Skip to main content
Erschienen in: Experimental Brain Research 1/2004

01.09.2004 | Research Article

Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks

verfasst von: Grégoire Courtine, Thierry Pozzo

Erschienen in: Experimental Brain Research | Ausgabe 1/2004

Einloggen, um Zugang zu erhalten

Abstract

Recovery of locomotor function was investigated in seven cosmonauts exposed to microgravity for 6 months. Crew members executed a locomotor task with visual cues (eyes open, EO) and without them (eyes closed, EC). The locomotor task consisted of ascending a two-step staircase, jumping down from a 30-cm high platform, and finally walking 4 m in the straight-ahead direction. Subjects were tested before the flight (D-30), and on the second day (R+2) and the sixth day (R+6) after the flight. Cosmonauts succeeded in all locomotor sub-tasks as early as R+2. In particular, microgravity exposure did not prevent cosmonauts from producing a straight walking trajectory even when blindfolded (deviation at R+2 with EO 2.0±0.7°, and with EC 4.7±1.9°). However, lateral movements of trunk were found to be increased at R+2 (16%), suggesting post-flight gait instability. Modifications of the timing of forward trunk movements were also detected at R+2. Unexpectedly, coordination patterns between head and trunk movements remained unchanged. The maximum amplitude of head pitches was 5° or less. Yet, the cosmonauts held their heads at lower positions at R+2 in comparison with their pre-flight postures, and they lowered their heads even further during blindfolded locomotion. In general, comparable spatial and temporal modifications of head and trunk movements at R+2 were observed during the stair and gait cycles. Mean values of locomotor descriptors measured at R+6 did not deviate from the pre-flight baseline. When performing jumps after the return from their flight, cosmonauts decreased the amplitude and speed of head rotation by approximately 50% in comparison with the pre-flight values. In addition, the timing of head pitches was uncertain after weightlessness. All the above changes endured at R+6. Previous studies reported that prolonged exposure to microgravity adversely affects the motor performance in the initial hours upon re-entry to Earth. However, gait analysis revealed that cosmonauts recovered near-optimal locomotor abilities as early as the second day post-flight. Results suggest a notable capability of the central nervous system to rapidly accommodate to changing physical environment and body properties. The role of head stabilization at a lower position is conjectured to be an adaptive response to microgravity-induced motor disorders.
Literatur
Zurück zum Zitat Amblard B, Assaiante C, Vaugoyeau M, Baroni G, Ferrigno G, Pedotti A (2001) Voluntary head stabilisation in space during oscillatory trunk movements in the frontal plane performed before, during and after a prolonged period of weightlessness. Exp Brain Res 137:170–179CrossRefPubMed Amblard B, Assaiante C, Vaugoyeau M, Baroni G, Ferrigno G, Pedotti A (2001) Voluntary head stabilisation in space during oscillatory trunk movements in the frontal plane performed before, during and after a prolonged period of weightlessness. Exp Brain Res 137:170–179CrossRefPubMed
Zurück zum Zitat Angelaki DE, McHenry MQ, Dickman JD, Newlands SD, Hess BJ (1999) Computation of inertial motion: neural strategies to resolve ambiguous otolith information. J Neurosci 19:316–327 Angelaki DE, McHenry MQ, Dickman JD, Newlands SD, Hess BJ (1999) Computation of inertial motion: neural strategies to resolve ambiguous otolith information. J Neurosci 19:316–327
Zurück zum Zitat Assaiante C, Amblard B (1993) Ontogenesis of head stabilization in space during locomotion in children: influence of visual cues. Exp Brain Res 93:499–515PubMed Assaiante C, Amblard B (1993) Ontogenesis of head stabilization in space during locomotion in children: influence of visual cues. Exp Brain Res 93:499–515PubMed
Zurück zum Zitat Berthoz A, Pozzo T (1988) Intermittent head stabilization during postural and locomotory tasks in humans. In: Amblard B, Berthoz A, Clarac F (eds) Posture and gait: development adaptation and modulation. Elsevier, Amsterdam, pp 189–198 Berthoz A, Pozzo T (1988) Intermittent head stabilization during postural and locomotory tasks in humans. In: Amblard B, Berthoz A, Clarac F (eds) Posture and gait: development adaptation and modulation. Elsevier, Amsterdam, pp 189–198
Zurück zum Zitat Biewener AA (1990) Biomechanics of mammalian terrestrial locomotion. Science 250:1097–1103PubMed Biewener AA (1990) Biomechanics of mammalian terrestrial locomotion. Science 250:1097–1103PubMed
Zurück zum Zitat Bloomberg JJ, Peters BT, Smith SL, Huebner WP, Reschke MF (1997) Locomotor head-trunk coordination strategies following space flight. J Vestib Res 7:161–177PubMed Bloomberg JJ, Peters BT, Smith SL, Huebner WP, Reschke MF (1997) Locomotor head-trunk coordination strategies following space flight. J Vestib Res 7:161–177PubMed
Zurück zum Zitat Boyle R, Mensinger AF, Yoshida K, Usui S, Intravaia A, Tricas T, Highstein SM (2001) Neural readaptation to Earth’s gravity following return from space. J Neurophysiol 86:2118–2122PubMed Boyle R, Mensinger AF, Yoshida K, Usui S, Intravaia A, Tricas T, Highstein SM (2001) Neural readaptation to Earth’s gravity following return from space. J Neurophysiol 86:2118–2122PubMed
Zurück zum Zitat Chekirda IF, Yeremin AV (1977) Dynamic of cyclic and acyclic locomotion of the Soyuz-18 crew after a 63-day space mission. Kosmicheskaia Biologiia I Aviakosmicheskaia Meditsina 4:9–13 Chekirda IF, Yeremin AV (1977) Dynamic of cyclic and acyclic locomotion of the Soyuz-18 crew after a 63-day space mission. Kosmicheskaia Biologiia I Aviakosmicheskaia Meditsina 4:9–13
Zurück zum Zitat Chekirda IF, Bogdashevskiy AV, Yeremin AV, Kolosov IA (1971) Coordination structure of walking of Soyuz-9 crew members before and after fligth. Kosmicheskaia Biologiia I Aviakosmicheskaia Meditsina 5:48–52 Chekirda IF, Bogdashevskiy AV, Yeremin AV, Kolosov IA (1971) Coordination structure of walking of Soyuz-9 crew members before and after fligth. Kosmicheskaia Biologiia I Aviakosmicheskaia Meditsina 5:48–52
Zurück zum Zitat Clement G, Gurfinkel VS, Lestienne F, Lipshits MI, Popov KE (1984) Adaptation of postural control to weightlessness. Exp Brain Res 57:61–72PubMed Clement G, Gurfinkel VS, Lestienne F, Lipshits MI, Popov KE (1984) Adaptation of postural control to weightlessness. Exp Brain Res 57:61–72PubMed
Zurück zum Zitat Cohen HS, Kimball KT (2002) Improvements in path integration after vestibular rehabilitation. J Vestib Res 12:47–51PubMed Cohen HS, Kimball KT (2002) Improvements in path integration after vestibular rehabilitation. J Vestib Res 12:47–51PubMed
Zurück zum Zitat Correia MJ (1998) Neuronal plasticity: adaptation and readaptation to the environment of space. Brain Res Brain Res Rev 28:61–65CrossRefPubMed Correia MJ (1998) Neuronal plasticity: adaptation and readaptation to the environment of space. Brain Res Brain Res Rev 28:61–65CrossRefPubMed
Zurück zum Zitat Courtine G, Schieppati M (2003) Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision. Eur J Neurosci 18:177–190CrossRefPubMed Courtine G, Schieppati M (2003) Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision. Eur J Neurosci 18:177–190CrossRefPubMed
Zurück zum Zitat Courtine G, Papaxanthis C, Pozzo T (2002) Prolonged exposure to microgravity modifies limb endpoint kinematics during the swing phase of human walking. Neurosci Lett 332:70CrossRefPubMed Courtine G, Papaxanthis C, Pozzo T (2002) Prolonged exposure to microgravity modifies limb endpoint kinematics during the swing phase of human walking. Neurosci Lett 332:70CrossRefPubMed
Zurück zum Zitat Cromwell R, Wellmon R (2001) Sagittal plane head stabilization during level walking and ambulation on stairs. Physiother Res Int 6:179–192PubMed Cromwell R, Wellmon R (2001) Sagittal plane head stabilization during level walking and ambulation on stairs. Physiother Res Int 6:179–192PubMed
Zurück zum Zitat Cromwell RL, Newton RA, Forrest G (2002) Influence of vision on head stabilization strategies in older adults during walking. J Gerontol A Biol Sci Med Sci 57:M442–M448 Cromwell RL, Newton RA, Forrest G (2002) Influence of vision on head stabilization strategies in older adults during walking. J Gerontol A Biol Sci Med Sci 57:M442–M448
Zurück zum Zitat Edgerton VR, Roy RR (1996) Neuromuscular adaptations to actual and simulated space flight. In: Fregly MJ, Blattteis CM (eds) Handbook of physiology. Environmental physiology, vol 1. Oxford University Press, New York, pp 721–763 Edgerton VR, Roy RR (1996) Neuromuscular adaptations to actual and simulated space flight. In: Fregly MJ, Blattteis CM (eds) Handbook of physiology. Environmental physiology, vol 1. Oxford University Press, New York, pp 721–763
Zurück zum Zitat Glasauer S, Amorim MA, Bloomberg JJ, Reschke MF, Peters BT, Smith SL, Berthoz A (1995) Spatial orientation during locomotion following space flight. Acta Astronaut 36:423–431PubMed Glasauer S, Amorim MA, Bloomberg JJ, Reschke MF, Peters BT, Smith SL, Berthoz A (1995) Spatial orientation during locomotion following space flight. Acta Astronaut 36:423–431PubMed
Zurück zum Zitat Glasauer S, Amorim MA, Viaud-Delmon I, Berthoz A (2002) Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path. Exp Brain Res 145:489–497CrossRefPubMed Glasauer S, Amorim MA, Viaud-Delmon I, Berthoz A (2002) Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path. Exp Brain Res 145:489–497CrossRefPubMed
Zurück zum Zitat Grasso R, Glasauer S, Takei Y, Berthoz A (1996) The predictive brain: anticipatory control of head direction for the steering of locomotion. Neuroreport 7:1170–1174 Grasso R, Glasauer S, Takei Y, Berthoz A (1996) The predictive brain: anticipatory control of head direction for the steering of locomotion. Neuroreport 7:1170–1174
Zurück zum Zitat Gurfinkel V, Levik Y, Popov K, Smetanin B (1988) Body scheme in the control of postural activity. In: Gurfinkel V, Loffé M, Massion J, Roll JP (eds) Stance and motion: facts and concepts. Plenum, New York, pp 185–193 Gurfinkel V, Levik Y, Popov K, Smetanin B (1988) Body scheme in the control of postural activity. In: Gurfinkel V, Loffé M, Massion J, Roll JP (eds) Stance and motion: facts and concepts. Plenum, New York, pp 185–193
Zurück zum Zitat Hirasaki E, Moore ST, Raphan T, Cohen B (1999) Effects of walking velocity on vertical head and body movements during locomotion. Exp Brain Res 127:117–130PubMed Hirasaki E, Moore ST, Raphan T, Cohen B (1999) Effects of walking velocity on vertical head and body movements during locomotion. Exp Brain Res 127:117–130PubMed
Zurück zum Zitat Hollands MA, Sorensen KL, Patla AE (2001) Effects of head immobilization on the coordination and control of head and body reorientation and translation during steering. Exp Brain Res 140:223–233CrossRefPubMed Hollands MA, Sorensen KL, Patla AE (2001) Effects of head immobilization on the coordination and control of head and body reorientation and translation during steering. Exp Brain Res 140:223–233CrossRefPubMed
Zurück zum Zitat Imai T, Moore ST, Raphan T, Cohen B (2001) Interaction of the body, head, and eyes during walking and turning. Exp Brain Res 136:1–18PubMed Imai T, Moore ST, Raphan T, Cohen B (2001) Interaction of the body, head, and eyes during walking and turning. Exp Brain Res 136:1–18PubMed
Zurück zum Zitat Ivanenko YP, Grasso R, Macellari V, Lacquaniti F (2002) Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity. J Neurophysiol 87:3070–3089PubMed Ivanenko YP, Grasso R, Macellari V, Lacquaniti F (2002) Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity. J Neurophysiol 87:3070–3089PubMed
Zurück zum Zitat Jones GM, Watt DG (1971) Muscular control of landing from unexpected falls in man. J Physiol 219:729–737PubMed Jones GM, Watt DG (1971) Muscular control of landing from unexpected falls in man. J Physiol 219:729–737PubMed
Zurück zum Zitat Lackner JR, DiZio P (2000) Human orientation and movement control in weightless and artificial gravity environments. Exp Brain Res 130:2–26PubMed Lackner JR, DiZio P (2000) Human orientation and movement control in weightless and artificial gravity environments. Exp Brain Res 130:2–26PubMed
Zurück zum Zitat Lacquaniti F, Grasso R, Zago M (1999) Motor patterns in walking. News Physiol Sci 14:168–174PubMed Lacquaniti F, Grasso R, Zago M (1999) Motor patterns in walking. News Physiol Sci 14:168–174PubMed
Zurück zum Zitat Lambertz D, Perot C, Kaspranski R, Goubel F (2001) Effects of long-term spaceflight on mechanical properties of muscles in humans. J Appl Physiol 90:179–188 Lambertz D, Perot C, Kaspranski R, Goubel F (2001) Effects of long-term spaceflight on mechanical properties of muscles in humans. J Appl Physiol 90:179–188
Zurück zum Zitat MacKinnon CD, Winter DA (1993) Control of whole body balance in the frontal plane during human walking. J Biomech 26:633–644PubMed MacKinnon CD, Winter DA (1993) Control of whole body balance in the frontal plane during human walking. J Biomech 26:633–644PubMed
Zurück zum Zitat McDonald PV, Basdogan C, Bloomberg JJ, Layne CS (1996) Lower limb kinematics during treadmill walking after space flight: implications for gaze stabilization. Exp Brain Res 112:325–334PubMed McDonald PV, Basdogan C, Bloomberg JJ, Layne CS (1996) Lower limb kinematics during treadmill walking after space flight: implications for gaze stabilization. Exp Brain Res 112:325–334PubMed
Zurück zum Zitat McFadyen BJ, Winter DA (1988) An integrated biomechanical analysis of normal stair ascent and descent. J Biomech 21:733–744PubMed McFadyen BJ, Winter DA (1988) An integrated biomechanical analysis of normal stair ascent and descent. J Biomech 21:733–744PubMed
Zurück zum Zitat McGibbon CA, Krebs DE (2001) Age-related changes in lower trunk coordination and energy transfer during gait. J Neurophysiol 85:1923–1931PubMed McGibbon CA, Krebs DE (2001) Age-related changes in lower trunk coordination and energy transfer during gait. J Neurophysiol 85:1923–1931PubMed
Zurück zum Zitat McIntyre J, Zago M, Berthoz A, Lacquaniti F (2001) Does the brain model Newton’s laws? Nat Neurosci 4:693–694CrossRefPubMed McIntyre J, Zago M, Berthoz A, Lacquaniti F (2001) Does the brain model Newton’s laws? Nat Neurosci 4:693–694CrossRefPubMed
Zurück zum Zitat McKinley PA, Smith JL (1983) Visual and vestibular contributions to prelanding EMG during jump-downs in cats. Exp Brain Res 52:439–448PubMed McKinley PA, Smith JL (1983) Visual and vestibular contributions to prelanding EMG during jump-downs in cats. Exp Brain Res 52:439–448PubMed
Zurück zum Zitat McNitt-Gray JL, Hester DM, Mathiyakom W, Munkasy BA (2001) Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force. J Biomech 34:1471–1482CrossRefPubMed McNitt-Gray JL, Hester DM, Mathiyakom W, Munkasy BA (2001) Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force. J Biomech 34:1471–1482CrossRefPubMed
Zurück zum Zitat Morris ME, Huxham F, McGinley J, Dodd K, Iansek R (2001) The biomechanics and motor control of gait in Parkinson disease. Clin Biomech (Bristol, Avon) 16:459–470 Morris ME, Huxham F, McGinley J, Dodd K, Iansek R (2001) The biomechanics and motor control of gait in Parkinson disease. Clin Biomech (Bristol, Avon) 16:459–470
Zurück zum Zitat Mulavara AP, Verstraete MC, Bloomberg JJ (2002) Modulation of head movement control in humans during treadmill walking. Gait Posture 16: 271–282CrossRefPubMed Mulavara AP, Verstraete MC, Bloomberg JJ (2002) Modulation of head movement control in humans during treadmill walking. Gait Posture 16: 271–282CrossRefPubMed
Zurück zum Zitat Newman DJ, Jackson DK, Bloomberg JJ (1997) Altered astronaut lower limb and mass center kinematics in downward jumping following space flight. Exp Brain Res 117:30–42PubMed Newman DJ, Jackson DK, Bloomberg JJ (1997) Altered astronaut lower limb and mass center kinematics in downward jumping following space flight. Exp Brain Res 117:30–42PubMed
Zurück zum Zitat Paloski WH, Reschke MF, Black FO, Doxey DD, Harm DL (1992) Recovery of postural equilibrium control following spaceflight. Ann N Y Acad Sci 656:747–754PubMed Paloski WH, Reschke MF, Black FO, Doxey DD, Harm DL (1992) Recovery of postural equilibrium control following spaceflight. Ann N Y Acad Sci 656:747–754PubMed
Zurück zum Zitat Papaxanthis C, Pozzo T, Popov KE, McIntyre J (1998) Hand trajectories of vertical arm movements in one-G and zero-G environments. Evidence for a central representation of gravitational force. Exp Brain Res 120:496–502CrossRefPubMed Papaxanthis C, Pozzo T, Popov KE, McIntyre J (1998) Hand trajectories of vertical arm movements in one-G and zero-G environments. Evidence for a central representation of gravitational force. Exp Brain Res 120:496–502CrossRefPubMed
Zurück zum Zitat Papaxanthis C, Dubost V, Pozzo T (2003) Similar planning strategies for whole-body and arm movements performed in the sagittal plane. Neuroscience 117:779–783CrossRefPubMed Papaxanthis C, Dubost V, Pozzo T (2003) Similar planning strategies for whole-body and arm movements performed in the sagittal plane. Neuroscience 117:779–783CrossRefPubMed
Zurück zum Zitat Pozzo T, Berthoz A, Lefort L (1989) Head kinematic during various motor tasks in humans. Prog Brain Res 80:377–383PubMed Pozzo T, Berthoz A, Lefort L (1989) Head kinematic during various motor tasks in humans. Prog Brain Res 80:377–383PubMed
Zurück zum Zitat Pozzo T, Berthoz A, Lefort L (1990) Head stabilization during various locomotor tasks in humans. I. Normal subjects. Exp Brain Res 82:97–106PubMed Pozzo T, Berthoz A, Lefort L (1990) Head stabilization during various locomotor tasks in humans. I. Normal subjects. Exp Brain Res 82:97–106PubMed
Zurück zum Zitat Pozzo T, Papaxanthis C, Stapley P, Berthoz A (1998) The sensorimotor and cognitive integration of gravity. Brain Res Brain Res Rev 28:92–101PubMed Pozzo T, Papaxanthis C, Stapley P, Berthoz A (1998) The sensorimotor and cognitive integration of gravity. Brain Res Brain Res Rev 28:92–101PubMed
Zurück zum Zitat Reschke MF, Bloomberg JJ, Harm DL, Paloski WH, Layne C, McDonald V (1998) Posture, locomotion, spatial orientation, and motion sickness as a function of space flight. Brain Res Brain Res Rev 28:102–117PubMed Reschke MF, Bloomberg JJ, Harm DL, Paloski WH, Layne C, McDonald V (1998) Posture, locomotion, spatial orientation, and motion sickness as a function of space flight. Brain Res Brain Res Rev 28:102–117PubMed
Zurück zum Zitat Stolze H, Klebe S, Petersen G, Raethjen J, Wenzelburger R, Witt K, Deuschl G (2002) Typical features of cerebellar ataxic gait. J Neurol Neurosurg Psychiatry 73:310–312CrossRefPubMed Stolze H, Klebe S, Petersen G, Raethjen J, Wenzelburger R, Witt K, Deuschl G (2002) Typical features of cerebellar ataxic gait. J Neurol Neurosurg Psychiatry 73:310–312CrossRefPubMed
Zurück zum Zitat Vasavada AN, Peterson BW, Delp SL (2002) Three-dimensional spatial tuning of neck muscle activation in humans. Exp Brain Res 147:437–448CrossRefPubMed Vasavada AN, Peterson BW, Delp SL (2002) Three-dimensional spatial tuning of neck muscle activation in humans. Exp Brain Res 147:437–448CrossRefPubMed
Zurück zum Zitat Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, Alexandre C (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355:1607–1611CrossRefPubMed Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, Alexandre C (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355:1607–1611CrossRefPubMed
Zurück zum Zitat Watt DG, Money KE, Tomi LM (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 3. Effects of prolonged weightlessness on a human otolith-spinal reflex. Exp Brain Res 64:308–315PubMed Watt DG, Money KE, Tomi LM (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 3. Effects of prolonged weightlessness on a human otolith-spinal reflex. Exp Brain Res 64:308–315PubMed
Metadaten
Titel
Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks
verfasst von
Grégoire Courtine
Thierry Pozzo
Publikationsdatum
01.09.2004
Erschienen in
Experimental Brain Research / Ausgabe 1/2004
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-004-1877-2

Weitere Artikel der Ausgabe 1/2004

Experimental Brain Research 1/2004 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.