao X, et al. Clinical significance of hsa_circ_0000419 in gastric cancer screening and prognosis estimation. Pathol Res Pract. 2020;216(1): 152763.PubMedCrossRef
175.
Zurück zum Zitat Chen T, et al. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation. Oncogene. 2021;40(15):2756–71.PubMedCrossRef Chen T, et al. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation. Oncogene. 2021;40(15):2756–71.PubMedCrossRef
176.
177.
Zurück zum Zitat Xian J, et al. Identification of three circular RNA cargoes in serum exosomes as diagnostic biomarkers of non-small-cell lung cancer in the Chinese population. J Mol Diagn. 2020;22(8):1096–108.PubMedCrossRef Xian J, et al. Identification of three circular RNA cargoes in serum exosomes as diagnostic biomarkers of non-small-cell lung cancer in the Chinese population. J Mol Diagn. 2020;22(8):1096–108.PubMedCrossRef
178.
Zurück zum Zitat He Y, et al. Exosomal circ_0048856 derived from non-small cell lung cancer contributes to aggressive cancer progression through downregulation of miR-1287-5p. Pathol Res Pract. 2022;232: 153659.PubMedCrossRef He Y, et al. Exosomal circ_0048856 derived from non-small cell lung cancer contributes to aggressive cancer progression through downregulation of miR-1287-5p. Pathol Res Pract. 2022;232: 153659.PubMedCrossRef
179.
Zurück zum Zitat Chen Y, et al. Serum exosomal hsa_circ_0069313 has a potential to diagnose more aggressive non-small cell lung cancer. Clin Biochem. 2022;102:56–64.PubMedCrossRef Chen Y, et al. Serum exosomal hsa_circ_0069313 has a potential to diagnose more aggressive non-small cell lung cancer. Clin Biochem. 2022;102:56–64.PubMedCrossRef
180.
Zurück zum Zitat Peng X, et al. Exosomal ERBB2IP contributes to tumor growth via elevating PSAT1 expression in non-small cell lung carcinoma. Thorac Cancer. 2023;14(19):1812–23.PubMedPubMedCentralCrossRef Peng X, et al. Exosomal ERBB2IP contributes to tumor growth via elevating PSAT1 expression in non-small cell lung carcinoma. Thorac Cancer. 2023;14(19):1812–23.PubMedPubMedCentralCrossRef
181.
Zurück zum Zitat He F, et al. Plasma exo-hsa_circRNA_0056616: a potential biomarker for lymph node metastasis in lung adenocarcinoma. J Cancer. 2020;11(14):4037–46.PubMedPubMedCentralCrossRef He F, et al. Plasma exo-hsa_circRNA_0056616: a potential biomarker for lymph node metastasis in lung adenocarcinoma. J Cancer. 2020;11(14):4037–46.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Zhu X, et al. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J. 2017;284(14):2170–82.PubMedCrossRef Zhu X, et al. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J. 2017;284(14):2170–82.PubMedCrossRef
183.
Zurück zum Zitat Wang Y, et al. Circular RNA expression profile of lung squamous cell carcinoma: identification of potential biomarkers and therapeutic targets. Biosci Rep. 2020;40(4):BSR20194512.PubMedPubMedCentralCrossRef Wang Y, et al. Circular RNA expression profile of lung squamous cell carcinoma: identification of potential biomarkers and therapeutic targets. Biosci Rep. 2020;40(4):BSR20194512.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Yang G, et al. Has_Circ_0002490 circular RNA: a potential novel biomarker for lung cancer. Genet Test Mol Biomark. 2022;26(1):1–7.CrossRef Yang G, et al. Has_Circ_0002490 circular RNA: a potential novel biomarker for lung cancer. Genet Test Mol Biomark. 2022;26(1):1–7.CrossRef
185.
Zurück zum Zitat Zhang X, et al. The circular RNA hsa_circ_0001445 regulates the proliferation and migration of hepatocellular carcinoma and may serve as a diagnostic biomarker. Dis Markers. 2018;2018:3073467.PubMedPubMedCentralCrossRef Zhang X, et al. The circular RNA hsa_circ_0001445 regulates the proliferation and migration of hepatocellular carcinoma and may serve as a diagnostic biomarker. Dis Markers. 2018;2018:3073467.PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Guo S, et al. Circular RNA 0006602 in plasma exosomes: a new potential diagnostic biomarker for hepatocellular carcinoma. Am J Transl Res. 2021;13(6):6001–15.PubMedPubMedCentral Guo S, et al. Circular RNA 0006602 in plasma exosomes: a new potential diagnostic biomarker for hepatocellular carcinoma. Am J Transl Res. 2021;13(6):6001–15.PubMedPubMedCentral
187.
188.
Zurück zum Zitat Liu S, et al. Upregulated expression of serum exosomal hsa_circ_0026611 is associated with lymph node metastasis and poor prognosis of esophageal squamous cell carcinoma. J Cancer. 2021;12(3):918–26.PubMedPubMedCentralCrossRef Liu S, et al. Upregulated expression of serum exosomal hsa_circ_0026611 is associated with lymph node metastasis and poor prognosis of esophageal squamous cell carcinoma. J Cancer. 2021;12(3):918–26.PubMedPubMedCentralCrossRef
189.
190.
Zurück zum Zitat Luo Y, Gui R. Circulating exosomal CircMYC is associated with recurrence and bortezomib resistance in patients with multiple myeloma. Turk J Haematol. 2020;37(4):248–62.PubMedPubMedCentralCrossRef Luo Y, Gui R. Circulating exosomal CircMYC is associated with recurrence and bortezomib resistance in patients with multiple myeloma. Turk J Haematol. 2020;37(4):248–62.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Jiang Z, et al. Exosomal circEPB41L2 serves as a sponge for mir-21-5p and mir-942-5p to suppress colorectal cancer progression by regulating the PTEN/AKT signalling pathway. Eur J Clin Invest. 2021;51(9):e13581.PubMedCrossRef Jiang Z, et al. Exosomal circEPB41L2 serves as a sponge for mir-21-5p and mir-942-5p to suppress colorectal cancer progression by regulating the PTEN/AKT signalling pathway. Eur J Clin Invest. 2021;51(9):e13581.PubMedCrossRef
192.
Zurück zum Zitat Sang H, et al. Exosomal circRELL1 serves as a miR-637 sponge to modulate gastric cancer progression via regulating autophagy activation. Cell Death Dis. 2022;13(1):56.PubMedPubMedCentralCrossRef Sang H, et al. Exosomal circRELL1 serves as a miR-637 sponge to modulate gastric cancer progression via regulating autophagy activation. Cell Death Dis. 2022;13(1):56.PubMedPubMedCentralCrossRef
193.
Zurück zum Zitat Guo Z, et al. Engineered exosome-mediated delivery of circDIDO1 inhibits gastric cancer progression via regulation of MiR-1307-3p/SOCS2 Axis. J Transl Med. 2022;20(1):326.PubMedPubMedCentralCrossRef Guo Z, et al. Engineered exosome-mediated delivery of circDIDO1 inhibits gastric cancer progression via regulation of MiR-1307-3p/SOCS2 Axis. J Transl Med. 2022;20(1):326.PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Li C, Li X. Exosome-derived Circ_0094343 promotes chemosensitivity of colorectal cancer cells by regulating glycolysis via the miR-766-5p/TRIM67 Axis. Contrast Media Mol Imaging. 2022;2022:2878557.PubMedPubMedCentral Li C, Li X. Exosome-derived Circ_0094343 promotes chemosensitivity of colorectal cancer cells by regulating glycolysis via the miR-766-5p/TRIM67 Axis. Contrast Media Mol Imaging. 2022;2022:2878557.PubMedPubMedCentral
195.
Zurück zum Zitat Yao X, et al. Exosomal circ_0030167 derived from BM-MSCs inhibits the invasion, migration, proliferation and stemness of pancreatic cancer cells by sponging miR-338-5p and targeting the Wif1/Wnt8/betai>-catenin axis. Cancer Lett. 2021;512:38–50.PubMedCrossRef Yao X, et al. Exosomal circ_0030167 derived from BM-MSCs inhibits the invasion, migration, proliferation and stemness of pancreatic cancer cells by sponging miR-338-5p and targeting the Wif1/Wnt8/betai>-catenin axis. Cancer Lett. 2021;512:38–50.PubMedCrossRef
196.
Zurück zum Zitat Meng H, et al. Nanoparticles mediated circROBO1 silencing to inhibit Hepatocellular Carcinoma Progression by modulating miR-130a-5p/CCNT2 Axis. Int J Nanomed. 2023;18:1677–93.CrossRef Meng H, et al. Nanoparticles mediated circROBO1 silencing to inhibit Hepatocellular Carcinoma Progression by modulating miR-130a-5p/CCNT2 Axis. Int J Nanomed. 2023;18:1677–93.CrossRef
197.
Zurück zum Zitat Gu C, Lu H, Qian Z. Matrine reduces the secretion of exosomal circSLC7A6 from cancer-associated fibroblast to inhibit tumorigenesis of colorectal cancer by regulating CXCR5. Biochem Biophys Res Commun. 2020;527(3):638–45.PubMedCrossRef Gu C, Lu H, Qian Z. Matrine reduces the secretion of exosomal circSLC7A6 from cancer-associated fibroblast to inhibit tumorigenesis of colorectal cancer by regulating CXCR5. Biochem Biophys Res Commun. 2020;527(3):638–45.PubMedCrossRef
198.
Zurück zum Zitat Chao F, et al. Extracellular vesicles derived circSH3PXD2A inhibits chemoresistance of small cell lung cancer by miR-375-3p/YAP1. Int J Nanomed. 2023;18:2989–3006.CrossRef Chao F, et al. Extracellular vesicles derived circSH3PXD2A inhibits chemoresistance of small cell lung cancer by miR-375-3p/YAP1. Int J Nanomed. 2023;18:2989–3006.CrossRef
199.
Zurück zum Zitat Lu L, et al. EIF4a3-regulated circRABL2B regulates cell stemness and drug sensitivity of lung cancer via YBX1-dependent downregulation of MUC5AC expression. Int J Biol Sci. 2023;19(9):2725–39.PubMedPubMedCentralCrossRef Lu L, et al. EIF4a3-regulated circRABL2B regulates cell stemness and drug sensitivity of lung cancer via YBX1-dependent downregulation of MUC5AC expression. Int J Biol Sci. 2023;19(9):2725–39.PubMedPubMedCentralCrossRef
200.
Zurück zum Zitat Wang L, et al. Exosome-transmitted hsa_circ_0012634 suppresses pancreatic ductal adenocarcinoma progression through regulating miR-147b/HIPK2 axis. Cancer Biol Ther. 2023;24(1): 2218514.PubMedPubMedCentralCrossRef Wang L, et al. Exosome-transmitted hsa_circ_0012634 suppresses pancreatic ductal adenocarcinoma progression through regulating miR-147b/HIPK2 axis. Cancer Biol Ther. 2023;24(1): 2218514.PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Song J, et al. Exosomal hsa_circ_0017252 attenuates the development of gastric cancer via inhibiting macrophage M2 polarization. Hum Cell. 2022;35(5):1499–511.PubMedCrossRef Song J, et al. Exosomal hsa_circ_0017252 attenuates the development of gastric cancer via inhibiting macrophage M2 polarization. Hum Cell. 2022;35(5):1499–511.PubMedCrossRef
202.
Zurück zum Zitat Shu G, et al. Exosomal circSPIRE1 mediates glycosylation of E-cadherin to suppress metastasis of renal cell carcinoma. Oncogene. 2023;42(22):1802–20.PubMedPubMedCentralCrossRef Shu G, et al. Exosomal circSPIRE1 mediates glycosylation of E-cadherin to suppress metastasis of renal cell carcinoma. Oncogene. 2023;42(22):1802–20.PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Zhou X, et al. EIF4A3-induced circFIP1L1 represses miR-1253 and promotes radiosensitivity of nasopharyngeal carcinoma. Cell Mol Life Sci. 2022;79(7):357.PubMedCrossRef Zhou X, et al. EIF4A3-induced circFIP1L1 represses miR-1253 and promotes radiosensitivity of nasopharyngeal carcinoma. Cell Mol Life Sci. 2022;79(7):357.PubMedCrossRef
204.
Zurück zum Zitat Chen RX, et al. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10(1):4695.PubMedPubMedCentralCrossRef Chen RX, et al. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10(1):4695.PubMedPubMedCentralCrossRef
Metadaten
Titel
Recent advances of exosomal circRNAs in cancer and their potential clinical applications
verfasst von
Qian Yi
Jiaji Yue
Yang Liu
Houyin Shi
Wei Sun
Jianguo Feng
Weichao Sun
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2023
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-023-04348-4

Weitere Artikel der Ausgabe 1/2023

Journal of Translational Medicine 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Schadet Ärger den Gefäßen?

14.05.2024 Arteriosklerose Nachrichten

In einer Studie aus New York wirkte sich Ärger kurzfristig deutlich negativ auf die Endothelfunktion gesunder Probanden aus. Möglicherweise hat dies Einfluss auf die kardiovaskuläre Gesundheit.

Intervallfasten zur Regeneration des Herzmuskels?

14.05.2024 Herzinfarkt Nachrichten

Die Nahrungsaufnahme auf wenige Stunden am Tag zu beschränken, hat möglicherweise einen günstigen Einfluss auf die Prognose nach akutem ST-Hebungsinfarkt. Darauf deutet eine Studie an der Uniklinik in Halle an der Saale hin.

Klimaschutz beginnt bei der Wahl des Inhalators

14.05.2024 Klimawandel Podcast

Auch kleine Entscheidungen im Alltag einer Praxis können einen großen Beitrag zum Klimaschutz leisten. Die neue Leitlinie zur "klimabewussten Verordnung von Inhalativa" geht mit gutem Beispiel voran, denn der Wechsel vom klimaschädlichen Dosieraerosol zum Pulverinhalator spart viele Tonnen CO2. Leitlinienautor PD Dr. Guido Schmiemann erklärt, warum nicht nur die Umwelt, sondern auch Patientinnen und Patienten davon profitieren.

Zeitschrift für Allgemeinmedizin, DEGAM

Typ-2-Diabetes und Depression folgen oft aufeinander

14.05.2024 Typ-2-Diabetes Nachrichten

Menschen mit Typ-2-Diabetes sind überdurchschnittlich gefährdet, in den nächsten Jahren auch noch eine Depression zu entwickeln – und umgekehrt. Besonders ausgeprägt ist die Wechselbeziehung laut GKV-Daten bei jüngeren Erwachsenen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.