Skip to main content
Erschienen in: Sports Medicine 4/2024

Open Access 12.12.2023 | Review Article

Recommendations for Women in Mountain Sports and Hypoxia Training/Conditioning

verfasst von: Johannes Burtscher, Antoine Raberin, Franck Brocherie, Davide Malatesta, Giorgio Manferdelli, Tom Citherlet, Bastien Krumm, Nicolas Bourdillon, Juliana Antero, Letizia Rasica, Martin Burtscher, Grégoire P. Millet

Erschienen in: Sports Medicine | Ausgabe 4/2024

Abstract

The (patho-)physiological responses to hypoxia are highly heterogeneous between individuals. In this review, we focused on the roles of sex differences, which emerge as important factors in the regulation of the body’s reaction to hypoxia. Several aspects should be considered for future research on hypoxia-related sex differences, particularly altitude training and clinical applications of hypoxia, as these will affect the selection of the optimal dose regarding safety and efficiency. There are several implications, but there are no practical recommendations if/how women should behave differently from men to optimise the benefits or minimise the risks of these hypoxia-related practices. Here, we evaluate the scarce scientific evidence of distinct (patho)physiological responses and adaptations to high altitude/hypoxia, biomechanical/anatomical differences in uphill/downhill locomotion, which is highly relevant for exercising in mountainous environments, and potentially differential effects of altitude training in women. Based on these factors, we derive sex-specific recommendations for mountain sports and intermittent hypoxia conditioning: (1) Although higher vulnerabilities of women to acute mountain sickness have not been unambiguously shown, sex-dependent physiological reactions to hypoxia may contribute to an increased acute mountain sickness vulnerability in some women. Adequate acclimatisation, slow ascent speed and/or preventive medication (e.g. acetazolamide) are solutions. (2) Targeted training of the respiratory musculature could be a valuable preparation for altitude training in women. (3) Sex hormones influence hypoxia responses and hormonal-cycle and/or menstrual-cycle phases therefore may be factors in acclimatisation to altitude and efficiency of altitude training. As many of the recommendations or observations of the present work remain partly speculative, we join previous calls for further quality research on female athletes in sports to be extended to the field of altitude and hypoxia.
Hinweise
Johannes Burtscher, Antoine Raberin share the first position.
Key Points
The body’s responses to low oxygen availability (hypoxia) are characterised by increasingly recognised differences between women and men.
The consequences of these sex differences and female-specific responses are under-investigated; systematic future research on the safety and performance of women training or competing in hypoxia is required.
At present, a potentially higher vulnerability of female athletes to acute mountain sickness, specific preparation of the respiratory musculature, and the influence of sex hormones on hypoxia responses are important considerations for athletes and coaches.

1 Introduction

Low oxygen availability (hypoxia) can massively affect human physiology [1, 2]. The hypoxic dose (i.e. combination of duration, severity, type and intermittent pattern of the exposure to hypoxia), environmental (e.g. temperature) and behavioural (e.g. exercise) conditions, as well as individual predispositions determine acute responses and long-term adaptations, which can be both protective or maladaptive/pathological [3, 4].
Although there is a great bias in the literature on hypoxia research towards male subjects, an expanding body of literature indicates potential sex-based differences in responses to hypoxia, including ventilatory [5, 6], cardiac [7], haemodynamic [8], muscle metabolism [9] and autonomic responses [10, 11]. Hormonal changes and the influence of the menstrual cycle and menopause may partially underlie those differences [12, 13]. The poor understanding of sex differences in hypoxia responses is contrasted by an increasing number of women engaging in leisure or competitive mountain sports (e.g. mountaineering, trail running, ski mountaineering, cross-country or alpine skiing, snowboarding), including at the Winter Olympics which are often performed at altitude (e.g. Cortina, Italy, 2026).
The public and scientific interest in hypoxia research is rapidly increasing. This is not only because of increasing travel to mountainous regions and growing numbers of people performing sports at high altitude [14], which are linked to more individuals exposing themselves to the risk of developing high-altitude illnesses (HAIs; general practical recommendations for minimising HAIs are available [15, 16]). There is also an increasing interest in altitude/hypoxic training in both endurance [17] and team-sports athletes [18]. In addition, the evidence on potential therapeutic benefits of controlled hypoxia exposure (e.g. intermittent hypoxia) is growing [4, 19]. Specifically, clinical applications for older people [20], hypertensive subjects [21], or persons with neurological [20] or psychiatric diseases [22] have been proposed. Little scientific information is, however, available on sex differences in hypoxia responses regarding HAIs, altitude training and hypoxia conditioning. Furthermore, there are no practical recommendations if/how women should behave differently from men to optimise the benefits or minimise the risks of these hypoxia-related practices. The need for more research on the specific responses of women to altitude, including in combination with other environmental stressors (cold, heat), was recently emphasised [23]. Here, we evaluate the scarce scientific evidence of distinct (patho)physiological responses and adaptations to high altitude/hypoxia, biomechanical/anatomical differences in uphill/downhill locomotion, which is highly relevant for exercising in mountainous environments, and potentially differential effects of altitude training in women. Based on these factors, we derive sex-specific recommendations for mountain sports and intermittent hypoxia conditioning, while indicating particularly important research questions regarding these topics.
The literature search was performed using PubMed, Google Scholar, Scopus and Web of Science with the combination of the following keywords: “woman/women”, “female”, “hypoxia”, “altitude”, “acclimatisation exercise”, “mountain sports”, “high altitude illnesses”, “acute mountain sickness”, “respiration” and “muscle”. Relevant publications in the English language were selected based on the following criteria: primarily human studies were considered, sex differences could be assessed either directly in the article or with comparable articles, articles could be used to extract practical recommendations for women engaging in exercise activities at high altitudes. The selected articles were complemented with publications from the repertoire of the individual authors according to their expertise. Evidence levels are estimations based on evaluation and discussion among the authors.

2 Hormone Profiles of Women and Metabolic Implications

An important factor underlying physiological sex differences are sex hormones. Consideration of female sex hormone profiles therefore is also important when assessing the risks and opportunities of altitude training in women. Fluctuations of sex hormone levels (e.g. during the menstrual cycle or as a consequence of menopause) affect exercise metabolism [24] and modulate the physiological responses to hypoxia, in part due to their regulation of body temperature and respiratory and cardiovascular functions. From an age of about 13 years, eumenorrheic (“normal menstruation”, in contrast to amenorrhoeic) women experience the menstrual cycle, a relatively predictable rhythm of 23–38 days, characterised by typical fluctuations of the hormones follicle-stimulating hormone, oestrogen, progesterone and luteinising hormone [25]. Ovulation separates the two major phases of the menstrual cycle, the follicular phase and luteal phase, and follows a sharp increase in luteinising hormone, oestrogen and follicle-stimulating hormone levels during the follicular phase. During the luteal phase, oestrogen and progesterone levels progressively increase until the mid-luteal phase, when their levels start to slowly decline. These changes in hormones are associated with changes in energy metabolism, and substrate preferences, as summarised in detail elsewhere [24]. Briefly, high oestrogen levels during the luteal phase improve glucose metabolism by increasing glucose availability and glycogen storage in skeletal muscle and increasing the availability of free fatty acids and oxidative energy metabolism. The effects of oestrogen on glucose metabolism are partly antagonised by progesterone and a high dietary carbohydrate intake can super-compensate muscle glycogen stores during the early follicular phase. In addition, oestrogen has complex effects on the respiratory and cardiovascular system (see Sect. 3). Despite an increased ventilatory drive during the luteal phase, the menstrual phase appears to not significantly influence exercise performance at low altitudes [24]. However, women raised or permanently living at high altitudes have been shown to have a slightly increased aerobic exercise capacity during the luteal phase [26], an effect not shown in female lowlanders exposed to acute hypoxia [27].
Menopause starts on average at about 51 years of age and results in the absence of the menstrual cycle. This process is characterised by a gradual loss of oestrogen, which is partly compensated for by increasing levels of follicle-stimulating hormone. These changes can perturb glucose and fatty acid metabolism, affecting multiple organ systems, including adipose tissue, bones, the gut microbiome and skeletal muscles [28]. Although sex hormones due to their regulation of metabolism, respiration, and the cardiovascular system likely influence responses to hypoxia and potentially the development of HAIs, this topic is insufficiently understood.

3 High-Altitude Illnesses

Acute mountain sickness (AMS) and high-altitude cerebral oedema (HACE) have been suggested to represent manifestations on a continuum of the cerebral form of HAIs [2931]. The risk of AMS steeply rises when unacclimatised individuals are exposed to increasing altitude, affecting more than 50% of them at altitudes above 4500 m [3135]. Fortunately, AMS only rarely (in about 1%) progresses to HACE [36]. While the course of AMS is usually benign and self-limited, HACE represents a life-threatening form of HAI associated with a 50% mortality when untreated [15, 35]. In this section, we review the existing literature on putative sex differences in HAIs.
The main physiological responses to acute high-altitude exposure include hyperventilation, haemoconcentration, sympathetic activation accompanied by a rise in heart rate and cardiac output, and in contrast to the peripheral and cerebral vasculature, pulmonary vasoconstriction and elevated pulmonary arterial pressure (PAP) [2, 4, 3739]. If these responses are too slow and insufficiently compensate for high-altitude-induced hypoxemia, elevated intracranial pressure, brain swelling, and oedema formation may provoke the development of AMS or even HACE [4044]. The activation and sensitisation of the trigemino-vascular system by both mechanical (e.g. intracranial pressure) and chemical factors (e.g. oxidative stress and inflammatory parameters) may cause headaches [31, 4547], and in rare cases, HACE may result from dysfunction or disruption of the blood–brain barrier [43, 48, 49]. The extent and course of these (patho)physiological responses to acute high-altitude exposure differ between individuals and probably specifically between sexes [50, 51]. Such differences may contribute to disparities in AMS development between men and women. A recent meta-analysis demonstrated a higher AMS prevalence in women compared with men with 15 out of 18 studies in favour of this tendency (risk ratio = 1.24, 95% confidence interval = 1.09–1.41) [51]. This may be explained by oestrogen-mediated intracranial hypertension and/or a lower antidiuretic hormone threshold, increasing fluid retention, which is associated with severe AMS [51]. Importantly, whether women really are at higher risk for AMS is debated and several studies (including some in the aforementioned meta-analysis [51]) did not find such a difference [52, 53].
Mechanisms explaining the potentially higher AMS prevalence in women remain largely unexplored. In contrast to other studies [54], some evidence suggests that women may become more hypoxemic during the first hours at altitude/in hypoxia [50, 55]. Camacho-Cardenosa et al. report a less pronounced ventilatory response to acute moderate normobaric hypoxia (fraction of inspired oxygen FIO2 = 0.15) in women than men [50]. This was associated with a significantly lower peripheral oxygen saturation (SpO2) in women during the first 2.5 h of hypoxia exposure, followed by similar SpO2 in women and men thereafter [50]. A somewhat steeper SpO2 decline in women was also reported during submaximal exercise during the first hours at high altitude (3500 m) [55]. If this will be confirmed as a common phenomenon, more severe hypoxemia may provoke a larger increase in intracranial pressure in women, initiating AMS development. In addition, oestrogen may aggravate pathological responses by upregulating vascular endothelial growth factor expression [56], which could provoke vascular leakage, increase exudation of tissue fluid, and consequently intracranial hypertension and/or even HACE [57]. This hypothesis is supported by higher AMS and HACE rates demonstrated in female pilgrims [58].
Like HACE, high-altitude pulmonary oedema is a rare but life-threatening form of HAI, prompting rapid treatment (e.g. by oxygen, nifedipine or descent) [37, 59]. High-altitude pulmonary oedema is a non-cardiogenic pulmonary oedema occurring subsequent to hypoxic pulmonary vasoconstriction and the associated increase in PAP and pulmonary capillary pressure [59, 60]. Genetic predisposition may favour a pronounced pulmonary vascular response (vasoconstriction) to hypoxia that seems to be accompanied by insufficient bioavailability of nitric oxide, likely related to exaggerated production of reactive oxygen species [61, 62].
Importantly, there is an inverse relationship between SpO2 (as well as arterial oxygen saturation, SaO2) and PAP [63, 64]. An initially (but likely transient) more pronounced reduction of SpO2 following hypoxia exposure in women (as suggested above) may result in elevated pulmonary vascular resistance and PAP. This assumption is supported by the findings of Fatemian et al. [65], but not by another study, in which individuals of both sexes were exposed to acute normobaric hypoxia equivalent to 4800 m [7], likely indicating different responses evoked by hypobaric and normobaric hypoxia [66, 67]. A larger high-altitude pulmonary oedema prevalence was observed in female pilgrims [58], which may be considered supportive of more severe hypoxia and higher PAP occurring in women during acute high-altitude/hypoxia exposure. A potential role of oestrogen for provoking or preventing high-altitude pulmonary oedema development and related consequences remains to be elucidated. Pulmonary hypertension occurs more frequently in women than men even though oestrogen was demonstrated to elicit beneficial effects on the pulmonary vasculature [68]. This “oestrogen paradox” may be explained by the complex and different effects exerted by endogenous and exogenous oestrogen and peripheral oestrogen metabolites [69]. However, in contrast to the varying effects of oestrogen on the pulmonary vasculature, oestrogen has been consistently found to promote favourable functioning of the right ventricle [70].
Finally, several studies demonstrated an increased risk of men dying from sudden cardiac events during exercise at low and high altitudes as well [71, 72]. Mechanisms explaining these sex differences are still not well understood. In addition to sex-specific differences in exercise behaviours [72], it seems likely that sex hormones (i.e. oestrogen) may contribute to some protection against illnesses, such as atherosclerosis and related coronary events [71, 73].

4 Uphill/Downhill Locomotion

Altitude exposure is often synonymous with a mountainous environment that requires locomotion on positive (uphill) or negative (downhill) slopes. While graded locomotion is extensively investigated [7480], the literature investigating whether there are sex differences in the energetics and biomechanics of incline walking and running is scarce [8186]. Women showed a higher stride frequency, a shorter stride length, greater non-sagittal hip and pelvis motion (i.e. higher peak hip internal rotation and adduction) and similar sagittal motion compared with men [81, 82]. Moreover, women displayed greater gluteus maximus activity during level and incline walking (1.2, 1.5 and 1.8 m/s at 0, 10 and 15%) and running (1.8, 2.7 and 3.6 m/s at 0, 10, and 15%) [82]. Gluteus medius and vastus lateralis activities increased more with speed and incline, respectively, in women than in men [82]. Overall, these results corroborate that men and women use different neuromuscular strategies with increasing efforts during walking and running at faster speeds or steeper inclines [82]. It has been shown that these biomechanical sex differences disappear when corrected for height or body mass or tested at the same relative walking and running speeds (in percent of maximal oxygen uptake [VO2max] or maximal aerobic speed) [81], suggesting that the observed biomechanical differences are mainly due to sex-related morphology differences (e.g. women have a lower body size on average).
Regardless of these sex differences in walking and running biomechanics, the energy cost of level and incline walking and running per kilogram of body mass transported (i.e. the energy expenditure per unit of distance; the walking/running economy) has been frequently reported to be similar between men and women [81, 8385]. Therefore, some authors suggested that both sexes are able to optimise their walking/running patterns according to their own characteristics [81]. However, the sex differences in walking and running economy remain controversial. In walking, there were no differences between sexes in the mass-normalised energy cost at slopes of 0% and 5%, whereas this parameter was higher in women than in men during walking at slopes of 10% and 15% [83]. This difference may be due to (1) the smaller size, (2) higher body mass distributed peripherally and (3) greater upper limb movements during walking in women compared with men [83]. In level running, Mendonca et al. [87] recently reported that the energy cost allometrically scaled by body mass assessed during running at absolute (8–12 km/hour) and relative (80–95% of VO2max) speeds was lower in women than in men matched for age and level of aerobic fitness (i.e. similar percent difference from predicted VO2max). Importantly, these results were obtained by testing women in the early follicular phase of their menstrual cycle, controlling the likely effect of the latter on running economy. These authors suggested that, from a performance perspective, the higher running economy may partially compensate for the lower VO2max in female runners [87]. However, controversial findings exist on sex differences in fatigue resistance and pacing in road and trail ultra-marathons [81, 88, 89]. Some authors reported greater fatigue resistance and better pacing in female ultra-marathon participants [81, 89], whereas others found that women tended to slow down more than men in the later stages of trail running ultra-marathons, despite the terrain (uphill and downhill) [88]. Further studies are needed to better understand sex differences in the energetics and biomechanics of incline walking and running, and fatigue resistance and pacing strategies in ultra-marathons controlling for fitness levels, anthropometric differences, menstrual cycle effect and the level of relative effort used for testing both sexes.
Overall, acute altitude exposure (i.e. altitude training camps) seems not to alter the energetics (i.e. energy expenditure above resting per distance unit: running economy) and biomechanics (i.e. spatiotemporal, kinematic and kinetic parameters used to assess gait pattern) of running in male runners [90]. Although chronic altitude exposure in native altitude male runners has been suggested to contribute to the higher running economy in East African runners than in European runners [91, 92], this is controversial [93], with a lack of evidence investigating the specific biomechanical determinants and sex differences.

5 Altitude/Hypoxic Training

Athletes commonly use altitude/hypoxia as a stimulus to induce physiological adaptations in order to prepare for competitions at altitude or to improve sea-level performance [9497]. Historically, altitude/hypoxic training was popularised among endurance athletes and typically involved chronic hypobaric or normobaric hypoxic exposure such as “Live High-Train High” or “Live High-Train Low” (LHTL) strategies [98]. More recently, the development of “Live Low-Train High” or intermittent hypoxia interventions [99] has affected the evolution of the panorama of altitude/hypoxic training [100]. However, studies specifically reporting effects on women are scarce and, with few exceptions, mostly focused on men or lacked specific comparisons between sexes. In this section, we describe the putative differences in the effect of altitude/hypoxic training between men and women.
In acute hypoxia, aerobic performance is altered in both trained and untrained men, with a larger drop in VO2max in male athletes than in sedentary individuals [101104]. Women (and particularly highly trained women) may experience more severe respiratory limitations during exercise than men [5, 6, 105107] and they appear to be more susceptible to exacerbated exercise-induced arterial desaturation and hypoxemia (67% of healthy young women [108] vs 0% of untrained or moderately trained men and 52% of male elite athletes [109] were reported to be hypoxemic during maximal cycling exercise). This is thought to be due to higher work of breathing and reduced diffusion capacity in women during maximal exercise in acute hypoxia compared with men [5, 6], resulting in mechanical ventilatory constraint and/or an inadequate ventilatory drive. While some studies did not detect sex differences in the VO2max decline with a gain in altitude [110], sufficient hyperventilation may actually be more limited in women than men because of a more pronounced ventilatory restriction [111]. This effect was indeed observed in women [112, 113], with a significantly larger decrease in VO2max in trained women than untrained women above 2500 m [113, 114]. Consideration of hormonal status and training status/type of exercise for the evaluation of sex differences in altitude training will be crucial in future studies. In line with a previous observation showing that elite female endurance athletes already exhibit altered VO2max at an altitude of 580 m [101], a greater decrease in VO2max in endurance-trained women versus untrained women is due to a lower SpO2 at maximal exercise [113] resulting from diffusion limitation [114, 115]. Interestingly, the decrease in VO2max was smaller in women than in men during 6–7 days trekking at 4350 m [116], suggesting that hormones represent one factor determining the sensitivity to hypoxia [13, 117].
The primary aim of altitude/hypoxic training at moderate altitudes (e.g. “Live High-Train High” or LTHL at 2000–2500 m) is to stimulate erythropoiesis and subsequent haematological adaptation [118124], leading to enhanced VO2max and competitive performance [125]. Although the hypoxia-induced individual erythropoietic response is highly variable [123, 126], for every 100 h of either hypobaric or normobaric hypoxic exposure over a minimum of 2 weeks [120, 127], athletes may achieve a ~ 1.0–1.1% increase in total haemoglobin mass (Hbmass). This dose–response relationship may be sex dependent [128130]. For instance, a significant increase was observed in both erythropoietin [EPO] (31%) and reticulocyte count (5%) after 11 days of LHTL at 2500 m in six female elite cross-country skiers [131]. Similarly small but relevant LHTL dose–response improvements were reported in Olympic level female water polo athletes [132]. In contrast, six female road cyclists who underwent 12 days of LHTL (night at 2650 m and training at 600 m) exhibited no significant changes in haematological variables (i.e. reticulocyte count, mean corpuscular haemoglobin, reticulocyte haemoglobin and Hbmass) [133], with questionable effects on performance (i.e. + 2.3% and − 1.1% changes in 4-min and 30-min time-trial mean power output after LHTL vs + 0.1% and + 2.4% in sea-level controls) [134]. Of note, the Hbmass increase at moderate altitude (2600 m) was smaller in women (+ 6.6%) than in men (+ 12%) at equal peak oxygen uptake, although different group sizes and categories (i.e. trained vs untrained) in the separately performed studies on men and women complicate interpretation [128130].
Numerous confounding factors such as altitude type (i.e. hypobaric vs normobaric), hypoxic dose (i.e. duration and level of exposure) [120, 135138] and possibly initial Hbmass level [139], iron deficiency, illness, inflammation or insufficient energy availability [140] are supposed to blunt the erythropoietic response to altitude exposure and consecutive haematological adaptation [141144]. The cyclic variation in sex hormones [145, 146] also plays a role in the regulation of EPO production in hypoxia [147]. During the menstrual cycle, the large change (approximately ten-fold) in estradiol [148], an EPO inhibitor [149], and the significant but probably not clinically relevant increase in testosterone [150], which is well known to promote EPO production [151], likely alter the hypoxia-induced erythropoietic response [147]. Possible protective effects of oestrogen and progesterone from oxidative damage [152] may also play a role in the sex difference in hypoxia tolerance and subsequent haematological adaptations [117, 129]. Although several studies did not report differences in Hbmass response to altitude between sexes [153, 154], this could be because of statistical flaws (e.g. a comparison involving smaller numbers of women) [122, 142, 154156]. In contrast, Heikura et al. [157] recently reported higher relative and percentage Hbmass increases in women, compared with men. They further found lower pre-hypoxic exposure Hbmass levels in amenorrheic versus eumenorrheic women, suggesting that menstrual dysfunction, an indicator of long-term low energy availability, may influence these adaptations or their magnitude [157]. Of note, whereas menstrual blood loss has no measurable effect on Hbmass across phases of the menstrual cycle in eumenorrheic women, oral contraceptive use, which increases serum iron levels by decreasing menstrual blood loss, contributes to greater oxygen-carrying capacity and possibly greater VO2max [145]. Overall, the consequences and safety of different types of hormonal contraceptives (progestin only and combined) in relation to athletic performance, particularly in combination with hypoxia, require further scrutiny. This is becoming more important with the increasing use of hormonal contraceptives by female athletes to prevent perceived menstrual-linked impairments of training or competition performance [158]. A hypoxia-induced Hbmass response may not be detectable because of an insufficient hypoxic dose [137] or limited potential for adaptation [159]. Relevant Hbmass and performance enhancement [160] may still remain possible, even if baseline Hbmass levels are already high [139]. Moreover, other non-haematological adaptations to hypoxia (e.g. running economy, glycolysis and buffering capacity) may occur independently of Hbmass change [160, 161]. Given the wide intra-individual and inter-individual variations at altitude/in hypoxia response [123] and the uncertain evidence regarding peak performance timing (likely dependent on the combination of acclimatisation to altitude training camps and subsequent deacclimatisation responses) [118], specific periodisation and individualisation of training are critical aspects to consider [162]. These factors are likely affected by physiological sex-based differences.
Another means to improve performance is “Live Low-Train High”. In “Live Low-Train High”, the low hypoxic dose is unlikely to enhance Hbmass but the combination of hypoxic stress with high-intensity interval exercise plays a role on adaptations at the molecular level in skeletal muscle tissue (e.g. mitochondrial efficiency and pH/lactate regulation) [98, 163167]. Aerobic training in chronic hypoxia in female trekkers did not induce substantial mitochondrial benefits (mitochondrial biogenesis, mitochondrial respiration) or improvements in muscle fibre composition (including distribution of muscle fibre types I and IIA/IIX) [168]. However, hypoxia exposure in young eumenorrheic women induced an, at least partially, α-adrenergic pathway-mediated, exercise-independent upregulation of interleukin-6 (a stress response well known for exercise) [169], with haematological changes related to the immune system [170, 171]. Similarly, a blood-related signature of hypoxic high-intensity exercise was reported in elite female speed skaters [172]. In this study, the major changes associated with hypoxic exercise were related to innate immune responses (inflammation), the hypoxic stress response and platelet activity. In amateur Korean women runners, 6 weeks of intermittent hypoxia training (3000 m) improved endurance performance; concomitantly, the oxygen-carrying capacity (although not related to erythropoiesis) and haemodynamic functions were improved, with immune system-related haematological parameters remaining in the “normal” range [173]. Similarly, repeated-sprint training in hypoxia (RSH) did not impair mucosal immune function [170], while providing putative performance benefits [174]. In the absence of direct comparisons of RSH effects between women and men, and based on the lower sensitivity of women to hypoxia compared with men [175], the effect of RSH might be smaller in female athletes. To date, only a few studies [176, 177] have investigated RSH in female athletes. Four weeks of RSH (2 × 10 × 7-s sprints with 30-s rest periods between sprints; FIO2 = 0.145; twice per week) did not modify VO2max but resulted in an about a three-fold greater increase in peak power output, as well as power output during all sprints, compared with similar training in normoxia [177]. It was hypothesised that power output impairment during RSH would be greater among women than men because of their higher proportion of type-1 oxidative fibres and anaerobic contribution [178]. However, a marked power output decrease was noticeable [176] and accompanied by large increases in blood lactate concentrations during RSH, suggesting that glycolytic metabolism was augmented under hypoxia in women [176]. A direct sex comparison was recently performed by Paez et al. [6], who reported a lower tolerance to anaerobic glycolysis observed in women versus men performing repeated sprints (30 s full effort and 20 s recovery until failure) either in hypobaric hypoxia (3264 m) or in normoxia [6]. A negative energy balance and unfavourable iron status (baseline s-ferritin < 20 μg·L−1 for women and < 30 μg·L-1 for men) may decrease exercise performance, physical, and health conditions particularly in women and may perturb the menstrual cycle [179]. Accordingly, further research is warranted to clarify sex differences in performance and physiological variables (e.g., SpO2, metabolites and endocrine responses) during RSH. This is important for potential future applications (e.g. managing weight and preventing obesity in women) [180, 181].
Finally, resistance training in hypoxia can lead to structural and functional skeletal muscle adaptations, but potential sex-based differences have not been investigated [182]. While no difference was found between women and men performing squat and bench press at both maximal (i.e. one-repetition maximal) and submaximal (i.e. 60% one-repetition maximal) intensity in hypoxia (2000 m and 3000 m) compared to normoxia [182], whether the higher fatigue resistance reported in women [183, 184] would affect training remains to be clarified. For all altitude/hypoxic training methods, more studies are needed to describe and quantify the sex-based physiological effects (e.g. morphological, biochemical) and their possible dose–response relationships.

6 Intermittent Hypoxia: Hyperoxia Conditioning

The interest in the application of protocols consisting of intermittent periods of mild hypoxia for preventive or therapeutic purposes has increased substantially during the past few decades [185]. Such protocols typically comprise cycles of repeated (usually three to six times per cycle), short (several minutes) hypoxia exposures, usually with FIO2 between 0.10 and 0.13. The cycles are often applied about 15–20 times across several (3–6) weeks, with a maximum 1 session per day. The short periods of hypoxia are interspersed with either normoxic phases of similar duration or hyperoxic phases, the latter possibly improving recovery from hypoxic stress and through additional benefits via the induction of complementary adaptations [19, 186].
The efficiency demonstrated for specific intermittent hypoxia protocols to counteract a cognitive decline in ageing [20], neurological and psychiatric diseases [20, 22], regeneration of the nervous system after brain and spinal cord injury [187], improved cardiovascular and ventilatory functions [2, 188] and ameliorated sleep-disordered breathing [187] is based on numerous cellular and systemic responses and adaptations to hypoxic stress. Among the probably most important mechanisms contributing to benefits of therapeutic/preventive intermittent hypoxia are cardiovascular adaptations (leading, for example, to reduced blood pressure in male patients with hypertensive obstructive sleep apnoea [189]), respiratory and autonomic plasticity [187], metabolic adaptations and regulation of inflammation at the systemic level [4]. At the cellular level, reduced reliance on oxygen in energy metabolism, reduced oxidative stress and increased resilience to hypoxic insults are major beneficial effects [4, 190].
Whether intermittent hypoxia elicits those beneficial effects or results in injury depends largely on the hypoxic dose and individual vulnerabilities [4, 190]. Severe intermittent hypoxia associated with diseases such as obstructive sleep apnoea does not lead to beneficial adaptations but to maladaptation and cellular damage. Obstructive sleep apnoea prevalence is higher in men compared with women [191193]. In women, the prevalence increases with age, especially after menopause [191, 193]. Hormonal replacement therapy is associated with reduced obstructive sleep apnoea prevalence in post-menopausal women, indicating that female sex hormones play a protective role [191].
Potential differences in the responses to intermittent hypoxia interventions in terms of efficiency and safety between men and women are insufficiently explored, as most studies were either performed in only male or female individuals or no comparisons between male and female study participants were conducted. Such differences are, however, suggested by several recent findings that require confirmation for the individual selection of optimally calibrated protocols.
Recently, a more severe hypoxemia in response to 5 min of hypoxia (FIO2 = 0.10) in older women [194] and after 7 h of FIO2 = 0.15 in young women [50] compared with age-matched men has been reported. This observation is in agreement with previously described differences in oxygen transport [195] and in the respiratory system, including smaller conducting airways relative to lung size [196], which may impair ventilation in exercise conditions faster in women than in men. Consequentially, this may cause more severe hypoxemia during exercise in women [197]. The more pronounced changes in ventilation may be related to a more severe effect of the hypoxic conditions at high altitudes on nocturnal periodic breathing in men compared with women [198]. However, other studies did not observe major sex differences in ventilation in hypoxia. Wadhwa and colleagues observed similar increases in minute ventilation in men and women after eight 4-min episodes of hypoxia (end tidal partial pressure of oxygen maintained at 50 mmHg) interspersed with 5 min of normoxia (end tidal partial pressure of oxygen = 100 mmHg) [199]. Conversely, these authors observed sustained depression of parasympathetic nervous system activity and increased sympathovagal balance in men after hypoxia, which was not evident in women [199]. A comparison of physiological responses to high altitude (3480 m) after an exposure time of 2–5 h further revealed significant increases in blood pressure both at rest and during exercise in men (aged 22–67 years) but not in women (aged 20–61 years) [200]. Consideration of these physiological differences is important for study designs for intermittent hypoxia applications.
In conclusion, intermittent hypoxia protocols for preventive or therapeutic purposes hold great promise but sex differences in efficiency and safety are expected based on different responses to hypoxia in men and women, which has not been systematically assessed yet. In addition to differences in physiological responses, sex differences in prevalence, pathology, medication and symptoms also have to be taken into account when selecting optimal intermittent hypoxia protocols for therapeutic purposes in specific patient populations, as recently discussed for ischaemic stroke [201].

7 Practical Considerations for Mountain Sports

Despite the above-described distinct (patho)physiological responses of women to hypoxia, a translation into practical considerations and recommendations to support female athletes and mountaineers to better acclimatise, prepare and perform in mountain sports is only possible to a limited degree. This is because of the scarcity of well-controlled studies specifically comparing differences in hypoxia responses in women and men.
Several high-quality reviews have been published on the potential sex differences in ultra-marathons [81, 89, 202]. As they did not focus on mountain ultra-marathons, potential influences of the sex differences in response to altitude/hypoxia were not discussed in those reviews. In a recent study on sex differences in mountain ultra-marathon athletes [203], the ventilatory and pulmonary limitations due to “intermittent altitude” were discussed. Recently, an interesting review on the potential sex differences to altitude combined with other stressors (heat, cold) has been published [23] and the authors argued that how this translates to performance or health outcomes remains under-investigated. To our knowledge, there are no comprehensive practical recommendations based on the physiological sex differences in responses to hypoxia.
Therefore, in this section, we aim to derive practical recommendations relating to specific responses to altitude/hypoxia in women (e.g. respiratory limitation, iron deficiency, prevalence of AMS, lower hypoxia-induced vasoconstriction, greater hypoxemia and a decrease in VO2max, higher hypoxic ventilatory response during the luteal phase, different shift in substrate preference, different muscle composition) which, however, require further scientific substantiation. Table 1 summarises these applications and three estimated levels of evidence (i.e. high, moderate and speculative, which require further exploration) are indicated.
Table 1
Specific characteristics of women in hypoxia and recommendations in mountain sports
Differences in women vs men
Consequences/recommendations for women
References
Evidence
Ventilation, larger expiratory limitations
Respiratory muscle training prior to or during altitude/hypoxic sojourn may be more beneficial
[106]
***
Higher risk of iron deficiency
Early and appropriate iron supplementation prior to and during altitude/hypoxic sojourn
[207]
***
Potentially higher risk for AMS
Pre-acclimatisation, slow ascent and potentially pharmacological prevention (acetazolamide). A chemosensitivity test could be considered
[51]
**
Lower vasoconstriction
Greater vasodilation
Lower risk for sleep apneas or hypertension in prolonged exposure to altitude/hypoxia
Possibly increased health benefits from hypoxia conditioning
[10]
**
Greater hypoxemia and decrease in VO2max
Monitoring of hypoxemia and appropriate reduction of training intensity during chronic altitude/hypoxia exposure
[194]
**
HVR higher during luteal phase
Possible reduced risk for AMS during the luteal phase?
[12]
*
Lower increase in CHO reliance
Lower risk of hypoglycaemia? Lower requirement for increased carbohydrate intake at altitude?
[221]
*
Muscle composition, more slow-twitch fibres
Effects on improvement in economy and on RSH
[222]
*
AMS acute mountain sickness, CHO carbohydrate, HVR hypoxic ventilatory response, RSH repeated-sprint training in hypoxia, VO2max maximal oxygen uptake.
Level of evidence: *** high; ** moderate; * speculative

7.1 Respiratory Muscle Training During Pre-acclimatisation

Before travelling to a high altitude, several pre-acclimatisation strategies using intermittent hypoxia exposures have proven effective for eliciting ventilatory acclimatisation (e.g. a decrease in end-tidal PCO2 due to hypoxia-induced hyperventilation and an increase in SpO2). Such a pre-acclimatisation strategy may be more effective when performed in hypobaric than in normobaric hypoxia [204], with the ventilatory benefits lasting for several days [205, 206]. However, the differences in physiological responses to hypobaric versus normobaric hypoxia remain insufficiently understood and depend strongly on the hypoxic dose. Because women elicit a larger expiratory flow limitation during hyperventilation [106], this suggests that combining muscle respiratory training and hypoxic pre-acclimatisation methods could be more beneficial in women than in men. One may speculate that the ventilatory benefits could improve performance specifically for maximal-intensity exercise at a high altitude.

7.2 Higher Risk of Iron Deficiency

Adequate pre-altitude iron stores are needed for haematological adaptations during altitude exposure [96, 119] and women are at higher risks of iron deficiency [207]. Therefore, monitoring iron profiles prior to altitude exposure can be useful and is an important factor in training/performance optimisation in elite athletes [208]. Early checks (i.e. 6 weeks prior to an altitude sojourn) are recommended for female athletes. Systematic large iron supplementation (210 mg daily) in female endurance athletes has been suggested [119], although the optimal level of iron supplementation in athletes with clinically normal iron stores remains a subject of debate [209].

7.3 Higher Prevalence of AMS

As women appear to have a statistically higher AMS risk (see Sect. 3), systematic screening of AMS based on the Lake Louise Scoring system is recommended. The Lake Louise Scoring system is a self-assessment questionnaire, rating the severity (no discomfort = 0; mild symptoms = 1; moderate symptoms = 2; severe symptoms = 3) of the following criteria: headache, nausea, dizziness and fatigue [210]. For women without any previous mountain experience, a chemosensitivity test (i.e. the assessment of the relationship between pulmonary ventilation and SpO2) prior to the ascent can also be an indication about their physiological responses to hypoxia [36, 211]. For those who have access to altitude/hypoxic facilities, long pre-acclimatisation (about 2 weeks with > 8 h/day at progressively increasing altitudes) is preferable to shorter exposures [204]. A slow ascent (< 400 m/day) further reduces the AMS risk.

7.4 Lower Vasoconstriction and Larger Vasodilation

Sympathetic activation, a pivotal response to altitude [212, 213], has important pathophysiological consequences and regulates vasoconstriction/dilatation. Women frequently exhibit lower vasoconstriction and greater hypoxia-induced vasodilation [8]. This could mean that they are at a lower risk of increasing blood pressure or sleep apnoea during prolonged exposure to altitude/hypoxia. Conversely, the health-related vascular benefits of therapeutic hypoxia treatment [4] may be larger in women than in men for a similar hypoxic dose.

7.5 Greater Hypoxemia and Reduction in VO2max

The potential sex difference regarding the risk for hypoxemia of women during exercise in hypoxia requires consideration for high-altitude training but needs to be confirmed by future research. In the case of pronounced hypoxemia, training intensity may have to be decreased more in women than in men during chronic altitude/hypoxic exposure. However, as no direct comparisons of this effect in women and men under consideration of training status (an important determinant of exercise-induced hypoxemia, see Sect. 4) are available, the possibly sex-dependent association of altitude/hypoxic training camp/sojourn and hypoxemia requires further investigation. Based on the current state of knowledge, the recommendations of strict control of exercise intensities, particularly during the first days (i.e. acclimatisation phase), appear to be particularly relevant for women [98, 214].

7.6 Higher Hypoxic Ventilatory Response During the Luteal Phase

There are several reports suggesting a higher hypoxic ventilatory response during the luteal phase [27, 215] favouring better oxygenation at a high altitude [13]. In theory, this would support the assumption that the mid-luteal phase would be the most appropriate timing for an acute exposure to a high altitude (i.e. summiting a high peak), while hypoxic tolerance tests should be performed in the follicular phase (when hypoxic ventilatory response is the lowest) to minimise the risk during subsequent exposure. Further work is required to confirm the relevance of these observations.

7.7 Lower Increase in Carbohydrate Reliance at Altitude/in Hypoxia

Altitude exposure changes substrate oxidation for a given exercise intensity. It reduces the reliance on lipids and increases dependence on carbohydrate oxidation during exercise [216, 217], with a left shift of the cross-over point, i.e. power output at which energy from carbohydrate-derived fuels predominates over energy from lipids [218]. These shifts with greater carbohydrate utilisation at high altitudes [219] have nutritional consequences, such as greater dietary carbohydrate requirements to replace muscle glycogen and prevent hypoglycaemia during exercise [208, 220]. Women are less sensitive to this substrate shift [221] and therefore may require a smaller increase in carbohydrate intake at altitude. However, this may depend on the sex-hormonal status, for example, owing to the important regulation by oestrogen of glucose and fatty acid metabolism (see Sect. 2).

7.8 Different Muscle Composition with Higher Slow-Twitch Fibre Proportion

There are probably several consequences of sex differences in muscle composition [222] for altitude/hypoxia training. Although speculative at this stage, a potentially improved economy (i.e. lower oxygen consumption at a given velocity) in response to altitude-induced changes in energy metabolism may differ between women and men. Such an improvement in economy has been reported following altitude exposure [223, 224] but, to our knowledge, there is no direct comparison between sexes.
Another putative consequence may be to determine the optimal type of RSH sessions (see Sect. 5). It is known that hypoxia reduces the power output during RSH at a higher oxidative but not glycolytic contribution [225]. With more slow-twitch fibres, the oxidative-glycolytic balance that is influenced by sprint duration and the exercise:rest ratio may be different between women and men. One may hypothesise that, in female athletes, RSH would require a less severe hypoxic stimulus to induce the expected peripheral benefits [226].

7.9 Summary

Unfortunately, the scientific literature on altitude/hypoxia training does currently provide only limited information on sex differences affecting exercise in hypoxia. The eight points proposed above thus remain largely speculative and are important avenues for further research.
Future studies should consider the fitness level, matching women and men for training status and maximal oxygen consumption with adequate normalisation per kilogram of body mass or fat-free mass. It is recommended to follow adequate study designs to investigate sex differences in responses to altitude/hypoxia and exercise performance [227, 228].

8 Conclusions

In this review, we overviewed the potential implications of sex differences in responses to altitude/hypoxia on performance and health. To our knowledge, this is the first attempt to translate scientific findings into practical recommendations.
The (patho-)physiological responses to altitude/hypoxia are highly heterogeneous between individuals. They determine the development of HAIs and the outcome of altitude/hypoxic training or hypoxia conditioning on performance and health and thus constitute important topics for research and applications in sports and clinics. Despite that, what constitutes inter-individual differences is poorly understood. Clearly, certain pathologies (especially respiratory diseases, such as chronic pulmonary obstructive disease), the individual genetic make-up, age and fitness modulate responses to hypoxia, particularly if combined with exercise. Here, we focused on the role of sex differences that emerge as important factors in the regulation of the body’s reaction to hypoxia. Some of the most relevant of these differences are summarised in Table 1. These factors should be considered for future research on hypoxia-related sex differences, particularly if altitude training and clinical applications of hypoxia are concerned, as they will affect the selection of the optimal hypoxic dose regarding safety and efficiency. Despite the poverty of scientific evidence on the topic, there are still several implications from which recommendations can be derived:
(1)
Various sex-dependent (patho)physiological reactions to hypoxia could explain the potentially increased vulnerability of women to develop AMS. Adequate acclimatisation, slow ascent speed and/or preventive medication, (e.g. by acetazolamide) are solutions.
 
(2)
Targeted training of the respiratory musculature could be a valuable preparation for altitude training in women.
 
(3)
Sex hormones influence hypoxia responses and hormonal-cycle and/or menstrual-cycle phases and therefore may be factors in acclimatisation to altitude and efficiency of altitude/hypoxic training. This should be considered for altitude sojourns and/or training but especially for future research.
 
As many of the recommendations or observations of the present work remain partly speculative, further quality research on female athletes is required not only for sports in general [146, 227, 228] but also for sports at altitude/in hypoxia.

Declarations

Conflicts of Interest/Competing Interests

Johannes Burtscher, Antoine Raberin, Franck Brocherie, Davide Malatesta, Giorgio Manferdelli, Tom Citherlet, Bastien Krumm, Nicolas Bourdillon, Juliana Antero, Letizia Rasica, Martin Burtscher and Grégoire P. Millet have no conflicts of interest that are directly relevant to the content of this review.

Ethics Approval

Not applicable.
Not applicable.
Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

GPM conceived the idea for this review. All authors participated in the literature search, contributed to drafting the first version of the manuscript and revised the original manuscript. All authors read and approved the final version.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Literatur
2.
Zurück zum Zitat Mallet RT, Burtscher J, Richalet JP, Millet GP, Burtscher M. Impact of high altitude on cardiovascular health: current perspectives. Vasc Health Risk Manag. 2021;17:317–35.PubMedPubMedCentralCrossRef Mallet RT, Burtscher J, Richalet JP, Millet GP, Burtscher M. Impact of high altitude on cardiovascular health: current perspectives. Vasc Health Risk Manag. 2021;17:317–35.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Bärtsch P, Saltin B. General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports. 2008;18(s1):1–10.PubMedCrossRef Bärtsch P, Saltin B. General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports. 2008;18(s1):1–10.PubMedCrossRef
4.
Zurück zum Zitat Burtscher J, Mallet RT, Pialoux V, Millet GP, Burtscher M. Adaptive responses to hypoxia and/or hyperoxia in humans. Antioxid Redox Signal. 2022;37(13–15):887–912.PubMedCrossRef Burtscher J, Mallet RT, Pialoux V, Millet GP, Burtscher M. Adaptive responses to hypoxia and/or hyperoxia in humans. Antioxid Redox Signal. 2022;37(13–15):887–912.PubMedCrossRef
5.
Zurück zum Zitat Dominelli PB, Molgat-Seon Y. Sex, gender and the pulmonary physiology of exercise. Eur Resp Rev. 2022;31(163): 210074.CrossRef Dominelli PB, Molgat-Seon Y. Sex, gender and the pulmonary physiology of exercise. Eur Resp Rev. 2022;31(163): 210074.CrossRef
6.
Zurück zum Zitat Paez V, Rodriguez-Fernandez M, Silva-Urra J, Nunez-Espinosa C, Lang M. Maximal pulmonary ventilation and lactate affect the anaerobic performance in young women exposed to hypobaric hypoxia. Front Physiol. 2023;14:1110477.PubMedPubMedCentralCrossRef Paez V, Rodriguez-Fernandez M, Silva-Urra J, Nunez-Espinosa C, Lang M. Maximal pulmonary ventilation and lactate affect the anaerobic performance in young women exposed to hypobaric hypoxia. Front Physiol. 2023;14:1110477.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Boos CJ, Mellor A, O’Hara JP, Tsakirides C, Woods DR. The effects of sex on cardiopulmonary responses to acute normobaric hypoxia. High Alt Med Biol. 2016;17(2):108–15.PubMedCrossRef Boos CJ, Mellor A, O’Hara JP, Tsakirides C, Woods DR. The effects of sex on cardiopulmonary responses to acute normobaric hypoxia. High Alt Med Biol. 2016;17(2):108–15.PubMedCrossRef
8.
Zurück zum Zitat Casey DP, Shepherd JR, Joyner MJ. Sex and vasodilator responses to hypoxia at rest and during exercise. J Appl Physiol (1985). 2014;116(7):927–36.PubMedCrossRef Casey DP, Shepherd JR, Joyner MJ. Sex and vasodilator responses to hypoxia at rest and during exercise. J Appl Physiol (1985). 2014;116(7):927–36.PubMedCrossRef
9.
Zurück zum Zitat Rasica L, Inglis EC, Iannetta D, Soares RN, Murias JM. Fitness level- and sex-related differences in macro- and microvascular responses during reactive hyperemia. Med Sci Sports Exerc. 2022;54(3):497–506.PubMedCrossRef Rasica L, Inglis EC, Iannetta D, Soares RN, Murias JM. Fitness level- and sex-related differences in macro- and microvascular responses during reactive hyperemia. Med Sci Sports Exerc. 2022;54(3):497–506.PubMedCrossRef
10.
Zurück zum Zitat Jacob DW, Harper JL, Ivie CL, Ott EP, Limberg JK. Sex differences in the vascular response to sympathetic activation during acute hypoxaemia. Exp Physiol. 2021;106(8):1689–98.PubMedCrossRef Jacob DW, Harper JL, Ivie CL, Ott EP, Limberg JK. Sex differences in the vascular response to sympathetic activation during acute hypoxaemia. Exp Physiol. 2021;106(8):1689–98.PubMedCrossRef
11.
Zurück zum Zitat Patel HM, Heffernan MJ, Ross AJ, Muller MD. Sex differences in forearm vasoconstrictor response to voluntary apnea. Am J Physiol Heart Circ Physiol. 2014;306(3):H309–16.PubMedCrossRef Patel HM, Heffernan MJ, Ross AJ, Muller MD. Sex differences in forearm vasoconstrictor response to voluntary apnea. Am J Physiol Heart Circ Physiol. 2014;306(3):H309–16.PubMedCrossRef
12.
Zurück zum Zitat Richalet JP, Lhuissier F, Jean D. Ventilatory response to hypoxia and tolerance to high altitude in women: influence of menstrual cycle, oral contraception, and menopause. High Alt Med Biol. 2020;21(1):12–9.PubMedCrossRef Richalet JP, Lhuissier F, Jean D. Ventilatory response to hypoxia and tolerance to high altitude in women: influence of menstrual cycle, oral contraception, and menopause. High Alt Med Biol. 2020;21(1):12–9.PubMedCrossRef
13.
Zurück zum Zitat Leon-Velarde F, Rivera-Chira M, Tapia R, Huicho L, Monge CC. Relationship of ovarian hormones to hypoxemia in women residents of 4,300 m. Am J Physiol Regul Integr Comp Physiol. 2001;280(2):R488–93.PubMedCrossRef Leon-Velarde F, Rivera-Chira M, Tapia R, Huicho L, Monge CC. Relationship of ovarian hormones to hypoxemia in women residents of 4,300 m. Am J Physiol Regul Integr Comp Physiol. 2001;280(2):R488–93.PubMedCrossRef
14.
Zurück zum Zitat Luks A, Ainslie P, Lawley J, Roach R, Simonson T. Travelers and workers at high altitude. Boca Raton: CRC Press; 2021. p. 75–90. Luks A, Ainslie P, Lawley J, Roach R, Simonson T. Travelers and workers at high altitude. Boca Raton: CRC Press; 2021. p. 75–90.
15.
Zurück zum Zitat Bärtsch P, Swenson ER. Clinical practice: acute high-altitude illnesses. N Engl J Med. 2013;368(24):2294–302.PubMedCrossRef Bärtsch P, Swenson ER. Clinical practice: acute high-altitude illnesses. N Engl J Med. 2013;368(24):2294–302.PubMedCrossRef
16.
Zurück zum Zitat Berendsen RR, Bärtsch P, Basnyat B, Berger MM, Hackett P, Luks AM, et al. Strengthening altitude knowledge: a Delphi study to define minimum knowledge of altitude illness for laypersons traveling to high altitude. High Alt Med Biol. 2022;23(4):330–7.PubMedCrossRef Berendsen RR, Bärtsch P, Basnyat B, Berger MM, Hackett P, Luks AM, et al. Strengthening altitude knowledge: a Delphi study to define minimum knowledge of altitude illness for laypersons traveling to high altitude. High Alt Med Biol. 2022;23(4):330–7.PubMedCrossRef
17.
Zurück zum Zitat Millet GP, Faiss R, Brocherie F, Girard O. Hypoxic training and team sports: a challenge to traditional methods? Br J Sports Med. 2013;47(Suppl. 1):i6-7.PubMedCrossRef Millet GP, Faiss R, Brocherie F, Girard O. Hypoxic training and team sports: a challenge to traditional methods? Br J Sports Med. 2013;47(Suppl. 1):i6-7.PubMedCrossRef
18.
Zurück zum Zitat Millet GP, Brocherie F. Altitude-induced responses observed in the control group. Scand J Med Sci Sports. 2018;28(10):2243.PubMedCrossRef Millet GP, Brocherie F. Altitude-induced responses observed in the control group. Scand J Med Sci Sports. 2018;28(10):2243.PubMedCrossRef
19.
Zurück zum Zitat Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol. 2014;307(10):R1181–97.PubMedPubMedCentralCrossRef Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol. 2014;307(10):R1181–97.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Burtscher J, Mallet RT, Burtscher M, Millet GP. Hypoxia and brain aging: neurodegeneration or neuroprotection? Ageing Res Rev. 2021;68: 101343.PubMedCrossRef Burtscher J, Mallet RT, Burtscher M, Millet GP. Hypoxia and brain aging: neurodegeneration or neuroprotection? Ageing Res Rev. 2021;68: 101343.PubMedCrossRef
21.
Zurück zum Zitat Parati G, Agostoni P, Basnyat B, Bilo G, Brugger H, Coca A, et al. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions: a joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine. Eur Heart J. 2018;39(17):1546–54.PubMedPubMedCentralCrossRef Parati G, Agostoni P, Basnyat B, Bilo G, Brugger H, Coca A, et al. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions: a joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine. Eur Heart J. 2018;39(17):1546–54.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Burtscher J, Niedermeier M, Hüfner K, van den Burg E, Kopp M, Stoop R, et al. The interplay of hypoxic and mental stress: implications for anxiety and depressive disorders. Neurosci Biobehav Rev. 2022;2(138): 104718.CrossRef Burtscher J, Niedermeier M, Hüfner K, van den Burg E, Kopp M, Stoop R, et al. The interplay of hypoxic and mental stress: implications for anxiety and depressive disorders. Neurosci Biobehav Rev. 2022;2(138): 104718.CrossRef
23.
Zurück zum Zitat Wait SO, Charkoudian N, Skinner JW, Smith CJ. Combining hypoxia with thermal stimuli in humans: physiological responses and potential sex differences. Am J Physiol Regul Integr Comp Physiol. 2023;324(6):R677–90.PubMedCrossRef Wait SO, Charkoudian N, Skinner JW, Smith CJ. Combining hypoxia with thermal stimuli in humans: physiological responses and potential sex differences. Am J Physiol Regul Integr Comp Physiol. 2023;324(6):R677–90.PubMedCrossRef
24.
Zurück zum Zitat Oosthuyse T, Bosch AN. The effect of the menstrual cycle on exercise metabolism: implications for exercise performance in eumenorrhoeic women. Sports Med. 2010;40(3):207–27.PubMedCrossRef Oosthuyse T, Bosch AN. The effect of the menstrual cycle on exercise metabolism: implications for exercise performance in eumenorrhoeic women. Sports Med. 2010;40(3):207–27.PubMedCrossRef
25.
Zurück zum Zitat Reilly T. The menstrual cycle and human performance: an overview. Biol Rhythm Res. 2000;31(1):29–40.CrossRef Reilly T. The menstrual cycle and human performance: an overview. Biol Rhythm Res. 2000;31(1):29–40.CrossRef
26.
Zurück zum Zitat Brutsaert TD, Spielvogel H, Caceres E, Araoz M, Chatterton RT, Vitzthum VJ. Effect of menstrual cycle phase on exercise performance of high-altitude native women at 3600 m. J Exp Biol. 2002;205(Pt 2):233–9.PubMedCrossRef Brutsaert TD, Spielvogel H, Caceres E, Araoz M, Chatterton RT, Vitzthum VJ. Effect of menstrual cycle phase on exercise performance of high-altitude native women at 3600 m. J Exp Biol. 2002;205(Pt 2):233–9.PubMedCrossRef
27.
Zurück zum Zitat Beidleman BA, Rock PB, Muza SR, Fulco CS, Forte VA, Cymerman A. Exercise VE and physical performance at altitude are not affected by menstrual cycle phase. J Appl Physiol. 1999;86(5):1519–26.PubMedCrossRef Beidleman BA, Rock PB, Muza SR, Fulco CS, Forte VA, Cymerman A. Exercise VE and physical performance at altitude are not affected by menstrual cycle phase. J Appl Physiol. 1999;86(5):1519–26.PubMedCrossRef
28.
Zurück zum Zitat Thapa S, Nandy A, Rendina-Ruedy E. Endocrinal metabolic regulation on the skeletal system in post-menopausal women. Front Physiol. 2022;13:1052429.PubMedPubMedCentralCrossRef Thapa S, Nandy A, Rendina-Ruedy E. Endocrinal metabolic regulation on the skeletal system in post-menopausal women. Front Physiol. 2022;13:1052429.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Gallagher SA, Hackett PH. High-altitude illness. Emerg Med Clin North Am. 2004;22(2):329–55 (viii).PubMedCrossRef Gallagher SA, Hackett PH. High-altitude illness. Emerg Med Clin North Am. 2004;22(2):329–55 (viii).PubMedCrossRef
30.
Zurück zum Zitat Hackett PH. The cerebral etiology of high-altitude cerebral edema and acute mountain sickness. Wilderness Environ Med. 1999;10(2):97–109.PubMedCrossRef Hackett PH. The cerebral etiology of high-altitude cerebral edema and acute mountain sickness. Wilderness Environ Med. 1999;10(2):97–109.PubMedCrossRef
31.
Zurück zum Zitat Burtscher M, Hefti U, Hefti JP. High-altitude illnesses: old stories and new insights into the pathophysiology, treatment and prevention. Sports Med Health Sci. 2021;3(2):59–69.PubMedPubMedCentralCrossRef Burtscher M, Hefti U, Hefti JP. High-altitude illnesses: old stories and new insights into the pathophysiology, treatment and prevention. Sports Med Health Sci. 2021;3(2):59–69.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Mairer K, Wille M, Bucher T, Burtscher M. Prevalence of acute mountain sickness in the Eastern Alps. High Alt Med Biol. 2009;10(3):239–45.PubMedCrossRef Mairer K, Wille M, Bucher T, Burtscher M. Prevalence of acute mountain sickness in the Eastern Alps. High Alt Med Biol. 2009;10(3):239–45.PubMedCrossRef
34.
Zurück zum Zitat Netzer N, Strohl K, Faulhaber M, Gatterer H, Burtscher M. Hypoxia-related altitude illnesses. J Travel Med. 2013;20(4):247–55.PubMedCrossRef Netzer N, Strohl K, Faulhaber M, Gatterer H, Burtscher M. Hypoxia-related altitude illnesses. J Travel Med. 2013;20(4):247–55.PubMedCrossRef
35.
Zurück zum Zitat Wu TY, Ding SQ, Liu JL, Yu MT, Jia JH, Chai ZC, et al. Who should not go high: chronic disease and work at altitude during construction of the Qinghai-Tibet railroad. High Alt Med Biol. 2007;8(2):88–107.PubMedCrossRef Wu TY, Ding SQ, Liu JL, Yu MT, Jia JH, Chai ZC, et al. Who should not go high: chronic disease and work at altitude during construction of the Qinghai-Tibet railroad. High Alt Med Biol. 2007;8(2):88–107.PubMedCrossRef
36.
Zurück zum Zitat Richalet J-P, Larmignat P, Poitrine E, Letournel M, Canouï-Poitrine F. Physiological risk factors for severe high-altitude illness: a prospective cohort study. Am J Respir Crit Care Med. 2012;185(2):192–8.PubMedCrossRef Richalet J-P, Larmignat P, Poitrine E, Letournel M, Canouï-Poitrine F. Physiological risk factors for severe high-altitude illness: a prospective cohort study. Am J Respir Crit Care Med. 2012;185(2):192–8.PubMedCrossRef
37.
Zurück zum Zitat Bartsch P, Maggiorini M, Ritter M, Noti C, Vock P, Oelz O. Prevention of high-altitude pulmonary edema by nifedipine. N Engl J Med. 1991;325(18):1284–9.PubMedCrossRef Bartsch P, Maggiorini M, Ritter M, Noti C, Vock P, Oelz O. Prevention of high-altitude pulmonary edema by nifedipine. N Engl J Med. 1991;325(18):1284–9.PubMedCrossRef
38.
Zurück zum Zitat Bärtsch P, Gibbs JS. Effect of altitude on the heart and the lungs. Circulation. 2007;116(19):2191–202.PubMedCrossRef Bärtsch P, Gibbs JS. Effect of altitude on the heart and the lungs. Circulation. 2007;116(19):2191–202.PubMedCrossRef
39.
Zurück zum Zitat Raberin A, Burtscher J, Connes P, Millet GP. Hypoxia and hemorheological properties in older individuals. Ageing Res Rev. 2022;79: 101650.PubMedCrossRef Raberin A, Burtscher J, Connes P, Millet GP. Hypoxia and hemorheological properties in older individuals. Ageing Res Rev. 2022;79: 101650.PubMedCrossRef
40.
Zurück zum Zitat Sagoo RS, Hutchinson CE, Wright A, Handford C, Parsons H, Sherwood V, et al. Magnetic resonance investigation into the mechanisms involved in the development of high-altitude cerebral edema. J Cereb Blood Flow Metab. 2017;37(1):319–31.PubMedCrossRef Sagoo RS, Hutchinson CE, Wright A, Handford C, Parsons H, Sherwood V, et al. Magnetic resonance investigation into the mechanisms involved in the development of high-altitude cerebral edema. J Cereb Blood Flow Metab. 2017;37(1):319–31.PubMedCrossRef
41.
Zurück zum Zitat Kallenberg K, Bailey DM, Christ S, Mohr A, Roukens R, Menold E, et al. Magnetic resonance imaging evidence of cytotoxic cerebral edema in acute mountain sickness. J Cereb Blood Flow Metab. 2007;27(5):1064–71.PubMedCrossRef Kallenberg K, Bailey DM, Christ S, Mohr A, Roukens R, Menold E, et al. Magnetic resonance imaging evidence of cytotoxic cerebral edema in acute mountain sickness. J Cereb Blood Flow Metab. 2007;27(5):1064–71.PubMedCrossRef
42.
Zurück zum Zitat Schoonman GG, Sándor PS, Nirkko AC, Lange T, Jaermann T, Dydak U, et al. Hypoxia-induced acute mountain sickness is associated with intracellular cerebral edema: a 3 T magnetic resonance imaging study. J Cereb Blood Flow Metab. 2008;28(1):198–206.PubMedCrossRef Schoonman GG, Sándor PS, Nirkko AC, Lange T, Jaermann T, Dydak U, et al. Hypoxia-induced acute mountain sickness is associated with intracellular cerebral edema: a 3 T magnetic resonance imaging study. J Cereb Blood Flow Metab. 2008;28(1):198–206.PubMedCrossRef
43.
Zurück zum Zitat Hackett PH, Yarnell PR, Hill R, Reynard K, Heit J, McCormick J. High-altitude cerebral edema evaluated with magnetic resonance imaging: clinical correlation and pathophysiology. JAMA. 1998;280(22):1920–5.PubMedCrossRef Hackett PH, Yarnell PR, Hill R, Reynard K, Heit J, McCormick J. High-altitude cerebral edema evaluated with magnetic resonance imaging: clinical correlation and pathophysiology. JAMA. 1998;280(22):1920–5.PubMedCrossRef
45.
Zurück zum Zitat Sanchez del Rio M, Moskowitz MA. High altitude headache. Lessons from headaches at sea level. Adv Exp Med Biol. 1999;474:145–53.PubMedCrossRef Sanchez del Rio M, Moskowitz MA. High altitude headache. Lessons from headaches at sea level. Adv Exp Med Biol. 1999;474:145–53.PubMedCrossRef
46.
47.
Zurück zum Zitat Burtscher M, Likar R, Nachbauer W, Philadelphy M. Aspirin for prophylaxis against headache at high altitudes: randomised, double blind, placebo controlled trial. BMJ. 1998;316(7137):1057–8.PubMedPubMedCentralCrossRef Burtscher M, Likar R, Nachbauer W, Philadelphy M. Aspirin for prophylaxis against headache at high altitudes: randomised, double blind, placebo controlled trial. BMJ. 1998;316(7137):1057–8.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Lafuente JV, Bermudez G, Camargo-Arce L, Bulnes S. Blood-brain barrier changes in high altitude. CNS Neurol Disord Drug Targets. 2016;15(9):1188–97.PubMedCrossRef Lafuente JV, Bermudez G, Camargo-Arce L, Bulnes S. Blood-brain barrier changes in high altitude. CNS Neurol Disord Drug Targets. 2016;15(9):1188–97.PubMedCrossRef
49.
Zurück zum Zitat Biller A, Badde S, Heckel A, Guericke P, Bendszus M, Nagel AM, et al. Exposure to 16 h of normobaric hypoxia induces ionic edema in the healthy brain. Nat Commun. 2021;12(1):5987.PubMedPubMedCentralCrossRef Biller A, Badde S, Heckel A, Guericke P, Bendszus M, Nagel AM, et al. Exposure to 16 h of normobaric hypoxia induces ionic edema in the healthy brain. Nat Commun. 2021;12(1):5987.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Camacho-Cardenosa A, Camacho-Cardenosa M, Tomas-Carus P, Timón R, Olcina G, Burtscher M. Acute physiological response to a normobaric hypoxic exposure: sex differences. Int J Biometeorol. 2022;66(7):1495–504.PubMedCrossRef Camacho-Cardenosa A, Camacho-Cardenosa M, Tomas-Carus P, Timón R, Olcina G, Burtscher M. Acute physiological response to a normobaric hypoxic exposure: sex differences. Int J Biometeorol. 2022;66(7):1495–504.PubMedCrossRef
51.
Zurück zum Zitat Hou Y-P, Wu J-L, Tan C, Chen Y, Guo R, Luo Y-J. Sex-based differences in the prevalence of acute mountain sickness: a meta-analysis. Mil Med Res. 2019;6(1):38.PubMedPubMedCentral Hou Y-P, Wu J-L, Tan C, Chen Y, Guo R, Luo Y-J. Sex-based differences in the prevalence of acute mountain sickness: a meta-analysis. Mil Med Res. 2019;6(1):38.PubMedPubMedCentral
52.
Zurück zum Zitat Wang SH, Chen YC, Kao WF, Lin YJ, Chen JC, Chiu TF, et al. Epidemiology of acute mountain sickness on Jade Mountain, Taiwan: an annual prospective observational study. High Alt Med Biol. 2010;11(1):43–9.PubMedCrossRef Wang SH, Chen YC, Kao WF, Lin YJ, Chen JC, Chiu TF, et al. Epidemiology of acute mountain sickness on Jade Mountain, Taiwan: an annual prospective observational study. High Alt Med Biol. 2010;11(1):43–9.PubMedCrossRef
53.
Zurück zum Zitat Vardy J, Vardy J, Judge K. Acute mountain sickness and ascent rates in trekkers above 2500 m in the Nepali Himalaya. Aviat Space Environ Med. 2006;77(7):742–4.PubMed Vardy J, Vardy J, Judge K. Acute mountain sickness and ascent rates in trekkers above 2500 m in the Nepali Himalaya. Aviat Space Environ Med. 2006;77(7):742–4.PubMed
54.
Zurück zum Zitat Soliz J, Thomsen JJ, Soulage C, Lundby C, Gassmann M. Sex-dependent regulation of hypoxic ventilation in mice and humans is mediated by erythropoietin. Am J Physiol Regul Integr Comp Physiol. 2009;296(6):R1837–46.PubMedCrossRef Soliz J, Thomsen JJ, Soulage C, Lundby C, Gassmann M. Sex-dependent regulation of hypoxic ventilation in mice and humans is mediated by erythropoietin. Am J Physiol Regul Integr Comp Physiol. 2009;296(6):R1837–46.PubMedCrossRef
56.
Zurück zum Zitat Tang H, Zhang W, Zhu Y, Zhang X, Wang R. Estrogen decreases vascular damage induced by chronic hypoperfusion through upregulating VEGF expression. Nan Fang Yi Ke Da Xue Xue Bao. 2015;35(11):1552–6.PubMed Tang H, Zhang W, Zhu Y, Zhang X, Wang R. Estrogen decreases vascular damage induced by chronic hypoperfusion through upregulating VEGF expression. Nan Fang Yi Ke Da Xue Xue Bao. 2015;35(11):1552–6.PubMed
57.
Zurück zum Zitat Schoch HJ, Fischer S, Marti HH. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain. 2002;125(Pt 11):2549–57.PubMedCrossRef Schoch HJ, Fischer S, Marti HH. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain. 2002;125(Pt 11):2549–57.PubMedCrossRef
58.
Zurück zum Zitat Basnyat B, Subedi D, Sleggs J, Lemaster J, Bhasyal G, Aryal B, et al. Disoriented and ataxic pilgrims: an epidemiological study of acute mountain sickness and high-altitude cerebral edema at a sacred lake at 4300 m in the Nepal Himalayas. Wilderness Environ Med. 2000;11(2):89–93.PubMedCrossRef Basnyat B, Subedi D, Sleggs J, Lemaster J, Bhasyal G, Aryal B, et al. Disoriented and ataxic pilgrims: an epidemiological study of acute mountain sickness and high-altitude cerebral edema at a sacred lake at 4300 m in the Nepal Himalayas. Wilderness Environ Med. 2000;11(2):89–93.PubMedCrossRef
59.
60.
Zurück zum Zitat Maggiorini M, Melot C, Pierre S, Pfeiffer F, Greve I, Sartori C, et al. High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation. 2001;103(16):2078–83.PubMedCrossRef Maggiorini M, Melot C, Pierre S, Pfeiffer F, Greve I, Sartori C, et al. High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation. 2001;103(16):2078–83.PubMedCrossRef
61.
Zurück zum Zitat Eichstaedt CA, Mairbaurl H, Song J, Benjamin N, Fischer C, Dehnert C, et al. Genetic predisposition to high-altitude pulmonary edema. High Alt Med Biol. 2020;21(1):28–36.PubMedCrossRef Eichstaedt CA, Mairbaurl H, Song J, Benjamin N, Fischer C, Dehnert C, et al. Genetic predisposition to high-altitude pulmonary edema. High Alt Med Biol. 2020;21(1):28–36.PubMedCrossRef
62.
Zurück zum Zitat Scherrer U, Turini P, Thalmann S, Hutter D, Salmon CS, Stuber T, et al. Pulmonary hypertension in high-altitude dwellers: novel mechanisms, unsuspected predisposing factors. Adv Exp Med Biol. 2006;588:277–91.PubMedCrossRef Scherrer U, Turini P, Thalmann S, Hutter D, Salmon CS, Stuber T, et al. Pulmonary hypertension in high-altitude dwellers: novel mechanisms, unsuspected predisposing factors. Adv Exp Med Biol. 2006;588:277–91.PubMedCrossRef
63.
Zurück zum Zitat Soria R, Egger M, Scherrer U, Bender N, Rimoldi SF. Pulmonary artery pressure and arterial oxygen saturation in people living at high or low altitude: systematic review and meta-analysis. J Appl Physiol (1985). 2016;121(5):1151–9.PubMedCrossRef Soria R, Egger M, Scherrer U, Bender N, Rimoldi SF. Pulmonary artery pressure and arterial oxygen saturation in people living at high or low altitude: systematic review and meta-analysis. J Appl Physiol (1985). 2016;121(5):1151–9.PubMedCrossRef
64.
Zurück zum Zitat Ke T, Wang J, Swenson ER, Zhang X, Hu Y, Chen Y, et al. Effect of acetazolamide and gingko biloba on the human pulmonary vascular response to an acute altitude ascent. High Alt Med Biol. 2013;14(2):162–7.PubMedPubMedCentralCrossRef Ke T, Wang J, Swenson ER, Zhang X, Hu Y, Chen Y, et al. Effect of acetazolamide and gingko biloba on the human pulmonary vascular response to an acute altitude ascent. High Alt Med Biol. 2013;14(2):162–7.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Fatemian M, Herigstad M, Croft QP, Formenti F, Cardenas R, Wheeler C, et al. Determinants of ventilation and pulmonary artery pressure during early acclimatization to hypoxia in humans. J Physiol. 2016;594(5):1197–213.PubMedCrossRef Fatemian M, Herigstad M, Croft QP, Formenti F, Cardenas R, Wheeler C, et al. Determinants of ventilation and pulmonary artery pressure during early acclimatization to hypoxia in humans. J Physiol. 2016;594(5):1197–213.PubMedCrossRef
66.
Zurück zum Zitat Millet GP, Faiss R, Pialoux V. Evidence for differences between hypobaric and normobaric hypoxia is conclusive. Exerc Sport Scie Rev. 2013;41(2):133.CrossRef Millet GP, Faiss R, Pialoux V. Evidence for differences between hypobaric and normobaric hypoxia is conclusive. Exerc Sport Scie Rev. 2013;41(2):133.CrossRef
67.
Zurück zum Zitat Millet GP, Faiss R, Pialoux V. Point: Hypobaric hypoxia induces different physiological responses from normobaric hypoxia. J Appl Physiol (1985). 2012;112(10):1783–4.PubMedCrossRef Millet GP, Faiss R, Pialoux V. Point: Hypobaric hypoxia induces different physiological responses from normobaric hypoxia. J Appl Physiol (1985). 2012;112(10):1783–4.PubMedCrossRef
68.
Zurück zum Zitat Umar S, Rabinovitch M, Eghbali M. Estrogen paradox in pulmonary hypertension: current controversies and future perspectives. Am J Respir Crit Care Med. 2012;186(2):125–31.PubMedPubMedCentralCrossRef Umar S, Rabinovitch M, Eghbali M. Estrogen paradox in pulmonary hypertension: current controversies and future perspectives. Am J Respir Crit Care Med. 2012;186(2):125–31.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Hester J, Ventetuolo C, Lahm T. Sex, gender, and sex hormones in pulmonary hypertension and right ventricular failure. Compr Physiol. 2019;10(1):125–70.PubMedPubMedCentralCrossRef Hester J, Ventetuolo C, Lahm T. Sex, gender, and sex hormones in pulmonary hypertension and right ventricular failure. Compr Physiol. 2019;10(1):125–70.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Whang W, Manson JE, Hu FB, Chae CU, Rexrode KM, Willett WC, et al. Physical exertion, exercise, and sudden cardiac death in women. JAMA. 2006;295(12):1399–403.PubMedCrossRef Whang W, Manson JE, Hu FB, Chae CU, Rexrode KM, Willett WC, et al. Physical exertion, exercise, and sudden cardiac death in women. JAMA. 2006;295(12):1399–403.PubMedCrossRef
72.
Zurück zum Zitat Burtscher M, Ponchia A. The risk of cardiovascular events during leisure time activities at altitude. Prog Cardiovasc Dis. 2010;52(6):507–11.PubMedCrossRef Burtscher M, Ponchia A. The risk of cardiovascular events during leisure time activities at altitude. Prog Cardiovasc Dis. 2010;52(6):507–11.PubMedCrossRef
73.
Zurück zum Zitat Grodstein F, Stampfer MJ, Colditz GA, Willett WC, Manson JE, Joffe M, et al. Postmenopausal hormone therapy and mortality. N Engl J Med. 1997;336(25):1769–75.PubMedCrossRef Grodstein F, Stampfer MJ, Colditz GA, Willett WC, Manson JE, Joffe M, et al. Postmenopausal hormone therapy and mortality. N Engl J Med. 1997;336(25):1769–75.PubMedCrossRef
74.
Zurück zum Zitat Lemire M, Falbriard M, Aminian K, Millet GP, Meyer F. Level, uphill, and downhill running economy values are correlated except on steep slopes. Front Physiol. 2021;12: 697315.PubMedPubMedCentralCrossRef Lemire M, Falbriard M, Aminian K, Millet GP, Meyer F. Level, uphill, and downhill running economy values are correlated except on steep slopes. Front Physiol. 2021;12: 697315.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Vernillo G, Giandolini M, Edwards WB, Morin JB, Samozino P, Horvais N, et al. Biomechanics and physiology of uphill and downhill running. Sports Med. 2017;47(4):615–29.PubMedCrossRef Vernillo G, Giandolini M, Edwards WB, Morin JB, Samozino P, Horvais N, et al. Biomechanics and physiology of uphill and downhill running. Sports Med. 2017;47(4):615–29.PubMedCrossRef
76.
Zurück zum Zitat Dewolf AH, Willems PA. Running on a slope: a collision-based analysis to assess the optimal slope. J Biomech. 2019;23(83):298–304.CrossRef Dewolf AH, Willems PA. Running on a slope: a collision-based analysis to assess the optimal slope. J Biomech. 2019;23(83):298–304.CrossRef
77.
Zurück zum Zitat Dewolf AH, Ivanenko Y, Zelik KE, Lacquaniti F, Willems PA. Kinematic patterns while walking on a slope at different speeds. J Appl Physiol (1985). 2018;125(2):642–53.PubMedCrossRef Dewolf AH, Ivanenko Y, Zelik KE, Lacquaniti F, Willems PA. Kinematic patterns while walking on a slope at different speeds. J Appl Physiol (1985). 2018;125(2):642–53.PubMedCrossRef
79.
Zurück zum Zitat Minetti AE, Ardigo LP, Saibene F. Mechanical determinants of the minimum energy cost of gradient running in humans. J exp Biol. 1994;195:211–25.PubMedCrossRef Minetti AE, Ardigo LP, Saibene F. Mechanical determinants of the minimum energy cost of gradient running in humans. J exp Biol. 1994;195:211–25.PubMedCrossRef
80.
81.
Zurück zum Zitat Besson T, Macchi R, Rossi J, Morio CYM, Kunimasa Y, Nicol C, et al. Sex differences in endurance running. Sports Med. 2022;52(6):1235–57.PubMedCrossRef Besson T, Macchi R, Rossi J, Morio CYM, Kunimasa Y, Nicol C, et al. Sex differences in endurance running. Sports Med. 2022;52(6):1235–57.PubMedCrossRef
82.
Zurück zum Zitat Chumanov ES, Wall-Scheffler C, Heiderscheit BC. Gender differences in walking and running on level and inclined surfaces. Clin Biomech (Bristol, Avon). 2008;23(10):1260–8.PubMedCrossRef Chumanov ES, Wall-Scheffler C, Heiderscheit BC. Gender differences in walking and running on level and inclined surfaces. Clin Biomech (Bristol, Avon). 2008;23(10):1260–8.PubMedCrossRef
83.
Zurück zum Zitat Kang J, Chaloupka EC, Mastrangelo MA, Hoffman JR. Physiological and biomechanical analysis of treadmill walking up various gradients in men and women. Eur J Appl Physiol. 2002;86(6):503–8.PubMedCrossRef Kang J, Chaloupka EC, Mastrangelo MA, Hoffman JR. Physiological and biomechanical analysis of treadmill walking up various gradients in men and women. Eur J Appl Physiol. 2002;86(6):503–8.PubMedCrossRef
84.
Zurück zum Zitat Pivarnik JM, Sherman NW. Responses of aerobically fit men and women to uphill/downhill walking and slow jogging. Med Sci Sports Exerc. 1990;22(1):127–30.PubMedCrossRef Pivarnik JM, Sherman NW. Responses of aerobically fit men and women to uphill/downhill walking and slow jogging. Med Sci Sports Exerc. 1990;22(1):127–30.PubMedCrossRef
85.
Zurück zum Zitat Sandbakk O, Perl R, Holmberg HC, Steiner T. Energetic cost and kinematics of pushing a stroller on flat and uphill terrain. Front Physiol. 2020;11:574.PubMedPubMedCentralCrossRef Sandbakk O, Perl R, Holmberg HC, Steiner T. Energetic cost and kinematics of pushing a stroller on flat and uphill terrain. Front Physiol. 2020;11:574.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Xie PP, Istvan B, Liang M. Sex-specific differences in biomechanics among runners: a systematic review with meta-analysis. Front Physiol. 2022;13: 994076.PubMedPubMedCentralCrossRef Xie PP, Istvan B, Liang M. Sex-specific differences in biomechanics among runners: a systematic review with meta-analysis. Front Physiol. 2022;13: 994076.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Mendonca GV, Matos P, Correia JM. Running economy in recreational male and female runners with similar levels of cardiovascular fitness. J Appl Physiol (1985). 2020;129(3):508–15.CrossRef Mendonca GV, Matos P, Correia JM. Running economy in recreational male and female runners with similar levels of cardiovascular fitness. J Appl Physiol (1985). 2020;129(3):508–15.CrossRef
88.
Zurück zum Zitat Genitrini M, Fritz J, Zimmermann G, Schwameder H. Downhill sections are crucial for performance in trail running ultramarathons: a pacing strategy analysis. J Funct Morphol Kinesiol. 2022;7(4):103.PubMedPubMedCentralCrossRef Genitrini M, Fritz J, Zimmermann G, Schwameder H. Downhill sections are crucial for performance in trail running ultramarathons: a pacing strategy analysis. J Funct Morphol Kinesiol. 2022;7(4):103.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Kelly C. Is there evidence for the development of sex-specific guidelines for ultramarathon coaches and athletes? A systematic review. Sports Med Open. 2023;9(1):6.PubMedPubMedCentralCrossRef Kelly C. Is there evidence for the development of sex-specific guidelines for ultramarathon coaches and athletes? A systematic review. Sports Med Open. 2023;9(1):6.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Millet GP, Trigueira R, Meyer F, Lemire M. Is altitude training bad for the running mechanics of middle-distance runners? Int J Sports Physiol Perform. 2021;16(9):1359–62.PubMedCrossRef Millet GP, Trigueira R, Meyer F, Lemire M. Is altitude training bad for the running mechanics of middle-distance runners? Int J Sports Physiol Perform. 2021;16(9):1359–62.PubMedCrossRef
91.
Zurück zum Zitat Joyner MJ, Ruiz JR, Lucia A. The two-hour marathon: who and when? J Appl Physiol (1985). 2011;110(1):275–7.PubMedCrossRef Joyner MJ, Ruiz JR, Lucia A. The two-hour marathon: who and when? J Appl Physiol (1985). 2011;110(1):275–7.PubMedCrossRef
92.
Zurück zum Zitat Lucia A, Esteve-Lanao J, Olivan J, Gomez-Gallego F, San Juan AF, Santiago C, et al. Physiological characteristics of the best Eritrean runners-exceptional running economy. Appl Physiol Nutr Metab. 2006;31(5):530–40.PubMedCrossRef Lucia A, Esteve-Lanao J, Olivan J, Gomez-Gallego F, San Juan AF, Santiago C, et al. Physiological characteristics of the best Eritrean runners-exceptional running economy. Appl Physiol Nutr Metab. 2006;31(5):530–40.PubMedCrossRef
93.
Zurück zum Zitat Tam E, Rossi H, Moia C, Berardelli C, Rosa G, Capelli C, et al. Energetics of running in top-level marathon runners from Kenya. Eur J Appl Physiol. 2012;112(11):3797–806.PubMedCrossRef Tam E, Rossi H, Moia C, Berardelli C, Rosa G, Capelli C, et al. Energetics of running in top-level marathon runners from Kenya. Eur J Appl Physiol. 2012;112(11):3797–806.PubMedCrossRef
94.
Zurück zum Zitat Millet GP, Brocherie F. Hypoxic training is beneficial in elite athletes. Med Sci Sports Exerc. 2020;52(2):515–8.PubMedCrossRef Millet GP, Brocherie F. Hypoxic training is beneficial in elite athletes. Med Sci Sports Exerc. 2020;52(2):515–8.PubMedCrossRef
95.
Zurück zum Zitat Turner G, Fudge BW, Pringle JSM, Maxwell NS, Richardson AJ. Altitude training in endurance running: perceptions of elite athletes and support staff. J Sports Sci. 2019;37(2):163–72.PubMedCrossRef Turner G, Fudge BW, Pringle JSM, Maxwell NS, Richardson AJ. Altitude training in endurance running: perceptions of elite athletes and support staff. J Sports Sci. 2019;37(2):163–72.PubMedCrossRef
96.
Zurück zum Zitat Mujika I, Sharma AP, Stellingwerff T. Contemporary periodization of altitude training for elite endurance athletes: a narrative review. Sports Med. 2019;49(11):1651–69.PubMedCrossRef Mujika I, Sharma AP, Stellingwerff T. Contemporary periodization of altitude training for elite endurance athletes: a narrative review. Sports Med. 2019;49(11):1651–69.PubMedCrossRef
97.
Zurück zum Zitat Wilber RL. Application of altitude/hypoxic training by elite athletes. Med Sci Sports Exerc. 2007;39(9):1610–24.PubMedCrossRef Wilber RL. Application of altitude/hypoxic training by elite athletes. Med Sci Sports Exerc. 2007;39(9):1610–24.PubMedCrossRef
98.
Zurück zum Zitat Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):1–25.PubMedCrossRef Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):1–25.PubMedCrossRef
99.
Zurück zum Zitat Girard O, Brocherie F, Goods PSR, Millet GP. An updated panorama of “living low-training high” altitude/hypoxic methods. Front Sports Act Living. 2020;2:26.PubMedPubMedCentralCrossRef Girard O, Brocherie F, Goods PSR, Millet GP. An updated panorama of “living low-training high” altitude/hypoxic methods. Front Sports Act Living. 2020;2:26.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Girard O, Brocherie F, Millet GP. Effects of altitude/hypoxia on single- and multiple-sprint performance: a comprehensive review. Sports Med. 2017;47(10):1931–49.PubMedCrossRef Girard O, Brocherie F, Millet GP. Effects of altitude/hypoxia on single- and multiple-sprint performance: a comprehensive review. Sports Med. 2017;47(10):1931–49.PubMedCrossRef
101.
Zurück zum Zitat Gore CJ, Little SC, Hahn AG, Scroop GC, Norton KI, Bourdon PC, et al. Reduced performance of male and female athletes at 580 m altitude. Eur J Appl Physiol Occup Physiol. 1997;75(2):136–43.PubMedCrossRef Gore CJ, Little SC, Hahn AG, Scroop GC, Norton KI, Bourdon PC, et al. Reduced performance of male and female athletes at 580 m altitude. Eur J Appl Physiol Occup Physiol. 1997;75(2):136–43.PubMedCrossRef
102.
Zurück zum Zitat Gore CJ, Hahn AG, Scroop GC, Watson DB, Norton KI, Wood RJ, et al. Increased arterial desaturation in trained cyclists during maximal exercise at 580 m altitude. J Appl Physiol (1985). 1996;80(6):2204–10.PubMedCrossRef Gore CJ, Hahn AG, Scroop GC, Watson DB, Norton KI, Wood RJ, et al. Increased arterial desaturation in trained cyclists during maximal exercise at 580 m altitude. J Appl Physiol (1985). 1996;80(6):2204–10.PubMedCrossRef
103.
Zurück zum Zitat Mollard P, Woorons X, Letournel M, Cornolo J, Lamberto C, Beaudry M, et al. Role of maximal heart rate and arterial O2 saturation on the decrement of VO2max in moderate acute hypoxia in trained and untrained men. Int J Sports Med. 2007;28(3):186–92.PubMedCrossRef Mollard P, Woorons X, Letournel M, Cornolo J, Lamberto C, Beaudry M, et al. Role of maximal heart rate and arterial O2 saturation on the decrement of VO2max in moderate acute hypoxia in trained and untrained men. Int J Sports Med. 2007;28(3):186–92.PubMedCrossRef
104.
Zurück zum Zitat Martin D, O’Kroy J. Effects of acute hypoxia on the VO2 max of trained and untrained subjects. J Sports Sci. 1993;11(1):37–42.PubMedCrossRef Martin D, O’Kroy J. Effects of acute hypoxia on the VO2 max of trained and untrained subjects. J Sports Sci. 1993;11(1):37–42.PubMedCrossRef
105.
Zurück zum Zitat Schoene RB, Robertson HT, Pierson DJ, Peterson AP. Respiratory drives and exercise in menstrual cycles of athletic and nonathletic women. J Appl Physiol Respir Environ Exerc Physiol. 1981;50(6):1300–5.PubMed Schoene RB, Robertson HT, Pierson DJ, Peterson AP. Respiratory drives and exercise in menstrual cycles of athletic and nonathletic women. J Appl Physiol Respir Environ Exerc Physiol. 1981;50(6):1300–5.PubMed
106.
Zurück zum Zitat Dominelli PB, Foster GE, Dominelli GS, Henderson WR, Koehle MS, McKenzie DC, et al. Exercise-induced arterial hypoxaemia and the mechanics of breathing in healthy young women. J Physiol. 2013;591(12):3017–34.PubMedPubMedCentralCrossRef Dominelli PB, Foster GE, Dominelli GS, Henderson WR, Koehle MS, McKenzie DC, et al. Exercise-induced arterial hypoxaemia and the mechanics of breathing in healthy young women. J Physiol. 2013;591(12):3017–34.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Guenette JA, Witt JD, McKenzie DC, Road JD, Sheel AW. Respiratory mechanics during exercise in endurance-trained men and women. J Physiol. 2007;581(Pt 3):1309–22.PubMedPubMedCentralCrossRef Guenette JA, Witt JD, McKenzie DC, Road JD, Sheel AW. Respiratory mechanics during exercise in endurance-trained men and women. J Physiol. 2007;581(Pt 3):1309–22.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Richards JC, McKenzie DC, Warburton DE, Road JD, Sheel AW. Prevalence of exercise-induced arterial hypoxemia in healthy women. Med Sci Sports Exerc. 2004;36(9):1514–21.PubMedCrossRef Richards JC, McKenzie DC, Warburton DE, Road JD, Sheel AW. Prevalence of exercise-induced arterial hypoxemia in healthy women. Med Sci Sports Exerc. 2004;36(9):1514–21.PubMedCrossRef
109.
Zurück zum Zitat Powers SK, Dodd S, Lawler J, Landry G, Kirtley M, McKnight T, et al. Incidence of exercise induced hypoxemia in elite endurance athletes at sea level. Eur J Appl Physiol Occup Physiol. 1988;58(3):298–302.PubMedCrossRef Powers SK, Dodd S, Lawler J, Landry G, Kirtley M, McKnight T, et al. Incidence of exercise induced hypoxemia in elite endurance athletes at sea level. Eur J Appl Physiol Occup Physiol. 1988;58(3):298–302.PubMedCrossRef
110.
Zurück zum Zitat Fulco CS, Rock PB, Cymerman A. Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med. 1998;69(8):793–801.PubMed Fulco CS, Rock PB, Cymerman A. Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med. 1998;69(8):793–801.PubMed
111.
Zurück zum Zitat Burtscher M, Viscor G. How important is V̇O(2)max when climbing Mt. Everest (8,849 m)? Respir Physiol Neurobiol. 2022;297:103833.PubMedCrossRef Burtscher M, Viscor G. How important is V̇O(2)max when climbing Mt. Everest (8,849 m)? Respir Physiol Neurobiol. 2022;297:103833.PubMedCrossRef
112.
Zurück zum Zitat Brothers MD, Hilger K, Carson JM, Sullivan L, Byrnes WC. GXT responses in altitude-acclimatized cyclists during sea-level simulation. Med Sci Sports Exerc. 2007;39(10):1727–35.PubMedCrossRef Brothers MD, Hilger K, Carson JM, Sullivan L, Byrnes WC. GXT responses in altitude-acclimatized cyclists during sea-level simulation. Med Sci Sports Exerc. 2007;39(10):1727–35.PubMedCrossRef
113.
Zurück zum Zitat Woorons X, Mollard P, Lamberto C, Letournel M, Richalet JP. Effect of acute hypoxia on maximal exercise in trained and sedentary women. Med Sci Sports Exerc. 2005;37(1):147–54.PubMedCrossRef Woorons X, Mollard P, Lamberto C, Letournel M, Richalet JP. Effect of acute hypoxia on maximal exercise in trained and sedentary women. Med Sci Sports Exerc. 2005;37(1):147–54.PubMedCrossRef
114.
Zurück zum Zitat Mollard P, Woorons X, Letournel M, Lamberto C, Favret F, Pichon A, et al. Determinant factors of the decrease in aerobic performance in moderate acute hypoxia in women endurance athletes. Respir Physiol Neurobiol. 2007;159(2):178–86.PubMedCrossRef Mollard P, Woorons X, Letournel M, Lamberto C, Favret F, Pichon A, et al. Determinant factors of the decrease in aerobic performance in moderate acute hypoxia in women endurance athletes. Respir Physiol Neurobiol. 2007;159(2):178–86.PubMedCrossRef
115.
Zurück zum Zitat Dempsey J, Hanson P, Pegelow D, Claremont A, Rankin J. Limitations to exercise capacity and endurance: pulmonary system. Can J Appl Sport Sci. 1982;7(1):4–13.PubMed Dempsey J, Hanson P, Pegelow D, Claremont A, Rankin J. Limitations to exercise capacity and endurance: pulmonary system. Can J Appl Sport Sci. 1982;7(1):4–13.PubMed
116.
Zurück zum Zitat Bhaumik G, Dass D, Lama H, Chauhan SK. Maximum exercise responses of men and women mountaineering trainees on induction to high altitude (4350 m) by trekking. Wilderness Environ Med. 2008;19(3):151–6.PubMedCrossRef Bhaumik G, Dass D, Lama H, Chauhan SK. Maximum exercise responses of men and women mountaineering trainees on induction to high altitude (4350 m) by trekking. Wilderness Environ Med. 2008;19(3):151–6.PubMedCrossRef
117.
Zurück zum Zitat West JB, Schoene RB, Milledge JS. Peripheral tissues. In: West JB, Schoene RB, Milledge JS, editors. High altitude medicine and physiology. London: Hodder Arnold; 2007. p. 131–43. West JB, Schoene RB, Milledge JS. Peripheral tissues. In: West JB, Schoene RB, Milledge JS, editors. High altitude medicine and physiology. London: Hodder Arnold; 2007. p. 131–43.
118.
Zurück zum Zitat Chapman RF, Laymon Stickford AS, Lundby C, Levine BD. Timing of return from altitude training for optimal sea level performance. J Appl Physiol (1985). 2014;116(7):837–43.PubMedCrossRef Chapman RF, Laymon Stickford AS, Lundby C, Levine BD. Timing of return from altitude training for optimal sea level performance. J Appl Physiol (1985). 2014;116(7):837–43.PubMedCrossRef
119.
Zurück zum Zitat Govus AD, Garvican-Lewis LA, Abbiss CR, Peeling P, Gore CJ. Pre-altitude serum ferritin levels and daily oral iron supplement dose mediate iron parameter and hemoglobin mass responses to altitude exposure. PLoS ONE. 2015;10(8): e0135120.PubMedPubMedCentralCrossRef Govus AD, Garvican-Lewis LA, Abbiss CR, Peeling P, Gore CJ. Pre-altitude serum ferritin levels and daily oral iron supplement dose mediate iron parameter and hemoglobin mass responses to altitude exposure. PLoS ONE. 2015;10(8): e0135120.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Gore CJ, Sharpe K, Garvican-Lewis LA, Saunders PU, Humberstone CE, Robertson EY, et al. Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med. 2013;47(Suppl. 1):i31–9.PubMedCrossRef Gore CJ, Sharpe K, Garvican-Lewis LA, Saunders PU, Humberstone CE, Robertson EY, et al. Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med. 2013;47(Suppl. 1):i31–9.PubMedCrossRef
121.
Zurück zum Zitat Mairbaurl H, Schobersberger W, Humpeler E, Hasibeder W, Fischer W, Raas E. Beneficial effects of exercising at moderate altitude on red cell oxygen transport and on exercise performance. Pflugers Arch. 1986;406(6):594–9.PubMedCrossRef Mairbaurl H, Schobersberger W, Humpeler E, Hasibeder W, Fischer W, Raas E. Beneficial effects of exercising at moderate altitude on red cell oxygen transport and on exercise performance. Pflugers Arch. 1986;406(6):594–9.PubMedCrossRef
122.
Zurück zum Zitat Wehrlin JP, Zuest P, Hallen J, Marti B. Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol. 2006;100(6):1938–45.PubMedCrossRef Wehrlin JP, Zuest P, Hallen J, Marti B. Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol. 2006;100(6):1938–45.PubMedCrossRef
123.
Zurück zum Zitat Chapman RF, Stray-Gundersen J, Levine BD. Individual variation in response to altitude training. J Appl Physiol (1985). 1998;85(4):1448–56.PubMedCrossRef Chapman RF, Stray-Gundersen J, Levine BD. Individual variation in response to altitude training. J Appl Physiol (1985). 1998;85(4):1448–56.PubMedCrossRef
124.
Zurück zum Zitat Levine BD, Stray-Gundersen J. ‘“Living high-training low”’: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol (1985). 1997;83(1):101–12.CrossRef Levine BD, Stray-Gundersen J. ‘“Living high-training low”’: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol (1985). 1997;83(1):101–12.CrossRef
125.
Zurück zum Zitat Schmidt W, Prommer N. Impact of alterations in total hemoglobin mass on VO2max. Exerc Sport Sci Rev. 2010;38(2):68–75.PubMedCrossRef Schmidt W, Prommer N. Impact of alterations in total hemoglobin mass on VO2max. Exerc Sport Sci Rev. 2010;38(2):68–75.PubMedCrossRef
126.
Zurück zum Zitat Chapman RF. The individual response to training and competition at altitude. Br J Sports Med. 2013;47(Suppl 1):i40–4.PubMedCrossRef Chapman RF. The individual response to training and competition at altitude. Br J Sports Med. 2013;47(Suppl 1):i40–4.PubMedCrossRef
127.
Zurück zum Zitat Wehrlin JP, Marti B, Hallen J. Hemoglobin mass and aerobic performance at moderate altitude in elite athletes. Adv Exp Med Biol. 2016;903:357–74.PubMedCrossRef Wehrlin JP, Marti B, Hallen J. Hemoglobin mass and aerobic performance at moderate altitude in elite athletes. Adv Exp Med Biol. 2016;903:357–74.PubMedCrossRef
128.
Zurück zum Zitat Boning D, Rojas J, Serrato M, Ulloa C, Coy L, Mora M, et al. Hemoglobin mass and peak oxygen uptake in untrained and trained residents of moderate altitude. Int J Sports Med. 2001;22(8):572–8.PubMedCrossRef Boning D, Rojas J, Serrato M, Ulloa C, Coy L, Mora M, et al. Hemoglobin mass and peak oxygen uptake in untrained and trained residents of moderate altitude. Int J Sports Med. 2001;22(8):572–8.PubMedCrossRef
129.
Zurück zum Zitat Boning D, Cristancho E, Serrato M, Reyes O, Mora M, Coy L, et al. Hemoglobin mass and peak oxygen uptake in untrained and trained female altitude residents. Int J Sports Med. 2004;25(8):561–8.PubMedCrossRef Boning D, Cristancho E, Serrato M, Reyes O, Mora M, Coy L, et al. Hemoglobin mass and peak oxygen uptake in untrained and trained female altitude residents. Int J Sports Med. 2004;25(8):561–8.PubMedCrossRef
130.
Zurück zum Zitat Schmidt W, Heinicke K, Rojas J, Manuel Gomez J, Serrato M, Mora M, et al. Blood volume and hemoglobin mass in endurance athletes from moderate altitude. Med Sci Sports Exerc. 2002;34(12):1934–40.PubMedCrossRef Schmidt W, Heinicke K, Rojas J, Manuel Gomez J, Serrato M, Mora M, et al. Blood volume and hemoglobin mass in endurance athletes from moderate altitude. Med Sci Sports Exerc. 2002;34(12):1934–40.PubMedCrossRef
131.
Zurück zum Zitat Rusko HK, Leppavuori A, Makela P. Living high-training low: a new approach to altitude training at sea level in athletes. Med Sci Sports. 1995;27(Suppl. 5):S6. Rusko HK, Leppavuori A, Makela P. Living high-training low: a new approach to altitude training at sea level in athletes. Med Sci Sports. 1995;27(Suppl. 5):S6.
132.
Zurück zum Zitat Garvican-Lewis LA, Clark SA, Polglaze T, McFadden G, Gore CJ. Ten days of simulated live high:train low altitude training increases Hbmass in elite water polo players. Br J Sports Med. 2013;47(Suppl. 1):i70–3.PubMedCrossRef Garvican-Lewis LA, Clark SA, Polglaze T, McFadden G, Gore CJ. Ten days of simulated live high:train low altitude training increases Hbmass in elite water polo players. Br J Sports Med. 2013;47(Suppl. 1):i70–3.PubMedCrossRef
133.
Zurück zum Zitat Ashenden M, Gore C, Martin D, Dobson GP, Hahn AG. Effects of a 12-day “live high, train low” camp on reticulocyte production and haemoglobin mass in elite female road cyclists. Eur J Appl Physiol Occup Physiol. 1999;80(5):472–8.PubMedCrossRef Ashenden M, Gore C, Martin D, Dobson GP, Hahn AG. Effects of a 12-day “live high, train low” camp on reticulocyte production and haemoglobin mass in elite female road cyclists. Eur J Appl Physiol Occup Physiol. 1999;80(5):472–8.PubMedCrossRef
134.
Zurück zum Zitat Martin DT, Hahn AG, Lee H, Roberts A, Victor J, Gore C. Effects of a 12-day ‘“live high, train low”’ cycling camp on 4-min and 30-min performance. Med Sci Sports. 2002;34(Suppl. 5):S274. Martin DT, Hahn AG, Lee H, Roberts A, Victor J, Gore C. Effects of a 12-day ‘“live high, train low”’ cycling camp on 4-min and 30-min performance. Med Sci Sports. 2002;34(Suppl. 5):S274.
135.
Zurück zum Zitat Millet GP, Brocherie F, Girard O, Wehrlin JP, Troesch S, Hauser A, et al. Commentaries on viewpoint: time for a new metric for hypoxic dose? J Appl Physiol (1985). 2016;121(1):356–8.PubMedCrossRef Millet GP, Brocherie F, Girard O, Wehrlin JP, Troesch S, Hauser A, et al. Commentaries on viewpoint: time for a new metric for hypoxic dose? J Appl Physiol (1985). 2016;121(1):356–8.PubMedCrossRef
136.
Zurück zum Zitat Chapman RF, Karlsen T, Resaland GK, Ge RL, Harber MP, Witkowski S, et al. Defining the “dose” of altitude training: how high to live for optimal sea level performance enhancement. J Appl Physiol (1985). 2014;116(6):595–603.PubMedCrossRef Chapman RF, Karlsen T, Resaland GK, Ge RL, Harber MP, Witkowski S, et al. Defining the “dose” of altitude training: how high to live for optimal sea level performance enhancement. J Appl Physiol (1985). 2014;116(6):595–603.PubMedCrossRef
137.
Zurück zum Zitat Levine BD, Stray-Gundersen J. Dose-response of altitude training: how much altitude is enough? Adv Exp Med Biol. 2006;588:233–47.PubMedCrossRef Levine BD, Stray-Gundersen J. Dose-response of altitude training: how much altitude is enough? Adv Exp Med Biol. 2006;588:233–47.PubMedCrossRef
138.
Zurück zum Zitat Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc. 2007;39(9):1590–9.PubMedCrossRef Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc. 2007;39(9):1590–9.PubMedCrossRef
139.
Zurück zum Zitat Millet GP, Chapman RF, Girard O, Brocherie F. Is live high-train low altitude training relevant for elite athletes? Flawed analysis from inaccurate data. Br J Sports Med. 2019;53(15):923–5.PubMedCrossRef Millet GP, Chapman RF, Girard O, Brocherie F. Is live high-train low altitude training relevant for elite athletes? Flawed analysis from inaccurate data. Br J Sports Med. 2019;53(15):923–5.PubMedCrossRef
140.
Zurück zum Zitat Okazaki K, Stray-Gundersen J, Chapman RF, Levine BD. Iron insufficiency diminishes the erythropoietic response to moderate altitude exposure. J Appl Physiol (1985). 2019;127(6):1569–78.PubMedCrossRef Okazaki K, Stray-Gundersen J, Chapman RF, Levine BD. Iron insufficiency diminishes the erythropoietic response to moderate altitude exposure. J Appl Physiol (1985). 2019;127(6):1569–78.PubMedCrossRef
141.
Zurück zum Zitat Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102(3):783–8.PubMedCrossRef Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102(3):783–8.PubMedCrossRef
142.
Zurück zum Zitat Gough CE, Sharpe K, Garvican LA, Anson JM, Saunders PU, Gore CJ. The effects of injury and illness on haemoglobin mass. Int J Sports Med. 2013;34(9):763–9.PubMedCrossRef Gough CE, Sharpe K, Garvican LA, Anson JM, Saunders PU, Gore CJ. The effects of injury and illness on haemoglobin mass. Int J Sports Med. 2013;34(9):763–9.PubMedCrossRef
143.
Zurück zum Zitat Stray-Gundersen J, Chapman RF, Levine BD. “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol (1985). 2001;91(3):1113–20.PubMedCrossRef Stray-Gundersen J, Chapman RF, Levine BD. “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol (1985). 2001;91(3):1113–20.PubMedCrossRef
144.
Zurück zum Zitat Peeling P, Dawson B, Goodman C, Landers G, Trinder D. Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. Eur J Appl Physiol. 2008;103(4):381–91.PubMedCrossRef Peeling P, Dawson B, Goodman C, Landers G, Trinder D. Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. Eur J Appl Physiol. 2008;103(4):381–91.PubMedCrossRef
145.
Zurück zum Zitat Keller MF, Harrison ML, Lalande S. Impact of menstrual blood loss and oral contraceptive use on oxygen-carrying capacity. Med Sci Sports Exerc. 2020;52(6):1414–9.PubMedCrossRef Keller MF, Harrison ML, Lalande S. Impact of menstrual blood loss and oral contraceptive use on oxygen-carrying capacity. Med Sci Sports Exerc. 2020;52(6):1414–9.PubMedCrossRef
146.
Zurück zum Zitat Meignie A, Duclos M, Carling C, Orhant E, Provost P, Toussaint JF, et al. The effects of menstrual cycle phase on elite athlete performance: a critical and systematic review. Front Physiol. 2021;12: 654585.PubMedPubMedCentralCrossRef Meignie A, Duclos M, Carling C, Orhant E, Provost P, Toussaint JF, et al. The effects of menstrual cycle phase on elite athlete performance: a critical and systematic review. Front Physiol. 2021;12: 654585.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Baranauskas MN, Fulton TJ, Fly AD, Martin BJ, Mickleborough TD, Chapman RF. High intraindividual variability in the response of serum erythropoietin to multiple simulated altitude exposures. High Alt Med Biol. 2022;23(1):85–9.PubMedCrossRef Baranauskas MN, Fulton TJ, Fly AD, Martin BJ, Mickleborough TD, Chapman RF. High intraindividual variability in the response of serum erythropoietin to multiple simulated altitude exposures. High Alt Med Biol. 2022;23(1):85–9.PubMedCrossRef
148.
Zurück zum Zitat Allen AM, McRae-Clark AL, Carlson S, Saladin ME, Gray KM, Wetherington CL, et al. Determining menstrual phase in human biobehavioral research: a review with recommendations. Exp Clin Psychopharmacol. 2016;24(1):1–11.PubMedPubMedCentralCrossRef Allen AM, McRae-Clark AL, Carlson S, Saladin ME, Gray KM, Wetherington CL, et al. Determining menstrual phase in human biobehavioral research: a review with recommendations. Exp Clin Psychopharmacol. 2016;24(1):1–11.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Azad P, Villafuerte FC, Bermudez D, Patel G, Haddad GG. Protective role of estrogen against excessive erythrocytosis in Monge’s disease. Exp Mol Med. 2021;53(1):125–35.PubMedPubMedCentralCrossRef Azad P, Villafuerte FC, Bermudez D, Patel G, Haddad GG. Protective role of estrogen against excessive erythrocytosis in Monge’s disease. Exp Mol Med. 2021;53(1):125–35.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Bui HN, Sluss PM, Blincko S, Knol DL, Blankenstein MA, Heijboer AC. Dynamics of serum testosterone during the menstrual cycle evaluated by daily measurements with an ID-LC-MS/MS method and a 2nd generation automated immunoassay. Steroids. 2013;78(1):96–101.PubMedCrossRef Bui HN, Sluss PM, Blincko S, Knol DL, Blankenstein MA, Heijboer AC. Dynamics of serum testosterone during the menstrual cycle evaluated by daily measurements with an ID-LC-MS/MS method and a 2nd generation automated immunoassay. Steroids. 2013;78(1):96–101.PubMedCrossRef
151.
Zurück zum Zitat Bachman E, Travison TG, Basaria S, Davda MN, Guo W, Li M, et al. Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: evidence for a new erythropoietin/hemoglobin set point. J Gerontol A Biol Sci Med Sci. 2014;69(6):725–35.PubMedCrossRef Bachman E, Travison TG, Basaria S, Davda MN, Guo W, Li M, et al. Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: evidence for a new erythropoietin/hemoglobin set point. J Gerontol A Biol Sci Med Sci. 2014;69(6):725–35.PubMedCrossRef
152.
Zurück zum Zitat Kasischke K, Huber R, Li H, Timmler M, Riepe MW. Primary hypoxic tolerance and chemical preconditioning during estrus cycle in mice. Stroke. 1999;30(6):1256–62.PubMedCrossRef Kasischke K, Huber R, Li H, Timmler M, Riepe MW. Primary hypoxic tolerance and chemical preconditioning during estrus cycle in mice. Stroke. 1999;30(6):1256–62.PubMedCrossRef
153.
Zurück zum Zitat Wachsmuth NB, Volzke C, Prommer N, Schmidt-Trucksass A, Frese F, Spahl O, et al. The effects of classic altitude training on hemoglobin mass in swimmers. Eur J Appl Physiol. 2013;113(5):1199–211.PubMedCrossRef Wachsmuth NB, Volzke C, Prommer N, Schmidt-Trucksass A, Frese F, Spahl O, et al. The effects of classic altitude training on hemoglobin mass in swimmers. Eur J Appl Physiol. 2013;113(5):1199–211.PubMedCrossRef
154.
Zurück zum Zitat Heinicke K, Heinicke I, Schmidt W, Wolfarth B. A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes. Int J Sports Med. 2005;26(5):350–5.PubMedCrossRef Heinicke K, Heinicke I, Schmidt W, Wolfarth B. A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes. Int J Sports Med. 2005;26(5):350–5.PubMedCrossRef
155.
Zurück zum Zitat Gough CE, Saunders PU, Fowlie J, Savage B, Pyne DB, Anson JM, et al. Influence of altitude training modality on performance and total haemoglobin mass in elite swimmers. Eur J Appl Physiol. 2012;112(9):3275–85.PubMedCrossRef Gough CE, Saunders PU, Fowlie J, Savage B, Pyne DB, Anson JM, et al. Influence of altitude training modality on performance and total haemoglobin mass in elite swimmers. Eur J Appl Physiol. 2012;112(9):3275–85.PubMedCrossRef
156.
Zurück zum Zitat Woods AL, Sharma AP, Garvican-Lewis LA, Saunders PU, Rice AJ, Thompson KG. Four weeks of classical altitude training increases resting metabolic rate in highly trained middle-distance runners. Int J Sport Nutr Exerc Metab. 2017;27(1):83–90.PubMedCrossRef Woods AL, Sharma AP, Garvican-Lewis LA, Saunders PU, Rice AJ, Thompson KG. Four weeks of classical altitude training increases resting metabolic rate in highly trained middle-distance runners. Int J Sport Nutr Exerc Metab. 2017;27(1):83–90.PubMedCrossRef
157.
Zurück zum Zitat Heikura IA, Burke LM, Bergland D, Uusitalo ALT, Mero AA, Stellingwerff T. Impact of energy availability, health, and sex on hemoglobin-mass responses following live-high-train-high altitude training in elite female and male distance athletes. Int J Sports Physiol Perform. 2018;13(8):1090–6.PubMedCrossRef Heikura IA, Burke LM, Bergland D, Uusitalo ALT, Mero AA, Stellingwerff T. Impact of energy availability, health, and sex on hemoglobin-mass responses following live-high-train-high altitude training in elite female and male distance athletes. Int J Sports Physiol Perform. 2018;13(8):1090–6.PubMedCrossRef
158.
Zurück zum Zitat Engseth TP, Andersson EP, Solli GS, Morseth B, Thomassen TO, Noordhof DA, et al. Prevalence and self-perceived experiences with the use of hormonal contraceptives among competitive female cross-country skiers and biathletes in Norway: the FENDURA Project. Front Sports Act Living. 2022;4: 873222.PubMedPubMedCentralCrossRef Engseth TP, Andersson EP, Solli GS, Morseth B, Thomassen TO, Noordhof DA, et al. Prevalence and self-perceived experiences with the use of hormonal contraceptives among competitive female cross-country skiers and biathletes in Norway: the FENDURA Project. Front Sports Act Living. 2022;4: 873222.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Gore CJ, Hahn A, Rice A, Bourdon P, Lawrence S, Walsh C, et al. Altitude training at 2690m does not increase total haemoglobin mass or sea level VO2max in world champion track cyclists. J Sci Med Sport. 1998;1(3):156–70.PubMedCrossRef Gore CJ, Hahn A, Rice A, Bourdon P, Lawrence S, Walsh C, et al. Altitude training at 2690m does not increase total haemoglobin mass or sea level VO2max in world champion track cyclists. J Sci Med Sport. 1998;1(3):156–70.PubMedCrossRef
160.
Zurück zum Zitat Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39(2):107–27.PubMedCrossRef Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39(2):107–27.PubMedCrossRef
161.
Zurück zum Zitat Gore CJ, Clark SA, Saunders PU. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med Sci Sports Exerc. 2007;39(9):1600–9.PubMedCrossRef Gore CJ, Clark SA, Saunders PU. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med Sci Sports Exerc. 2007;39(9):1600–9.PubMedCrossRef
162.
Zurück zum Zitat Takase K, Nishiyasu T, Asano K. Modulating effects of the menstrual cycle on cardiorespiratory responses to exercise under acute hypobaric hypoxia. Jpn J Physiol. 2002;52(6):553–60.PubMedCrossRef Takase K, Nishiyasu T, Asano K. Modulating effects of the menstrual cycle on cardiorespiratory responses to exercise under acute hypobaric hypoxia. Jpn J Physiol. 2002;52(6):553–60.PubMedCrossRef
163.
Zurück zum Zitat Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med. 2013;47(Suppl. 1):i45-50.PubMedCrossRef Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med. 2013;47(Suppl. 1):i45-50.PubMedCrossRef
164.
Zurück zum Zitat McLean BD, Gore CJ, Kemp J. Application of “live low-train high” for enhancing normoxic exercise performance in team sport athletes. Sports Med. 2014;44(9):1275–87.PubMedCrossRef McLean BD, Gore CJ, Kemp J. Application of “live low-train high” for enhancing normoxic exercise performance in team sport athletes. Sports Med. 2014;44(9):1275–87.PubMedCrossRef
165.
Zurück zum Zitat Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001;91(1):173–82.PubMedCrossRef Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001;91(1):173–82.PubMedCrossRef
166.
Zurück zum Zitat Jung WS, Kim SW, Park HY. Interval hypoxic training enhances athletic performance and does not adversely affect immune function in middle- and long-distance runners. Int J Environ Res Public Health. 2020;17(6):1934.PubMedPubMedCentralCrossRef Jung WS, Kim SW, Park HY. Interval hypoxic training enhances athletic performance and does not adversely affect immune function in middle- and long-distance runners. Int J Environ Res Public Health. 2020;17(6):1934.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Czuba M, Wilk R, Karpinski J, Chalimoniuk M, Zajac A, Langfort J. Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle. PLoS ONE. 2017;12(8): e0180380.PubMedPubMedCentralCrossRef Czuba M, Wilk R, Karpinski J, Chalimoniuk M, Zajac A, Langfort J. Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle. PLoS ONE. 2017;12(8): e0180380.PubMedPubMedCentralCrossRef
168.
Zurück zum Zitat Tam E, Bruseghini P, Calabria E, Dal Sacco L, Doria C, Grassi B, et al. Gokyo Khumbu/Ama Dablam Trek 2012: effects of physical training and high-altitude exposure on oxidative metabolism, muscle composition, and metabolic cost of walking in women. Eur J Appl Physiol. 2016;116(1):129–44.PubMedCrossRef Tam E, Bruseghini P, Calabria E, Dal Sacco L, Doria C, Grassi B, et al. Gokyo Khumbu/Ama Dablam Trek 2012: effects of physical training and high-altitude exposure on oxidative metabolism, muscle composition, and metabolic cost of walking in women. Eur J Appl Physiol. 2016;116(1):129–44.PubMedCrossRef
169.
Zurück zum Zitat Mazzeo RS, Donovan D, Fleshner M, Butterfield GE, Zamudio S, Wolfel EE, et al. Interleukin-6 response to exercise and high-altitude exposure: influence of alpha-adrenergic blockade. J Appl Physiol (1985). 2001;91(5):2143–9.PubMedCrossRef Mazzeo RS, Donovan D, Fleshner M, Butterfield GE, Zamudio S, Wolfel EE, et al. Interleukin-6 response to exercise and high-altitude exposure: influence of alpha-adrenergic blockade. J Appl Physiol (1985). 2001;91(5):2143–9.PubMedCrossRef
170.
Zurück zum Zitat Born DP, Faiss R, Willis SJ, Strahler J, Millet GP, Holmberg HC, et al. Circadian variation of salivary immunoglobin A, alpha-amylase activity and mood in response to repeated double-poling sprints in hypoxia. Eur J Appl Physiol. 2016;116(6):1–10.PubMedCrossRef Born DP, Faiss R, Willis SJ, Strahler J, Millet GP, Holmberg HC, et al. Circadian variation of salivary immunoglobin A, alpha-amylase activity and mood in response to repeated double-poling sprints in hypoxia. Eur J Appl Physiol. 2016;116(6):1–10.PubMedCrossRef
171.
Zurück zum Zitat Mazzeo RS. Physiological responses to exercise at altitude: an update. Sports Med. 2008;38(1):1–8.PubMedCrossRef Mazzeo RS. Physiological responses to exercise at altitude: an update. Sports Med. 2008;38(1):1–8.PubMedCrossRef
172.
Zurück zum Zitat Glotov AS, Zelenkova IE, Vashukova ES, Shuvalova AR, Zolotareva AD, Polev DE, et al. RNA sequencing of whole blood defines the signature of high intensity exercise at altitude in elite speed skaters. Genes. 2022;13(4):574.PubMedPubMedCentralCrossRef Glotov AS, Zelenkova IE, Vashukova ES, Shuvalova AR, Zolotareva AD, Polev DE, et al. RNA sequencing of whole blood defines the signature of high intensity exercise at altitude in elite speed skaters. Genes. 2022;13(4):574.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Park HY, Jung WS, Kim SW, Kim J, Lim K. Effects of interval training under hypoxia on hematological parameters, hemodynamic function, and endurance exercise performance in amateur female runners in Korea. Front Physiol. 2022;13: 919008.PubMedPubMedCentralCrossRef Park HY, Jung WS, Kim SW, Kim J, Lim K. Effects of interval training under hypoxia on hematological parameters, hemodynamic function, and endurance exercise performance in amateur female runners in Korea. Front Physiol. 2022;13: 919008.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Brocherie F, Girard O, Faiss R, Millet GP. Effects of repeated-sprint training in hypoxia on sea-level performance: a meta-analysis. Sports Med. 2017;47(8):1651–60.PubMedCrossRef Brocherie F, Girard O, Faiss R, Millet GP. Effects of repeated-sprint training in hypoxia on sea-level performance: a meta-analysis. Sports Med. 2017;47(8):1651–60.PubMedCrossRef
175.
Zurück zum Zitat Billaut F, Smith K. Sex alters impact of repeated bouts of sprint exercise on neuromuscular activity in trained athletes. Appl Physiol Nutr Metab. 2009;34(4):689–99.PubMedCrossRef Billaut F, Smith K. Sex alters impact of repeated bouts of sprint exercise on neuromuscular activity in trained athletes. Appl Physiol Nutr Metab. 2009;34(4):689–99.PubMedCrossRef
176.
Zurück zum Zitat Kasai N, Kojima C, Goto K. Metabolic and performance responses to sprint exercise under hypoxia among female athletes. Sports Med Int Open. 2018;2(3):E71–8.PubMedPubMedCentralCrossRef Kasai N, Kojima C, Goto K. Metabolic and performance responses to sprint exercise under hypoxia among female athletes. Sports Med Int Open. 2018;2(3):E71–8.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Kasai N, Mizuno S, Ishimoto S, Sakamoto E, Maruta M, Goto K. Effect of training in hypoxia on repeated sprint performance in female athletes. Springerplus. 2015;4:310.PubMedPubMedCentralCrossRef Kasai N, Mizuno S, Ishimoto S, Sakamoto E, Maruta M, Goto K. Effect of training in hypoxia on repeated sprint performance in female athletes. Springerplus. 2015;4:310.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Hicks AL, Kent-Braun J, Ditor DS. Sex differences in human skeletal muscle fatigue. Exerc Sport Sci Rev. 2001;29(3):109–12.PubMedCrossRef Hicks AL, Kent-Braun J, Ditor DS. Sex differences in human skeletal muscle fatigue. Exerc Sport Sci Rev. 2001;29(3):109–12.PubMedCrossRef
179.
Zurück zum Zitat Kojima C, Kasai N, Ishibashi A, Murakami Y, Ebi K, Goto K. Appetite regulations after sprint exercise under hypoxic condition in female athletes. J Strength Cond Res. 2019;33(7):1773–80.PubMedCrossRef Kojima C, Kasai N, Ishibashi A, Murakami Y, Ebi K, Goto K. Appetite regulations after sprint exercise under hypoxic condition in female athletes. J Strength Cond Res. 2019;33(7):1773–80.PubMedCrossRef
180.
Zurück zum Zitat Camacho-Cardenosa A, Camacho-Cardenosa M, Brazo-Sayavera J, Timon R, Gonzalez-Custodio A, Olcina G. Repeated sprint in hypoxia as a time-metabolic efficient strategy to improve physical fitness of obese women. Eur J Appl Physiol. 2020;120(5):1051–61.PubMedCrossRef Camacho-Cardenosa A, Camacho-Cardenosa M, Brazo-Sayavera J, Timon R, Gonzalez-Custodio A, Olcina G. Repeated sprint in hypoxia as a time-metabolic efficient strategy to improve physical fitness of obese women. Eur J Appl Physiol. 2020;120(5):1051–61.PubMedCrossRef
181.
Zurück zum Zitat Camacho-Cardenosa M, Camacho-Cardenosa A, Brazo-Sayavera J, Guerrero-Flores S, Olcina G, Timon R. Repeated-sprint training under cyclic hypoxia improves body composition in healthy women. J Sports Med Phys Fitness. 2019;59(10):1700–8.PubMedCrossRef Camacho-Cardenosa M, Camacho-Cardenosa A, Brazo-Sayavera J, Guerrero-Flores S, Olcina G, Timon R. Repeated-sprint training under cyclic hypoxia improves body composition in healthy women. J Sports Med Phys Fitness. 2019;59(10):1700–8.PubMedCrossRef
182.
Zurück zum Zitat Karayigit R, Eser MC, Sahin FN, Sari C, Sanchez-Gomez A, Dominguez R, et al. The acute effects of normobaric hypoxia on strength, muscular endurance and cognitive function: influence of dose and sex. Biology (Basel). 2022;11(2):309.PubMed Karayigit R, Eser MC, Sahin FN, Sari C, Sanchez-Gomez A, Dominguez R, et al. The acute effects of normobaric hypoxia on strength, muscular endurance and cognitive function: influence of dose and sex. Biology (Basel). 2022;11(2):309.PubMed
183.
Zurück zum Zitat Senefeld J, Yoon T, Bement MH, Hunter SK. Fatigue and recovery from dynamic contractions in men and women differ for arm and leg muscles. Muscle Nerve. 2013;48(3):436–9.PubMedPubMedCentralCrossRef Senefeld J, Yoon T, Bement MH, Hunter SK. Fatigue and recovery from dynamic contractions in men and women differ for arm and leg muscles. Muscle Nerve. 2013;48(3):436–9.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Yoon T, Schlinder Delap B, Griffith EE, Hunter SK. Mechanisms of fatigue differ after low- and high-force fatiguing contractions in men and women. Muscle Nerve. 2007;36(4):515–24.PubMedCrossRef Yoon T, Schlinder Delap B, Griffith EE, Hunter SK. Mechanisms of fatigue differ after low- and high-force fatiguing contractions in men and women. Muscle Nerve. 2007;36(4):515–24.PubMedCrossRef
185.
Zurück zum Zitat Serebrovskaya TV. Intermittent hypoxia research in the former soviet union and the commonwealth of independent States: history and review of the concept and selected applications. High Alt Med Biol. 2002;3(2):205–21.PubMedCrossRef Serebrovskaya TV. Intermittent hypoxia research in the former soviet union and the commonwealth of independent States: history and review of the concept and selected applications. High Alt Med Biol. 2002;3(2):205–21.PubMedCrossRef
186.
Zurück zum Zitat Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, Mallet RT. Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med (Maywood). 2008;233(6):627–50.PubMedCrossRef Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, Mallet RT. Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med (Maywood). 2008;233(6):627–50.PubMedCrossRef
187.
Zurück zum Zitat Puri S, Panza G, Mateika JH. A comprehensive review of respiratory, autonomic and cardiovascular responses to intermittent hypoxia in humans. Exp Neurol. 2021;341: 113709.PubMedPubMedCentralCrossRef Puri S, Panza G, Mateika JH. A comprehensive review of respiratory, autonomic and cardiovascular responses to intermittent hypoxia in humans. Exp Neurol. 2021;341: 113709.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Mallet RT, Manukhina EB, Ruelas SS, Caffrey JL, Downey HF. Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms and therapeutic potential. Am J Physiol Heart Circ Physiol. 2018;315(2):H216–32.PubMedPubMedCentralCrossRef Mallet RT, Manukhina EB, Ruelas SS, Caffrey JL, Downey HF. Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms and therapeutic potential. Am J Physiol Heart Circ Physiol. 2018;315(2):H216–32.PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Panza GS, Puri S, Lin HS, Badr SM, Mateika JH. Daily exposure to mild intermittent hypoxia reduces blood pressure in male obstructive sleep apnea patients with hypertension. Am J Respir Crit Care Med. 2022;205(8):949–58.PubMedPubMedCentralCrossRef Panza GS, Puri S, Lin HS, Badr SM, Mateika JH. Daily exposure to mild intermittent hypoxia reduces blood pressure in male obstructive sleep apnea patients with hypertension. Am J Respir Crit Care Med. 2022;205(8):949–58.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, et al. Boosting mitochondrial health to counteract neurodegeneration. Prog Neurobiol. 2022;215: 102289.PubMedCrossRef Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, et al. Boosting mitochondrial health to counteract neurodegeneration. Prog Neurobiol. 2022;215: 102289.PubMedCrossRef
191.
Zurück zum Zitat Bixler EO, Vgontzas AN, Lin HM, Ten Have T, Rein J, Vela-Bueno A, et al. Prevalence of sleep-disordered breathing in women: effects of gender. Am J Respir Crit Care Med. 2001;163(3 Pt 1):608–13.PubMedCrossRef Bixler EO, Vgontzas AN, Lin HM, Ten Have T, Rein J, Vela-Bueno A, et al. Prevalence of sleep-disordered breathing in women: effects of gender. Am J Respir Crit Care Med. 2001;163(3 Pt 1):608–13.PubMedCrossRef
192.
Zurück zum Zitat Mokhlesi B, Ham SA, Gozal D. The effect of sex and age on the comorbidity burden of OSA: an observational analysis from a large nationwide US health claims database. Eur Respir J. 2016;47(4):1162–9.PubMedCrossRef Mokhlesi B, Ham SA, Gozal D. The effect of sex and age on the comorbidity burden of OSA: an observational analysis from a large nationwide US health claims database. Eur Respir J. 2016;47(4):1162–9.PubMedCrossRef
193.
Zurück zum Zitat Valipour A. Gender-related differences in the obstructive sleep apnea syndrome. Pneumologie. 2012;66(10):584–8.PubMedCrossRef Valipour A. Gender-related differences in the obstructive sleep apnea syndrome. Pneumologie. 2012;66(10):584–8.PubMedCrossRef
194.
Zurück zum Zitat Zhao J, Ding Y, Kline GP, Zhou Z, Mallet RT, Shi X. Hypoxic breathing produces more intense hypoxemia in elderly women than in elderly men. Front Physiol. 2022;13: 989635.PubMedPubMedCentralCrossRef Zhao J, Ding Y, Kline GP, Zhou Z, Mallet RT, Shi X. Hypoxic breathing produces more intense hypoxemia in elderly women than in elderly men. Front Physiol. 2022;13: 989635.PubMedPubMedCentralCrossRef
195.
Zurück zum Zitat Reybrouck T, Fagard R. Gender differences in the oxygen transport system during maximal exercise in hypertensive subjects. Chest. 1999;115(3):788–92.PubMedCrossRef Reybrouck T, Fagard R. Gender differences in the oxygen transport system during maximal exercise in hypertensive subjects. Chest. 1999;115(3):788–92.PubMedCrossRef
196.
Zurück zum Zitat Dominelli PB, Guenette JA, Wilkie SS, Foster GE, Sheel AW. Determinants of expiratory flow limitation in healthy women during exercise. Med Sci Sports Exerc. 2011;43(9):1666–74.PubMedCrossRef Dominelli PB, Guenette JA, Wilkie SS, Foster GE, Sheel AW. Determinants of expiratory flow limitation in healthy women during exercise. Med Sci Sports Exerc. 2011;43(9):1666–74.PubMedCrossRef
197.
Zurück zum Zitat Sheel AW, Dominelli PB, Molgat-Seon Y. Revisiting dysanapsis: sex-based differences in airways and the mechanics of breathing during exercise. Exp Physiol. 2016;101(2):213–8.PubMedCrossRef Sheel AW, Dominelli PB, Molgat-Seon Y. Revisiting dysanapsis: sex-based differences in airways and the mechanics of breathing during exercise. Exp Physiol. 2016;101(2):213–8.PubMedCrossRef
198.
Zurück zum Zitat Lombardi C, Meriggi P, Agostoni P, Faini A, Bilo G, Revera M, et al. High-altitude hypoxia and periodic breathing during sleep: gender-related differences. J Sleep Res. 2013;22(3):322–30.PubMedCrossRef Lombardi C, Meriggi P, Agostoni P, Faini A, Bilo G, Revera M, et al. High-altitude hypoxia and periodic breathing during sleep: gender-related differences. J Sleep Res. 2013;22(3):322–30.PubMedCrossRef
199.
Zurück zum Zitat Wadhwa H, Gradinaru C, Gates GJ, Badr MS, Mateika JH. Impact of intermittent hypoxia on long-term facilitation of minute ventilation and heart rate variability in men and women: do sex differences exist? J Appl Physiol (1985). 2008;104(6):1625–33.PubMedCrossRef Wadhwa H, Gradinaru C, Gates GJ, Badr MS, Mateika JH. Impact of intermittent hypoxia on long-term facilitation of minute ventilation and heart rate variability in men and women: do sex differences exist? J Appl Physiol (1985). 2008;104(6):1625–33.PubMedCrossRef
200.
Zurück zum Zitat Burtscher M, Philadelphy M, Burtscher J, Likar R. Sex-specific differences in blood pressure responses following acute high-altitude exposure. J Travel Med. 2022;29(5):taab035.PubMedCrossRef Burtscher M, Philadelphy M, Burtscher J, Likar R. Sex-specific differences in blood pressure responses following acute high-altitude exposure. J Travel Med. 2022;29(5):taab035.PubMedCrossRef
201.
Zurück zum Zitat Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: current evidence and future directions. Front Neurosci. 2022;16:1067411.PubMedPubMedCentralCrossRef Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: current evidence and future directions. Front Neurosci. 2022;16:1067411.PubMedPubMedCentralCrossRef
202.
Zurück zum Zitat Tiller NB, Elliott-Sale KJ, Knechtle B, Wilson PB, Roberts JD, Millet GY. Do sex differences in physiology confer a female advantage in ultra-endurance sport? Sports Med. 2021;51(5):895–915.PubMedCrossRef Tiller NB, Elliott-Sale KJ, Knechtle B, Wilson PB, Roberts JD, Millet GY. Do sex differences in physiology confer a female advantage in ultra-endurance sport? Sports Med. 2021;51(5):895–915.PubMedCrossRef
203.
Zurück zum Zitat Tiller NB, Wheatley-Guy CM, Fermoyle CC, Robach P, Ziegler B, Gavet A, et al. Sex-specific physiological responses to ultramarathon. Med Sci Sports Exerc. 2022;54(10):1647–56.PubMedCrossRef Tiller NB, Wheatley-Guy CM, Fermoyle CC, Robach P, Ziegler B, Gavet A, et al. Sex-specific physiological responses to ultramarathon. Med Sci Sports Exerc. 2022;54(10):1647–56.PubMedCrossRef
204.
Zurück zum Zitat Fulco CS, Beidleman BA, Muza SR. Effectiveness of preacclimatization strategies for high-altitude exposure. Exerc Sport Sci Rev. 2013;41(1):55–63.PubMedCrossRef Fulco CS, Beidleman BA, Muza SR. Effectiveness of preacclimatization strategies for high-altitude exposure. Exerc Sport Sci Rev. 2013;41(1):55–63.PubMedCrossRef
205.
Zurück zum Zitat Furian M, Bitos K, Hartmann SE, Muralt L, Lichtblau M, Bader PR, et al. Acute high altitude exposure, acclimatization and re-exposure on nocturnal breathing. Front Physiol. 2022;13: 965021.PubMedPubMedCentralCrossRef Furian M, Bitos K, Hartmann SE, Muralt L, Lichtblau M, Bader PR, et al. Acute high altitude exposure, acclimatization and re-exposure on nocturnal breathing. Front Physiol. 2022;13: 965021.PubMedPubMedCentralCrossRef
206.
Zurück zum Zitat Katayama K, Fujita H, Sato K, Ishida K, Iwasaki K, Miyamura M. Effect of a repeated series of intermittent hypoxic exposures on ventilatory response in humans. High Alt Med Biol. 2005;6(1):50–9.PubMedCrossRef Katayama K, Fujita H, Sato K, Ishida K, Iwasaki K, Miyamura M. Effect of a repeated series of intermittent hypoxic exposures on ventilatory response in humans. High Alt Med Biol. 2005;6(1):50–9.PubMedCrossRef
207.
Zurück zum Zitat Sim M, Garvican-Lewis LA, Cox GR, Govus A, McKay AKA, Stellingwerff T, et al. Iron considerations for the athlete: a narrative review. Eur J Appl Physiol. 2019;119(7):1463–78.PubMedCrossRef Sim M, Garvican-Lewis LA, Cox GR, Govus A, McKay AKA, Stellingwerff T, et al. Iron considerations for the athlete: a narrative review. Eur J Appl Physiol. 2019;119(7):1463–78.PubMedCrossRef
208.
Zurück zum Zitat Stellingwerff T, Peeling P, Garvican-Lewis LA, Hall R, Koivisto AE, Heikura IA, et al. Nutrition and altitude: strategies to enhance adaptation, improve performance and maintain health: a narrative review. Sports Med. 2019;49(Suppl. 2):169–84.PubMedPubMedCentralCrossRef Stellingwerff T, Peeling P, Garvican-Lewis LA, Hall R, Koivisto AE, Heikura IA, et al. Nutrition and altitude: strategies to enhance adaptation, improve performance and maintain health: a narrative review. Sports Med. 2019;49(Suppl. 2):169–84.PubMedPubMedCentralCrossRef
209.
Zurück zum Zitat Koivisto-Mork AE, Svendsen IS, Skattebo O, Hallen J, Paulsen G. Impact of baseline serum ferritin and supplemental iron on altitude-induced hemoglobin mass response in elite athletes. Scand J Med Sci Sports. 2021;31(9):1764–73.PubMedCrossRef Koivisto-Mork AE, Svendsen IS, Skattebo O, Hallen J, Paulsen G. Impact of baseline serum ferritin and supplemental iron on altitude-induced hemoglobin mass response in elite athletes. Scand J Med Sci Sports. 2021;31(9):1764–73.PubMedCrossRef
210.
Zurück zum Zitat Roach RC, Hackett PH, Oelz O, Bartsch P, Luks AM, MacInnis MJ, et al. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt Med Biol. 2018;19(1):4–6.PubMedPubMedCentralCrossRef Roach RC, Hackett PH, Oelz O, Bartsch P, Luks AM, MacInnis MJ, et al. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt Med Biol. 2018;19(1):4–6.PubMedPubMedCentralCrossRef
211.
Zurück zum Zitat Rathat C, Richalet JP, Herry JP, Larmignat P. Detection of high-risk subjects for high altitude diseases. Int J Sports Med. 1992;13(Suppl. 1):S76–8.PubMedCrossRef Rathat C, Richalet JP, Herry JP, Larmignat P. Detection of high-risk subjects for high altitude diseases. Int J Sports Med. 1992;13(Suppl. 1):S76–8.PubMedCrossRef
212.
Zurück zum Zitat Ainslie PN, Lucas SJ, Fan JL, Thomas KN, Cotter JD, Tzeng YC, et al. Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans. J Appl Physiol (1985). 2012;113(7):1058–67.PubMedCrossRef Ainslie PN, Lucas SJ, Fan JL, Thomas KN, Cotter JD, Tzeng YC, et al. Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans. J Appl Physiol (1985). 2012;113(7):1058–67.PubMedCrossRef
213.
Zurück zum Zitat Farinelli CC, Kayser B, Binzoni T, Cerretelli P, Girardier L. Autonomic nervous control of heart rate at altitude (5050 m). Eur J Appl Physiol Occup Physiol. 1994;69(6):502–7.PubMedCrossRef Farinelli CC, Kayser B, Binzoni T, Cerretelli P, Girardier L. Autonomic nervous control of heart rate at altitude (5050 m). Eur J Appl Physiol Occup Physiol. 1994;69(6):502–7.PubMedCrossRef
214.
Zurück zum Zitat Constantini K, Stickford ASL, Bleich JL, Mannheimer PD, Levine BD, Chapman RF. Synchronizing gait with cardiac cycle phase alters heart rate response during running. Med Sci Sports Exerc. 2018;50(5):1046–53.PubMedCrossRef Constantini K, Stickford ASL, Bleich JL, Mannheimer PD, Levine BD, Chapman RF. Synchronizing gait with cardiac cycle phase alters heart rate response during running. Med Sci Sports Exerc. 2018;50(5):1046–53.PubMedCrossRef
215.
Zurück zum Zitat Bayliss DA, Millhorn DE. Central neural mechanisms of progesterone action: application to the respiratory system. J Appl Physiol (1985). 1992;73(2):393–404.PubMedCrossRef Bayliss DA, Millhorn DE. Central neural mechanisms of progesterone action: application to the respiratory system. J Appl Physiol (1985). 1992;73(2):393–404.PubMedCrossRef
216.
Zurück zum Zitat Roberts AC, Butterfield GE, Cymerman A, Reeves JT, Wolfel EE, Brooks GA. Acclimatization to 4,300-m altitude decreases reliance on fat as a substrate. J Appl Physiol. 1996;81(4):1762–71.PubMedCrossRef Roberts AC, Butterfield GE, Cymerman A, Reeves JT, Wolfel EE, Brooks GA. Acclimatization to 4,300-m altitude decreases reliance on fat as a substrate. J Appl Physiol. 1996;81(4):1762–71.PubMedCrossRef
217.
Zurück zum Zitat Roels B, Thomas C, Bentley DJ, Mercier J, Hayot M, Millet G. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. J Appl Physiol. 2007;102(1):79–86.PubMedCrossRef Roels B, Thomas C, Bentley DJ, Mercier J, Hayot M, Millet G. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. J Appl Physiol. 2007;102(1):79–86.PubMedCrossRef
218.
Zurück zum Zitat Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol. 1994;76(6):2253–61.PubMedCrossRef Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol. 1994;76(6):2253–61.PubMedCrossRef
219.
Zurück zum Zitat Brooks GA, Butterfield GE, Wolfe RR, Groves BM, Mazzeo RS, Sutton JR, et al. Increased dependence on blood glucose after acclimatization to 4,300 m. J Appl Physiol. 1991;70(2):919–27.PubMedCrossRef Brooks GA, Butterfield GE, Wolfe RR, Groves BM, Mazzeo RS, Sutton JR, et al. Increased dependence on blood glucose after acclimatization to 4,300 m. J Appl Physiol. 1991;70(2):919–27.PubMedCrossRef
220.
Zurück zum Zitat Koivisto-Mork AE, Paur I, Paulsen G, Garthe I, Raastad T, Bastani NE, et al. Dietary adjustments to altitude training in elite endurance athletes; impact of a randomized clinical trial with antioxidant-rich foods. Front Sports Act Living. 2020;2:106.PubMedPubMedCentralCrossRef Koivisto-Mork AE, Paur I, Paulsen G, Garthe I, Raastad T, Bastani NE, et al. Dietary adjustments to altitude training in elite endurance athletes; impact of a randomized clinical trial with antioxidant-rich foods. Front Sports Act Living. 2020;2:106.PubMedPubMedCentralCrossRef
221.
Zurück zum Zitat Sandoval DA, Matt KS. Gender differences in the endocrine and metabolic responses to hypoxic exercise. J Appl Physiol (1985). 2002;92(2):504–12.PubMedCrossRef Sandoval DA, Matt KS. Gender differences in the endocrine and metabolic responses to hypoxic exercise. J Appl Physiol (1985). 2002;92(2):504–12.PubMedCrossRef
222.
Zurück zum Zitat Trevino MA, Sterczala AJ, Miller JD, Wray ME, Dimmick HL, Ciccone AB, et al. Sex-related differences in muscle size explained by amplitudes of higher-threshold motor unit action potentials and muscle fibre typing. Acta Physiol (Oxf). 2019;225(4): e13151.PubMedCrossRef Trevino MA, Sterczala AJ, Miller JD, Wray ME, Dimmick HL, Ciccone AB, et al. Sex-related differences in muscle size explained by amplitudes of higher-threshold motor unit action potentials and muscle fibre typing. Acta Physiol (Oxf). 2019;225(4): e13151.PubMedCrossRef
223.
Zurück zum Zitat Saunders PU, Telford RD, Pyne DB, Cunningham RB, Gore CJ, Hahn AG, et al. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. J Appl Physiol. 2004;96(3):931–7.PubMedCrossRef Saunders PU, Telford RD, Pyne DB, Cunningham RB, Gore CJ, Hahn AG, et al. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. J Appl Physiol. 2004;96(3):931–7.PubMedCrossRef
224.
Zurück zum Zitat Schmitt L, Millet G, Robach P, Nicolet G, Brugniaux JV, Fouillot JP, et al. Influence of “living high-training low” on aerobic performance and economy of work in elite athletes. Eur J Appl Physiol. 2006;97(5):627–36.PubMedCrossRef Schmitt L, Millet G, Robach P, Nicolet G, Brugniaux JV, Fouillot JP, et al. Influence of “living high-training low” on aerobic performance and economy of work in elite athletes. Eur J Appl Physiol. 2006;97(5):627–36.PubMedCrossRef
225.
Zurück zum Zitat Raberin A, Elmer J, Willis SJ, Richard T, Vernillo G, Iaia FM, et al. The oxidative-glycolytic balance influenced by sprint duration is key during repeated sprint in hypoxia. Med Sci Sports Exerc. 2023;55(2):245–54.PubMedCrossRef Raberin A, Elmer J, Willis SJ, Richard T, Vernillo G, Iaia FM, et al. The oxidative-glycolytic balance influenced by sprint duration is key during repeated sprint in hypoxia. Med Sci Sports Exerc. 2023;55(2):245–54.PubMedCrossRef
226.
Zurück zum Zitat Millet GP, Girard O, Beard A, Brocherie F. Repeated sprint training in hypoxia: an innovative method. Deutsch Z Sportmed. 2019;70:115–22.CrossRef Millet GP, Girard O, Beard A, Brocherie F. Repeated sprint training in hypoxia: an innovative method. Deutsch Z Sportmed. 2019;70:115–22.CrossRef
227.
Zurück zum Zitat Elliott-Sale KJ, Minahan CL, de Jonge X, Ackerman KE, Sipila S, Constantini NW, et al. Methodological considerations for studies in sport and exercise science with women as participants: a working guide for standards of practice for research on women. Sports Med. 2021;51(5):843–61.PubMedPubMedCentralCrossRef Elliott-Sale KJ, Minahan CL, de Jonge X, Ackerman KE, Sipila S, Constantini NW, et al. Methodological considerations for studies in sport and exercise science with women as participants: a working guide for standards of practice for research on women. Sports Med. 2021;51(5):843–61.PubMedPubMedCentralCrossRef
228.
Zurück zum Zitat Hirschberg AL. Challenging aspects of research on the influence of the menstrual cycle and oral contraceptives on physical performance. Sports Med. 2022;52(7):1453–6.PubMedCrossRef Hirschberg AL. Challenging aspects of research on the influence of the menstrual cycle and oral contraceptives on physical performance. Sports Med. 2022;52(7):1453–6.PubMedCrossRef
Metadaten
Titel
Recommendations for Women in Mountain Sports and Hypoxia Training/Conditioning
verfasst von
Johannes Burtscher
Antoine Raberin
Franck Brocherie
Davide Malatesta
Giorgio Manferdelli
Tom Citherlet
Bastien Krumm
Nicolas Bourdillon
Juliana Antero
Letizia Rasica
Martin Burtscher
Grégoire P. Millet
Publikationsdatum
12.12.2023
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 4/2024
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-023-01970-6

Weitere Artikel der Ausgabe 4/2024

Sports Medicine 4/2024 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

TEP mit Roboterhilfe führt nicht zu größerer Zufriedenheit

15.05.2024 Knie-TEP Nachrichten

Der Einsatz von Operationsrobotern für den Einbau von Totalendoprothesen des Kniegelenks hat die Präzision der Eingriffe erhöht. Für die postoperative Zufriedenheit der Patienten scheint das aber unerheblich zu sein, wie eine Studie zeigt.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.