Skip to main content
Erschienen in: Diabetologia 10/2012

01.10.2012 | Review

Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2

verfasst von: K. D. Copps, M. F. White

Erschienen in: Diabetologia | Ausgabe 10/2012

Einloggen, um Zugang zu erhalten

Abstract

The insulin receptor substrate proteins IRS1 and IRS2 are key targets of the insulin receptor tyrosine kinase and are required for hormonal control of metabolism. Tissues from insulin-resistant and diabetic humans exhibit defects in IRS-dependent signalling, implicating their dysregulation in the initiation and progression of metabolic disease. However, IRS1 and IRS2 are regulated through a complex mechanism involving phosphorylation of >50 serine/threonine residues (S/T) within their long, unstructured tail regions. In cultured cells, insulin-stimulated kinases (including atypical PKC, AKT, SIK2, mTOR, S6K1, ERK1/2 and ROCK1) mediate feedback (autologous) S/T phosphorylation of IRS, with both positive and negative effects on insulin sensitivity. Additionally, insulin-independent (heterologous) kinases can phosphorylate IRS1/2 under basal conditions (AMPK, GSK3) or in response to sympathetic activation and lipid/inflammatory mediators, which are present at elevated levels in metabolic disease (GRK2, novel and conventional PKCs, JNK, IKKβ, mPLK). An emerging view is that the positive/negative regulation of IRS by autologous pathways is subverted/co-opted in disease by increased basal and other temporally inappropriate S/T phosphorylation. Compensatory hyperinsulinaemia may contribute strongly to this dysregulation. Here, we examine the links between altered patterns of IRS S/T phosphorylation and the emergence of insulin resistance and diabetes.
Literatur
1.
Zurück zum Zitat Reaven G (2004) The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinol Metab Clin North Am 33:283–303PubMedCrossRef Reaven G (2004) The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinol Metab Clin North Am 33:283–303PubMedCrossRef
2.
Zurück zum Zitat Biddinger SB, Kahn CR (2006) From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 68:123–158PubMedCrossRef Biddinger SB, Kahn CR (2006) From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 68:123–158PubMedCrossRef
3.
Zurück zum Zitat DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–S163PubMedCrossRef DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–S163PubMedCrossRef
4.
Zurück zum Zitat Karlsson HK, Zierath JR (2007) Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochem Biophys 48:103–113PubMedCrossRef Karlsson HK, Zierath JR (2007) Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochem Biophys 48:103–113PubMedCrossRef
5.
Zurück zum Zitat Boura-Halfon S, Zick Y (2009) Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 296:E581–E591PubMedCrossRef Boura-Halfon S, Zick Y (2009) Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 296:E581–E591PubMedCrossRef
6.
Zurück zum Zitat Tanti JF, Jager J (2009) Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol 9:753–762PubMedCrossRef Tanti JF, Jager J (2009) Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol 9:753–762PubMedCrossRef
7.
Zurück zum Zitat Fernandez AM, Kim JK, Yakar S et al (2001) Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev 15:1926–1934PubMedCrossRef Fernandez AM, Kim JK, Yakar S et al (2001) Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev 15:1926–1934PubMedCrossRef
8.
Zurück zum Zitat Cheng Z, Tseng Y, White MF (2010) Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab 21:589–598PubMedCrossRef Cheng Z, Tseng Y, White MF (2010) Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab 21:589–598PubMedCrossRef
9.
Zurück zum Zitat Schmelzle K, Kane S, Gridley S, Lienhard GE, White FM (2006) Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 55:2171–2179PubMedCrossRef Schmelzle K, Kane S, Gridley S, Lienhard GE, White FM (2006) Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 55:2171–2179PubMedCrossRef
11.
Zurück zum Zitat Dong XC, Copps KD, Guo S et al (2008) Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab 8:65–76PubMedCrossRef Dong XC, Copps KD, Guo S et al (2008) Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab 8:65–76PubMedCrossRef
12.
Zurück zum Zitat Michael MD, Kulkarni RN, Postic C et al (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6:87–97PubMed Michael MD, Kulkarni RN, Postic C et al (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6:87–97PubMed
13.
Zurück zum Zitat Biddinger SB, Hernandez-Ono A, Rask-Madsen C et al (2008) Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab 7:125–134PubMedCrossRef Biddinger SB, Hernandez-Ono A, Rask-Madsen C et al (2008) Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab 7:125–134PubMedCrossRef
14.
Zurück zum Zitat Long YC, Cheng Z, Copps KD, White MF (2011) Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via Akt and AMPK pathways. Mol Cell Biol 31:430–441PubMedCrossRef Long YC, Cheng Z, Copps KD, White MF (2011) Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via Akt and AMPK pathways. Mol Cell Biol 31:430–441PubMedCrossRef
15.
Zurück zum Zitat Laustsen PG, Russell SJ, Cui L et al (2007) Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Mol Cell Biol 27:1649–1664PubMedCrossRef Laustsen PG, Russell SJ, Cui L et al (2007) Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Mol Cell Biol 27:1649–1664PubMedCrossRef
16.
Zurück zum Zitat Bluher M, Michael MD, Peroni OD et al (2002) Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 3:25–38PubMedCrossRef Bluher M, Michael MD, Peroni OD et al (2002) Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 3:25–38PubMedCrossRef
17.
Zurück zum Zitat Miki H, Yamauchi T, Suzuki R et al (2001) Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation. Mol Cell Biol 21:2521–2532PubMedCrossRef Miki H, Yamauchi T, Suzuki R et al (2001) Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation. Mol Cell Biol 21:2521–2532PubMedCrossRef
18.
Zurück zum Zitat Hanke S, Mann M (2009) The phosphotyrosine interactome of the insulin receptor family and its substrates IRS-1 and IRS-2. Mol Cell Proteomics 8:519–534PubMedCrossRef Hanke S, Mann M (2009) The phosphotyrosine interactome of the insulin receptor family and its substrates IRS-1 and IRS-2. Mol Cell Proteomics 8:519–534PubMedCrossRef
19.
Zurück zum Zitat Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate [see comments]. Science 275:665–668PubMedCrossRef Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate [see comments]. Science 275:665–668PubMedCrossRef
20.
Zurück zum Zitat Pearce LR, Komander D, Alessi DR (2010) The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 11:9–22PubMedCrossRef Pearce LR, Komander D, Alessi DR (2010) The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 11:9–22PubMedCrossRef
21.
Zurück zum Zitat Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101PubMedCrossRef Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101PubMedCrossRef
22.
Zurück zum Zitat Cho H, Mu J, Kim JK et al (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292:1728–1731PubMedCrossRef Cho H, Mu J, Kim JK et al (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292:1728–1731PubMedCrossRef
23.
Zurück zum Zitat Farese RV, Sajan MP, Standaert ML (2005) Insulin-sensitive protein kinases (atypical protein kinase C and protein kinase B/Akt): actions and defects in obesity and type II diabetes. Exp Biol Med (Maywood) 230:593–605 Farese RV, Sajan MP, Standaert ML (2005) Insulin-sensitive protein kinases (atypical protein kinase C and protein kinase B/Akt): actions and defects in obesity and type II diabetes. Exp Biol Med (Maywood) 230:593–605
24.
Zurück zum Zitat Farese RV, Sajan MP, Yang H et al (2007) Muscle-specific knockout of PKC-λ impairs glucose transport and induces metabolic and diabetic syndromes. J Clin Invest 117:2289–2301PubMedCrossRef Farese RV, Sajan MP, Yang H et al (2007) Muscle-specific knockout of PKC-λ impairs glucose transport and induces metabolic and diabetic syndromes. J Clin Invest 117:2289–2301PubMedCrossRef
25.
Zurück zum Zitat Matsuo K, Delibegovic M, Matsuo I et al (2010) Altered glucose homeostasis in mice with liver-specific deletion of Src homology phosphatase 2. J Biol Chem 285:39750–39758PubMedCrossRef Matsuo K, Delibegovic M, Matsuo I et al (2010) Altered glucose homeostasis in mice with liver-specific deletion of Src homology phosphatase 2. J Biol Chem 285:39750–39758PubMedCrossRef
26.
Zurück zum Zitat Yenush L, Makati KJ, Smith-Hall J, Ishibashi O, Myers MG Jr, White MF (1996) The pleckstrin homology domain is the principal link between the insulin receptor and IRS-1. J Biol Chem 271:24300–24306PubMedCrossRef Yenush L, Makati KJ, Smith-Hall J, Ishibashi O, Myers MG Jr, White MF (1996) The pleckstrin homology domain is the principal link between the insulin receptor and IRS-1. J Biol Chem 271:24300–24306PubMedCrossRef
27.
Zurück zum Zitat Eck MJ, Dhe-Paganon S, Trub T, Nolte RT, Shoelson SE (1996) Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85:695–705PubMedCrossRef Eck MJ, Dhe-Paganon S, Trub T, Nolte RT, Shoelson SE (1996) Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85:695–705PubMedCrossRef
28.
Zurück zum Zitat Wu J, Tseng YD, Xu CF, Neubert TA, White MF, Hubbard SR (2008) Structural and biochemical characterization of the KRLB region in insulin receptor substrate-2. Nat Struct Mol Biol 15:251–258PubMedCrossRef Wu J, Tseng YD, Xu CF, Neubert TA, White MF, Hubbard SR (2008) Structural and biochemical characterization of the KRLB region in insulin receptor substrate-2. Nat Struct Mol Biol 15:251–258PubMedCrossRef
29.
Zurück zum Zitat Nawaratne R, Gray A, Jorgensen CH, Downes CP, Siddle K, Sethi JK (2006) Regulation of insulin receptor substrate 1 pleckstrin homology domain by protein kinase C: role of serine 24 phosphorylation. Mol Endocrinol 20:1838–1852PubMedCrossRef Nawaratne R, Gray A, Jorgensen CH, Downes CP, Siddle K, Sethi JK (2006) Regulation of insulin receptor substrate 1 pleckstrin homology domain by protein kinase C: role of serine 24 phosphorylation. Mol Endocrinol 20:1838–1852PubMedCrossRef
30.
Zurück zum Zitat Kim JA, Yeh DC, Ver M et al (2005) Phosphorylation of Ser24 in the pleckstrin homology domain of insulin receptor substrate-1 by Mouse Pelle-like kinase/interleukin-1 receptor-associated kinase: cross-talk between inflammatory signaling and insulin signaling that may contribute to insulin resistance. J Biol Chem 280:23173–23183PubMedCrossRef Kim JA, Yeh DC, Ver M et al (2005) Phosphorylation of Ser24 in the pleckstrin homology domain of insulin receptor substrate-1 by Mouse Pelle-like kinase/interleukin-1 receptor-associated kinase: cross-talk between inflammatory signaling and insulin signaling that may contribute to insulin resistance. J Biol Chem 280:23173–23183PubMedCrossRef
31.
Zurück zum Zitat Luo M, Reyna S, Wang L et al (2005) Identification of insulin receptor substrate 1 serine/threonine phosphorylation sites using mass spectrometry analysis: regulatory role of serine 1223. Endocrinology 146:4410–4416PubMedCrossRef Luo M, Reyna S, Wang L et al (2005) Identification of insulin receptor substrate 1 serine/threonine phosphorylation sites using mass spectrometry analysis: regulatory role of serine 1223. Endocrinology 146:4410–4416PubMedCrossRef
32.
Zurück zum Zitat Luo M, Langlais P, Yi Z et al (2007) Phosphorylation of human insulin receptor substrate-1 at Serine 629 plays a positive role in insulin signaling. Endocrinology 148:4895–4905PubMedCrossRef Luo M, Langlais P, Yi Z et al (2007) Phosphorylation of human insulin receptor substrate-1 at Serine 629 plays a positive role in insulin signaling. Endocrinology 148:4895–4905PubMedCrossRef
33.
Zurück zum Zitat Mothe I, Van Obberghen E (1996) Phosphorylation of insulin receptor substrate-1 on multiple serine residues, 612, 632, 662, and 731, modulates insulin action. J Biol Chem 271:11222–11227PubMedCrossRef Mothe I, Van Obberghen E (1996) Phosphorylation of insulin receptor substrate-1 on multiple serine residues, 612, 632, 662, and 731, modulates insulin action. J Biol Chem 271:11222–11227PubMedCrossRef
34.
Zurück zum Zitat Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR, Pedersen BK (2005) Tumor necrosis factor-α induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 54:2939–2945PubMedCrossRef Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR, Pedersen BK (2005) Tumor necrosis factor-α induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 54:2939–2945PubMedCrossRef
35.
Zurück zum Zitat Austin RL, Rune A, Bouzakri K, Zierath JR, Krook A (2008) siRNA-mediated reduction of inhibitor of nuclear factor-κB kinase prevents tumor necrosis factor-α-induced insulin resistance in human skeletal muscle. Diabetes 57:2066–2073PubMedCrossRef Austin RL, Rune A, Bouzakri K, Zierath JR, Krook A (2008) siRNA-mediated reduction of inhibitor of nuclear factor-κB kinase prevents tumor necrosis factor-α-induced insulin resistance in human skeletal muscle. Diabetes 57:2066–2073PubMedCrossRef
36.
Zurück zum Zitat Paz K, Hemi R, LeRoith D et al (1997) A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem 272:29911–29918PubMedCrossRef Paz K, Hemi R, LeRoith D et al (1997) A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem 272:29911–29918PubMedCrossRef
37.
Zurück zum Zitat Solinas G, Karin M (2010) JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction. FASEB J 24:2596–2611PubMedCrossRef Solinas G, Karin M (2010) JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction. FASEB J 24:2596–2611PubMedCrossRef
38.
Zurück zum Zitat Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem 275:9047–9054PubMedCrossRef Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem 275:9047–9054PubMedCrossRef
39.
Zurück zum Zitat Rui L, Aguirre V, Kim JK et al (2001) Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 107:181–189PubMedCrossRef Rui L, Aguirre V, Kim JK et al (2001) Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 107:181–189PubMedCrossRef
40.
Zurück zum Zitat Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF (2002) Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 277:1531–1537PubMedCrossRef Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF (2002) Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 277:1531–1537PubMedCrossRef
41.
Zurück zum Zitat Carlson CJ, White MF, Rondinone CM (2004) Mammalian target of rapamycin regulates IRS-1 serine 307 phosphorylation. Biochem Biophys Res Commun 316:533–539PubMedCrossRef Carlson CJ, White MF, Rondinone CM (2004) Mammalian target of rapamycin regulates IRS-1 serine 307 phosphorylation. Biochem Biophys Res Commun 316:533–539PubMedCrossRef
42.
Zurück zum Zitat Lee YH, Giraud J, Davis RJ, White MF (2003) c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 278:2896–2902PubMedCrossRef Lee YH, Giraud J, Davis RJ, White MF (2003) c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 278:2896–2902PubMedCrossRef
43.
Zurück zum Zitat Werner ED, Lee J, Hansen L, Yuan M, Shoelson SE (2004) Insulin resistance due to phosphorylation of IRS-1 at serine 302. J Biol Chem 279:35298–352305PubMedCrossRef Werner ED, Lee J, Hansen L, Yuan M, Shoelson SE (2004) Insulin resistance due to phosphorylation of IRS-1 at serine 302. J Biol Chem 279:35298–352305PubMedCrossRef
44.
Zurück zum Zitat Ozcan U, Cao Q, Yilmaz E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461PubMedCrossRef Ozcan U, Cao Q, Yilmaz E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461PubMedCrossRef
45.
Zurück zum Zitat Herschkovitz A, Liu YF, Ilan E, Ronen D, Boura-Halfon S, Zick Y (2007) Common inhibitory serine sites phosphorylated by IRS-1 kinases, triggered by insulin and inducers of insulin resistance. J Biol Chem 282:18018–18027PubMedCrossRef Herschkovitz A, Liu YF, Ilan E, Ronen D, Boura-Halfon S, Zick Y (2007) Common inhibitory serine sites phosphorylated by IRS-1 kinases, triggered by insulin and inducers of insulin resistance. J Biol Chem 282:18018–18027PubMedCrossRef
46.
Zurück zum Zitat Boura-Halfon S, Shuster-Meiseles T, Beck A et al (2010) A novel domain mediates insulin-induced proteasomal degradation of insulin receptor substrate 1 (IRS-1). Mol Endocrinol 24:2179–2192PubMedCrossRef Boura-Halfon S, Shuster-Meiseles T, Beck A et al (2010) A novel domain mediates insulin-induced proteasomal degradation of insulin receptor substrate 1 (IRS-1). Mol Endocrinol 24:2179–2192PubMedCrossRef
47.
Zurück zum Zitat Clark SF, Molero JC, James DE (2000) release of insulin receptor substrate proteins from an intracellular complex coincides with the development of insulin resistance. J Biol Chem 275:3819–3826PubMedCrossRef Clark SF, Molero JC, James DE (2000) release of insulin receptor substrate proteins from an intracellular complex coincides with the development of insulin resistance. J Biol Chem 275:3819–3826PubMedCrossRef
48.
Zurück zum Zitat Takano A, Usui I, Haruta T et al (2001) Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol Cell Biol 21:5050–5062PubMedCrossRef Takano A, Usui I, Haruta T et al (2001) Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol Cell Biol 21:5050–5062PubMedCrossRef
49.
Zurück zum Zitat Harrington LS, Findlay GM, Gray A et al (2004) The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166:213–223PubMedCrossRef Harrington LS, Findlay GM, Gray A et al (2004) The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166:213–223PubMedCrossRef
50.
Zurück zum Zitat Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14:1650–1656PubMedCrossRef Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14:1650–1656PubMedCrossRef
51.
Zurück zum Zitat Shah OJ, Hunter T (2006) Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis. Mol Cell Biol 26:6425–6434PubMedCrossRef Shah OJ, Hunter T (2006) Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis. Mol Cell Biol 26:6425–6434PubMedCrossRef
52.
Zurück zum Zitat Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA (2003) Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation. J Biol Chem 278:8199–8211PubMedCrossRef Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA (2003) Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation. J Biol Chem 278:8199–8211PubMedCrossRef
53.
Zurück zum Zitat Tzatsos A, Kandror KV (2006) Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol 26:63–76PubMedCrossRef Tzatsos A, Kandror KV (2006) Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol 26:63–76PubMedCrossRef
54.
Zurück zum Zitat Tzatsos A (2009) Raptor binds the SAIN (Shc and IRS-1 NPXY binding) domain of insulin receptor substrate-1 (IRS-1) and regulates the phosphorylation of IRS-1 at Ser-636/639 by mTOR. J Biol Chem 284:22525–22534PubMedCrossRef Tzatsos A (2009) Raptor binds the SAIN (Shc and IRS-1 NPXY binding) domain of insulin receptor substrate-1 (IRS-1) and regulates the phosphorylation of IRS-1 at Ser-636/639 by mTOR. J Biol Chem 284:22525–22534PubMedCrossRef
55.
Zurück zum Zitat Zhang J, Gao Z, Yin J, Quon MJ, Ye J (2008) S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-α signaling through IKK2. J Biol Chem 283:35375–35382PubMedCrossRef Zhang J, Gao Z, Yin J, Quon MJ, Ye J (2008) S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-α signaling through IKK2. J Biol Chem 283:35375–35382PubMedCrossRef
56.
Zurück zum Zitat Tremblay F, Brule S, Hee US et al (2007) Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci U S A 104:14056–14061PubMedCrossRef Tremblay F, Brule S, Hee US et al (2007) Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci U S A 104:14056–14061PubMedCrossRef
57.
Zurück zum Zitat Luo J, Field SJ, Lee JY, Engelman JA, Cantley LC (2005) The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. J Cell Biol 170:455–464PubMedCrossRef Luo J, Field SJ, Lee JY, Engelman JA, Cantley LC (2005) The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. J Cell Biol 170:455–464PubMedCrossRef
58.
Zurück zum Zitat Giraud J, Haas M, Feener EP et al (2007) Phosphorylation of Irs1 at SER-522 inhibits insulin signaling. Mol Endocrinol 21:2294–2302PubMedCrossRef Giraud J, Haas M, Feener EP et al (2007) Phosphorylation of Irs1 at SER-522 inhibits insulin signaling. Mol Endocrinol 21:2294–2302PubMedCrossRef
59.
Zurück zum Zitat Yi Z, Langlais P, De Filippis EA et al (2007) Global assessment of regulation of phosphorylation of insulin receptor substrate-1 by insulin in vivo in human muscle. Diabetes 56:1508–1516PubMedCrossRef Yi Z, Langlais P, De Filippis EA et al (2007) Global assessment of regulation of phosphorylation of insulin receptor substrate-1 by insulin in vivo in human muscle. Diabetes 56:1508–1516PubMedCrossRef
60.
Zurück zum Zitat Langlais P, Yi Z, Finlayson J et al (2011) Global IRS-1 phosphorylation analysis in insulin resistance. Diabetologia 54:2878–2889PubMedCrossRef Langlais P, Yi Z, Finlayson J et al (2011) Global IRS-1 phosphorylation analysis in insulin resistance. Diabetologia 54:2878–2889PubMedCrossRef
61.
Zurück zum Zitat Prudente S, Morini E, Trischitta V (2009) Insulin signaling regulating genes: effect on T2DM and cardiovascular risk. Nat Rev Endocrinol 5:682–693PubMedCrossRef Prudente S, Morini E, Trischitta V (2009) Insulin signaling regulating genes: effect on T2DM and cardiovascular risk. Nat Rev Endocrinol 5:682–693PubMedCrossRef
62.
Zurück zum Zitat McGettrick AJ, Feener EP, Kahn CR (2005) Human insulin receptor substrate-1 (IRS-1) polymorphism G972R causes IRS-1 to associate with the insulin receptor and inhibit receptor autophosphorylation. J Biol Chem 280:6441–6446PubMedCrossRef McGettrick AJ, Feener EP, Kahn CR (2005) Human insulin receptor substrate-1 (IRS-1) polymorphism G972R causes IRS-1 to associate with the insulin receptor and inhibit receptor autophosphorylation. J Biol Chem 280:6441–6446PubMedCrossRef
63.
Zurück zum Zitat Klein AL, Berkaw MN, Buse MG, Ball LE (2009) O-linked N-acetylglucosamine modification of insulin receptor substrate-1 occurs in close proximity to multiple SH2 domain binding motifs. Mol Cell Proteomics 8:2733–2745PubMedCrossRef Klein AL, Berkaw MN, Buse MG, Ball LE (2009) O-linked N-acetylglucosamine modification of insulin receptor substrate-1 occurs in close proximity to multiple SH2 domain binding motifs. Mol Cell Proteomics 8:2733–2745PubMedCrossRef
64.
Zurück zum Zitat Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW (2010) Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-linked β-N-acetylglucosamine in 3 T3-L1 adipocytes. J Biol Chem 285:5204–5211PubMedCrossRef Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW (2010) Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-linked β-N-acetylglucosamine in 3 T3-L1 adipocytes. J Biol Chem 285:5204–5211PubMedCrossRef
65.
Zurück zum Zitat Li Y, Soos TJ, Li X et al (2004) Protein kinase C θ inhibits insulin signaling by phosphorylating IRS1 at Ser1101. J Biol Chem 279:45304–45307PubMedCrossRef Li Y, Soos TJ, Li X et al (2004) Protein kinase C θ inhibits insulin signaling by phosphorylating IRS1 at Ser1101. J Biol Chem 279:45304–45307PubMedCrossRef
66.
Zurück zum Zitat Xu X, Sarikas A, as-Santagata DC et al (2008) The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation. Mol Cell 30:403–414PubMedCrossRef Xu X, Sarikas A, as-Santagata DC et al (2008) The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation. Mol Cell 30:403–414PubMedCrossRef
67.
Zurück zum Zitat Lu XM, Hamrahi VF, Tompkins RG, Fischman AJ (2009) Effect of insulin levels on the phosphorylation of specific amino acid residues in IRS-1: implications for burn-induced insulin resistance. Int J Mol Med 24:531–538PubMedCrossRef Lu XM, Hamrahi VF, Tompkins RG, Fischman AJ (2009) Effect of insulin levels on the phosphorylation of specific amino acid residues in IRS-1: implications for burn-induced insulin resistance. Int J Mol Med 24:531–538PubMedCrossRef
68.
Zurück zum Zitat Kubota N, Tobe K, Terauchi Y et al (2000) Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 49:1880–1889PubMedCrossRef Kubota N, Tobe K, Terauchi Y et al (2000) Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 49:1880–1889PubMedCrossRef
69.
Zurück zum Zitat Inoue G, Cheatham B, Emkey R, Kahn CR (1998) Dynamics of insulin signaling in 3 T3-L1 adipocytes: Differential compartmentalization and trafficking of insulin receptor substrate (IRS)-1 and IRS-2. J Biol Chem 273:11548–11555PubMedCrossRef Inoue G, Cheatham B, Emkey R, Kahn CR (1998) Dynamics of insulin signaling in 3 T3-L1 adipocytes: Differential compartmentalization and trafficking of insulin receptor substrate (IRS)-1 and IRS-2. J Biol Chem 273:11548–11555PubMedCrossRef
70.
Zurück zum Zitat Weigert C, Kron M, Kalbacher H et al (2008) Interplay and effects of temporal changes in the phosphorylation state of serine-302, -307, and -318 of insulin receptor substrate-1 on insulin action in skeletal muscle cells. Mol Endocrinol 22:2729–2740PubMedCrossRef Weigert C, Kron M, Kalbacher H et al (2008) Interplay and effects of temporal changes in the phosphorylation state of serine-302, -307, and -318 of insulin receptor substrate-1 on insulin action in skeletal muscle cells. Mol Endocrinol 22:2729–2740PubMedCrossRef
71.
Zurück zum Zitat Furukawa N, Ongusaha P, Jahng WJ et al (2005) Role of Rho-kinase in regulation of insulin action and glucose homeostasis. Cell Metab 2:119–129PubMedCrossRef Furukawa N, Ongusaha P, Jahng WJ et al (2005) Role of Rho-kinase in regulation of insulin action and glucose homeostasis. Cell Metab 2:119–129PubMedCrossRef
72.
Zurück zum Zitat Lee DH, Shi J, Jeoung NH et al (2009) Targeted disruption of ROCK1 causes insulin resistance in vivo. J Biol Chem 284:11776–11780PubMedCrossRef Lee DH, Shi J, Jeoung NH et al (2009) Targeted disruption of ROCK1 causes insulin resistance in vivo. J Biol Chem 284:11776–11780PubMedCrossRef
73.
Zurück zum Zitat Giraud J, Leshan R, Lee YH, White MF (2004) Nutrient-dependent and insulin-stimulated phosphorylation of insulin receptor substrate-1 on serine 302 correlates with increased insulin signaling. J Biol Chem 279:3447–3454PubMedCrossRef Giraud J, Leshan R, Lee YH, White MF (2004) Nutrient-dependent and insulin-stimulated phosphorylation of insulin receptor substrate-1 on serine 302 correlates with increased insulin signaling. J Biol Chem 279:3447–3454PubMedCrossRef
74.
Zurück zum Zitat Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375:2267–2277PubMedCrossRef Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375:2267–2277PubMedCrossRef
75.
Zurück zum Zitat Petersen KF, Dufour S, Savage DB et al (2007) The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A 104:12587–12594PubMedCrossRef Petersen KF, Dufour S, Savage DB et al (2007) The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A 104:12587–12594PubMedCrossRef
76.
Zurück zum Zitat Rabol R, Petersen KF, Dufour S, Flannery C, Shulman GI (2011) Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A 108:13705–13709PubMedCrossRef Rabol R, Petersen KF, Dufour S, Flannery C, Shulman GI (2011) Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A 108:13705–13709PubMedCrossRef
77.
Zurück zum Zitat Rothman DL, Magnusson I, Cline G et al (1995) Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 92:983–987PubMedCrossRef Rothman DL, Magnusson I, Cline G et al (1995) Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 92:983–987PubMedCrossRef
78.
Zurück zum Zitat Brown MS, Goldstein JL (2008) Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 7:95–96PubMedCrossRef Brown MS, Goldstein JL (2008) Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 7:95–96PubMedCrossRef
79.
Zurück zum Zitat Schenk S, Saberi M, Olefsky JM (2008) Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 118:2992–3002PubMedCrossRef Schenk S, Saberi M, Olefsky JM (2008) Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 118:2992–3002PubMedCrossRef
80.
Zurück zum Zitat Pratipanawatr W, Pratipanawatr T, Cusi K et al (2001) Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation. Diabetes 50:2572–2578PubMedCrossRef Pratipanawatr W, Pratipanawatr T, Cusi K et al (2001) Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation. Diabetes 50:2572–2578PubMedCrossRef
81.
Zurück zum Zitat Storgaard H, Song XM, Jensen CB et al (2001) Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients [corrected]. Diabetes 50:2770–2778PubMedCrossRef Storgaard H, Song XM, Jensen CB et al (2001) Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients [corrected]. Diabetes 50:2770–2778PubMedCrossRef
82.
Zurück zum Zitat Frojdo S, Vidal H, Pirola L (2009) Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochim Biophys Acta 1792:83–92PubMedCrossRef Frojdo S, Vidal H, Pirola L (2009) Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochim Biophys Acta 1792:83–92PubMedCrossRef
83.
Zurück zum Zitat Beeson M, Sajan MP, Dizon M et al (2003) Activation of protein kinase C-zeta by insulin and phosphatidylinositol-3,4,5-(PO4)3 is defective in muscle in type 2 diabetes and impaired glucose tolerance: amelioration by rosiglitazone and exercise. Diabetes 52:1926–1934PubMedCrossRef Beeson M, Sajan MP, Dizon M et al (2003) Activation of protein kinase C-zeta by insulin and phosphatidylinositol-3,4,5-(PO4)3 is defective in muscle in type 2 diabetes and impaired glucose tolerance: amelioration by rosiglitazone and exercise. Diabetes 52:1926–1934PubMedCrossRef
84.
Zurück zum Zitat Karlsson HK, Ahlsen M, Zierath JR, Wallberg-Henriksson H, Koistinen HA (2006) Insulin signaling and glucose transport in skeletal muscle from first-degree relatives of type 2 diabetic patients. Diabetes 55:1283–1288PubMedCrossRef Karlsson HK, Ahlsen M, Zierath JR, Wallberg-Henriksson H, Koistinen HA (2006) Insulin signaling and glucose transport in skeletal muscle from first-degree relatives of type 2 diabetic patients. Diabetes 55:1283–1288PubMedCrossRef
85.
Zurück zum Zitat Morino K, Petersen KF, Dufour S et al (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115:3587–3593PubMedCrossRef Morino K, Petersen KF, Dufour S et al (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115:3587–3593PubMedCrossRef
86.
Zurück zum Zitat Cusi K, Maezono K, Osman A et al (2000) Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 105:311–320PubMedCrossRef Cusi K, Maezono K, Osman A et al (2000) Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 105:311–320PubMedCrossRef
87.
Zurück zum Zitat Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM (2005) Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes 54:2351–2359PubMedCrossRef Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM (2005) Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes 54:2351–2359PubMedCrossRef
88.
Zurück zum Zitat Chun KH, Choi KD, Lee DH et al (2011) In vivo activation of ROCK1 by insulin is impaired in skeletal muscle of humans with type 2 diabetes. Am J Physiol Endocrinol Metab 300:E536–E542PubMedCrossRef Chun KH, Choi KD, Lee DH et al (2011) In vivo activation of ROCK1 by insulin is impaired in skeletal muscle of humans with type 2 diabetes. Am J Physiol Endocrinol Metab 300:E536–E542PubMedCrossRef
89.
Zurück zum Zitat Cipolletta E, Campanile A, Santulli G et al (2009) The G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance. Cardiovasc Res 84:407–415PubMedCrossRef Cipolletta E, Campanile A, Santulli G et al (2009) The G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance. Cardiovasc Res 84:407–415PubMedCrossRef
90.
Zurück zum Zitat Garcia-Guerra L, Nieto-Vazquez I, Vila-Bedmar R et al (2010) G protein-coupled receptor kinase 2 plays a relevant role in insulin resistance and obesity. Diabetes 59:2407–2417PubMedCrossRef Garcia-Guerra L, Nieto-Vazquez I, Vila-Bedmar R et al (2010) G protein-coupled receptor kinase 2 plays a relevant role in insulin resistance and obesity. Diabetes 59:2407–2417PubMedCrossRef
91.
Zurück zum Zitat Bouzakri K, Roques M, Gual P et al (2003) Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52:1319–1325PubMedCrossRef Bouzakri K, Roques M, Gual P et al (2003) Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52:1319–1325PubMedCrossRef
92.
Zurück zum Zitat Fritsche L, Neukamm SS, Lehmann R et al (2011) Insulin-induced serine phosphorylation of IRS-2 via ERK1/2 and mTOR: studies on the function of Ser675 and Ser907. Am J Physiol Endocrinol Metab 300:E824–E836PubMedCrossRef Fritsche L, Neukamm SS, Lehmann R et al (2011) Insulin-induced serine phosphorylation of IRS-2 via ERK1/2 and mTOR: studies on the function of Ser675 and Ser907. Am J Physiol Endocrinol Metab 300:E824–E836PubMedCrossRef
93.
Zurück zum Zitat Farese RV, Sajan MP (2010) Metabolic functions of atypical protein kinase C: “good” and “bad” as defined by nutritional status. Am J Physiol Endocrinol Metab 298:E385–E394PubMedCrossRef Farese RV, Sajan MP (2010) Metabolic functions of atypical protein kinase C: “good” and “bad” as defined by nutritional status. Am J Physiol Endocrinol Metab 298:E385–E394PubMedCrossRef
94.
Zurück zum Zitat Turban S, Hajduch E (2011) Protein kinase C isoforms: mediators of reactive lipid metabolites in the development of insulin resistance. Growth Regul 585:269–274 Turban S, Hajduch E (2011) Protein kinase C isoforms: mediators of reactive lipid metabolites in the development of insulin resistance. Growth Regul 585:269–274
95.
Zurück zum Zitat Liu YF, Paz K, Herschkovitz A et al (2001) Insulin stimulates PKCzeta -mediated phosphorylation of insulin receptor substrate-1 (IRS-1). A self-attenuated mechanism to negatively regulate the function of IRS proteins. J Biol Chem 276:14459–14465PubMed Liu YF, Paz K, Herschkovitz A et al (2001) Insulin stimulates PKCzeta -mediated phosphorylation of insulin receptor substrate-1 (IRS-1). A self-attenuated mechanism to negatively regulate the function of IRS proteins. J Biol Chem 276:14459–14465PubMed
96.
Zurück zum Zitat Ravichandran LV, Esposito DL, Chen J, Quon MJ (2001) Protein kinase C-ζ phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin. J Biol Chem 276:3543–3549PubMedCrossRef Ravichandran LV, Esposito DL, Chen J, Quon MJ (2001) Protein kinase C-ζ phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin. J Biol Chem 276:3543–3549PubMedCrossRef
97.
Zurück zum Zitat Moeschel K, Beck A, Weigert C et al (2004) Protein kinase C-ζ-induced phosphorylation of Ser318 in insulin receptor substrate-1 (IRS-1) attenuates the interaction with the insulin receptor and the tyrosine phosphorylation of IRS-1. J Biol Chem 279:25157–25163PubMedCrossRef Moeschel K, Beck A, Weigert C et al (2004) Protein kinase C-ζ-induced phosphorylation of Ser318 in insulin receptor substrate-1 (IRS-1) attenuates the interaction with the insulin receptor and the tyrosine phosphorylation of IRS-1. J Biol Chem 279:25157–25163PubMedCrossRef
98.
Zurück zum Zitat Sommerfeld MR, Metzger S, Stosik M, Tennagels N, Eckel J (2004) In vitro phosphorylation of insulin receptor substrate 1 by protein kinase C-zeta: functional analysis and identification of novel phosphorylation sites. Biochemistry 43:5888–5901PubMedCrossRef Sommerfeld MR, Metzger S, Stosik M, Tennagels N, Eckel J (2004) In vitro phosphorylation of insulin receptor substrate 1 by protein kinase C-zeta: functional analysis and identification of novel phosphorylation sites. Biochemistry 43:5888–5901PubMedCrossRef
99.
Zurück zum Zitat Weigert C, Hennige AM, Lehmann R et al (2006) Direct cross-talk of interleukin-6 and insulin signal transduction via insulin receptor substrate-1 in skeletal muscle cells. J Biol Chem 281:7060–7067PubMedCrossRef Weigert C, Hennige AM, Lehmann R et al (2006) Direct cross-talk of interleukin-6 and insulin signal transduction via insulin receptor substrate-1 in skeletal muscle cells. J Biol Chem 281:7060–7067PubMedCrossRef
100.
Zurück zum Zitat Hennige AM, Stefan N, Kapp K et al (2006) Leptin down-regulates insulin action through phosphorylation of serine-318 in insulin receptor substrate 1. FASEB J 20:1206–1208PubMedCrossRef Hennige AM, Stefan N, Kapp K et al (2006) Leptin down-regulates insulin action through phosphorylation of serine-318 in insulin receptor substrate 1. FASEB J 20:1206–1208PubMedCrossRef
101.
Zurück zum Zitat Weigert C, Hennige AM, Brischmann T et al (2005) The phosphorylation of Ser318 of insulin receptor substrate 1 is not per se inhibitory in skeletal muscle cells but is necessary to trigger the attenuation of the insulin-stimulated signal. J Biol Chem 280:37393–37399PubMedCrossRef Weigert C, Hennige AM, Brischmann T et al (2005) The phosphorylation of Ser318 of insulin receptor substrate 1 is not per se inhibitory in skeletal muscle cells but is necessary to trigger the attenuation of the insulin-stimulated signal. J Biol Chem 280:37393–37399PubMedCrossRef
102.
Zurück zum Zitat Mussig K, Fiedler H, Staiger H et al (2005) Insulin-induced stimulation of JNK and the PI 3-kinase/mTOR pathway leads to phosphorylation of serine 318 of IRS-1 in C2C12 myotubes. Biochem Biophys Res Commun 335:819–825PubMedCrossRef Mussig K, Fiedler H, Staiger H et al (2005) Insulin-induced stimulation of JNK and the PI 3-kinase/mTOR pathway leads to phosphorylation of serine 318 of IRS-1 in C2C12 myotubes. Biochem Biophys Res Commun 335:819–825PubMedCrossRef
103.
Zurück zum Zitat del Rincon SV, Guo Q, Morelli C, Shiu HY, Surmacz E, Miller WH (2004) Retinoic acid mediates degradation of IRS-1 by the ubiquitin-proteasome pathway, via a PKC-dependent mechanism. Oncogene 23:9269–9279PubMed del Rincon SV, Guo Q, Morelli C, Shiu HY, Surmacz E, Miller WH (2004) Retinoic acid mediates degradation of IRS-1 by the ubiquitin-proteasome pathway, via a PKC-dependent mechanism. Oncogene 23:9269–9279PubMed
104.
Zurück zum Zitat Paz K, Liu YF, Shorer H et al (1999) Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function. J Biol Chem 274:28816–28822PubMedCrossRef Paz K, Liu YF, Shorer H et al (1999) Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function. J Biol Chem 274:28816–28822PubMedCrossRef
105.
Zurück zum Zitat Gao Z, Zuberi A, Quon MJ, Dong Z, Ye J (2003) Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated cells through targeting multiple serine kinases. J Biol Chem 278:24944–24950PubMedCrossRef Gao Z, Zuberi A, Quon MJ, Dong Z, Ye J (2003) Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated cells through targeting multiple serine kinases. J Biol Chem 278:24944–24950PubMedCrossRef
106.
Zurück zum Zitat Um SH, Frigerio F, Watanabe M et al (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200–205PubMedCrossRef Um SH, Frigerio F, Watanabe M et al (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200–205PubMedCrossRef
107.
Zurück zum Zitat Howell JJ, Manning BD (2011) mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol Metab 22:94–102PubMedCrossRef Howell JJ, Manning BD (2011) mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol Metab 22:94–102PubMedCrossRef
108.
Zurück zum Zitat Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR (1998) Bidirectional modulation of insulin action by amino acids. J Clin Invest 101:1519–1529PubMedCrossRef Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR (1998) Bidirectional modulation of insulin action by amino acids. J Clin Invest 101:1519–1529PubMedCrossRef
109.
Zurück zum Zitat Li S, Brown MS, Goldstein JL (2010) Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci U S A 107:3441–3446PubMedCrossRef Li S, Brown MS, Goldstein JL (2010) Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci U S A 107:3441–3446PubMedCrossRef
110.
Zurück zum Zitat Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3:393–402PubMedCrossRef Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3:393–402PubMedCrossRef
111.
Zurück zum Zitat Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326PubMedCrossRef Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326PubMedCrossRef
112.
Zurück zum Zitat Macotela Y, Emanuelli B, Bang AM et al (2011) Dietary leucine—an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS One 6:e21187PubMedCrossRef Macotela Y, Emanuelli B, Bang AM et al (2011) Dietary leucine—an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS One 6:e21187PubMedCrossRef
113.
Zurück zum Zitat Tremblay F, Krebs M, Dombrowski L et al (2005) Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 54:2674–2684PubMedCrossRef Tremblay F, Krebs M, Dombrowski L et al (2005) Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 54:2674–2684PubMedCrossRef
114.
Zurück zum Zitat Krebs M, Brunmair B, Brehm A et al (2007) The mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. Diabetes 56:1600–1607PubMedCrossRef Krebs M, Brunmair B, Brehm A et al (2007) The mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. Diabetes 56:1600–1607PubMedCrossRef
115.
Zurück zum Zitat Khamzina L, Veilleux A, Bergeron S, Marette A (2005) Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146:1473–1481PubMedCrossRef Khamzina L, Veilleux A, Bergeron S, Marette A (2005) Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146:1473–1481PubMedCrossRef
116.
Zurück zum Zitat Ost A, Svensson K, Ruishalme I et al (2010) Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 16:235–246PubMedCrossRef Ost A, Svensson K, Ruishalme I et al (2010) Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 16:235–246PubMedCrossRef
117.
Zurück zum Zitat Danielsson A, Ost A, Nystrom FH, Stralfors P (2005) Attenuation of insulin-stimulated insulin receptor substrate-1 serine 307 phosphorylation in insulin resistance of type 2 diabetes. J Biol Chem 280:34389–34392PubMedCrossRef Danielsson A, Ost A, Nystrom FH, Stralfors P (2005) Attenuation of insulin-stimulated insulin receptor substrate-1 serine 307 phosphorylation in insulin resistance of type 2 diabetes. J Biol Chem 280:34389–34392PubMedCrossRef
118.
Zurück zum Zitat Lee DF, Kuo HP, Chen CT et al (2008) IKKβ suppression of TSC1 function links the mTOR pathway with insulin resistance. Int J Mol Med 22:633–638PubMed Lee DF, Kuo HP, Chen CT et al (2008) IKKβ suppression of TSC1 function links the mTOR pathway with insulin resistance. Int J Mol Med 22:633–638PubMed
119.
Zurück zum Zitat Danielsson A, Fagerholm S, Ost A et al (2009) Short-term overeating induces insulin resistance in fat cells in lean human subjects. Mol Med 15:228–234PubMedCrossRef Danielsson A, Fagerholm S, Ost A et al (2009) Short-term overeating induces insulin resistance in fat cells in lean human subjects. Mol Med 15:228–234PubMedCrossRef
120.
Zurück zum Zitat Ryden M, Arvidsson E, Blomqvist L, Perbeck L, Dicker A, Arner P (2004) Targets for TNF-α-induced lipolysis in human adipocytes. Biochem Biophys Res Commun 318:168–175PubMedCrossRef Ryden M, Arvidsson E, Blomqvist L, Perbeck L, Dicker A, Arner P (2004) Targets for TNF-α-induced lipolysis in human adipocytes. Biochem Biophys Res Commun 318:168–175PubMedCrossRef
121.
Zurück zum Zitat Greenberg AS, Shen WJ, Muliro K et al (2001) Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem 276:45456–45461PubMedCrossRef Greenberg AS, Shen WJ, Muliro K et al (2001) Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem 276:45456–45461PubMedCrossRef
122.
Zurück zum Zitat Bard-Chapeau EA, Hevener AL, Long S, Zhang EE, Olefsky JM, Feng GS (2005) Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action. Nat Med 11:567–571PubMedCrossRef Bard-Chapeau EA, Hevener AL, Long S, Zhang EE, Olefsky JM, Feng GS (2005) Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action. Nat Med 11:567–571PubMedCrossRef
123.
Zurück zum Zitat Liu X, Liu M, Zhang J et al (2009) Downregulation of Grb2 contributes to the insulin-sensitizing effect of calorie restriction. Am J Physiol Endocrinol Metab 296:E1067–E1075PubMedCrossRef Liu X, Liu M, Zhang J et al (2009) Downregulation of Grb2 contributes to the insulin-sensitizing effect of calorie restriction. Am J Physiol Endocrinol Metab 296:E1067–E1075PubMedCrossRef
124.
Zurück zum Zitat Andreozzi F, Laratta E, Sciacqua A, Perticone F, Sesti G (2004) Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Circ Res 94:1211–1218PubMedCrossRef Andreozzi F, Laratta E, Sciacqua A, Perticone F, Sesti G (2004) Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Circ Res 94:1211–1218PubMedCrossRef
125.
Zurück zum Zitat Begum N, Sandu OA, Ito M, Lohmann SM, Smolenski A (2002) Active Rho kinase (ROK-α) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J Biol Chem 277:6214–6222PubMedCrossRef Begum N, Sandu OA, Ito M, Lohmann SM, Smolenski A (2002) Active Rho kinase (ROK-α) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J Biol Chem 277:6214–6222PubMedCrossRef
126.
Zurück zum Zitat Usui I, Imamura T, Babendure JL et al (2005) G protein-coupled receptor kinase 2 mediates endothelin-1-induced insulin resistance via the inhibition of both Gαq/11 and insulin receptor substrate-1 pathways in 3 T3-L1 adipocytes. Mol Endocrinol 19:2760–2768PubMedCrossRef Usui I, Imamura T, Babendure JL et al (2005) G protein-coupled receptor kinase 2 mediates endothelin-1-induced insulin resistance via the inhibition of both Gαq/11 and insulin receptor substrate-1 pathways in 3 T3-L1 adipocytes. Mol Endocrinol 19:2760–2768PubMedCrossRef
127.
Zurück zum Zitat Usui I, Imamura T, Satoh H et al (2004) GRK2 is an endogenous protein inhibitor of the insulin signaling pathway for glucose transport stimulation. EMBO J 23:2821–2829PubMedCrossRef Usui I, Imamura T, Satoh H et al (2004) GRK2 is an endogenous protein inhibitor of the insulin signaling pathway for glucose transport stimulation. EMBO J 23:2821–2829PubMedCrossRef
128.
Zurück zum Zitat Takahashi K, Ghatei MA, Lam HC, O’Halloran DJ, Bloom SR (1990) Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia 33:306–310PubMedCrossRef Takahashi K, Ghatei MA, Lam HC, O’Halloran DJ, Bloom SR (1990) Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia 33:306–310PubMedCrossRef
129.
Zurück zum Zitat Kohno M, Yasunari K, Murakawa K et al (1990) Plasma immunoreactive endothelin in essential hypertension. Am J Med 88:614–618PubMedCrossRef Kohno M, Yasunari K, Murakawa K et al (1990) Plasma immunoreactive endothelin in essential hypertension. Am J Med 88:614–618PubMedCrossRef
130.
Zurück zum Zitat Yatabe MS, Yatabe J, Yoneda M et al (2010) Salt sensitivity is associated with insulin resistance, sympathetic overactivity, and decreased suppression of circulating renin activity in lean patients with essential hypertension. Am J Clin Nutr 92:77–82PubMedCrossRef Yatabe MS, Yatabe J, Yoneda M et al (2010) Salt sensitivity is associated with insulin resistance, sympathetic overactivity, and decreased suppression of circulating renin activity in lean patients with essential hypertension. Am J Clin Nutr 92:77–82PubMedCrossRef
131.
Zurück zum Zitat Deibert DC, DeFronzo RA (1980) Epinephrine-induced insulin resistance in man. J Clin Invest 65:717–721PubMedCrossRef Deibert DC, DeFronzo RA (1980) Epinephrine-induced insulin resistance in man. J Clin Invest 65:717–721PubMedCrossRef
132.
Zurück zum Zitat Cho MC, Rao M, Koch WJ, Thomas SA, Palmiter RD, Rockman HA (1999) Enhanced contractility and decreased β-adrenergic receptor kinase-1 in mice lacking endogenous norepinephrine and epinephrine. Cirulation 99:2702–2707CrossRef Cho MC, Rao M, Koch WJ, Thomas SA, Palmiter RD, Rockman HA (1999) Enhanced contractility and decreased β-adrenergic receptor kinase-1 in mice lacking endogenous norepinephrine and epinephrine. Cirulation 99:2702–2707CrossRef
133.
Zurück zum Zitat Salcedo A, Mayor F Jr, Penela P (2006) Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. EMBO J 25:4752–4762PubMedCrossRef Salcedo A, Mayor F Jr, Penela P (2006) Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. EMBO J 25:4752–4762PubMedCrossRef
134.
Zurück zum Zitat Samuelsson AM, Bollano E, Mobini R et al (2006) Hyperinsulinemia: effect on cardiac mass/function, angiotensin II receptor expression, and insulin signaling pathways. Am J Physiol Heart Circ Physiol 291:H787–H796PubMedCrossRef Samuelsson AM, Bollano E, Mobini R et al (2006) Hyperinsulinemia: effect on cardiac mass/function, angiotensin II receptor expression, and insulin signaling pathways. Am J Physiol Heart Circ Physiol 291:H787–H796PubMedCrossRef
135.
Zurück zum Zitat Imamura T, Vollenweider P, Egawa K et al (1999) G alpha-q/11 protein plays a key role in insulin-induced glucose transport in 3 T3-L1 adipocytes. Mol Cell Biol 19:6765–6774PubMed Imamura T, Vollenweider P, Egawa K et al (1999) G alpha-q/11 protein plays a key role in insulin-induced glucose transport in 3 T3-L1 adipocytes. Mol Cell Biol 19:6765–6774PubMed
136.
Zurück zum Zitat Shahid G, Hussain T (2007) GRK2 negatively regulates glycogen synthesis in mouse liver FL83B cells. J Biol Chem 282:20612–20620PubMedCrossRef Shahid G, Hussain T (2007) GRK2 negatively regulates glycogen synthesis in mouse liver FL83B cells. J Biol Chem 282:20612–20620PubMedCrossRef
137.
Zurück zum Zitat Anis Y, Leshem O, Reuveni H et al (2004) Antidiabetic effect of novel modulating peptides of G-protein-coupled kinase in experimental models of diabetes. Diabetologia 47:1232–1244PubMedCrossRef Anis Y, Leshem O, Reuveni H et al (2004) Antidiabetic effect of novel modulating peptides of G-protein-coupled kinase in experimental models of diabetes. Diabetologia 47:1232–1244PubMedCrossRef
138.
Zurück zum Zitat Greene MW, Garofalo RS (2002) Positive and negative regulatory role of insulin receptor substrate 1 and 2 (IRS-1 and IRS-2) serine/threonine phosphorylation. Biochemistry 41:7082–7091PubMedCrossRef Greene MW, Garofalo RS (2002) Positive and negative regulatory role of insulin receptor substrate 1 and 2 (IRS-1 and IRS-2) serine/threonine phosphorylation. Biochemistry 41:7082–7091PubMedCrossRef
139.
Zurück zum Zitat Liberman Z, Eldar-Finkelman H (2005) Serine 332 phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 attenuates insulin signaling. J Biol Chem 280:4422–4428PubMedCrossRef Liberman Z, Eldar-Finkelman H (2005) Serine 332 phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 attenuates insulin signaling. J Biol Chem 280:4422–4428PubMedCrossRef
140.
Zurück zum Zitat McManus EJ, Sakamoto K, Armit LJ et al (2005) Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J 24:1571–1583PubMedCrossRef McManus EJ, Sakamoto K, Armit LJ et al (2005) Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J 24:1571–1583PubMedCrossRef
141.
Zurück zum Zitat Tzatsos A, Tsichlis PN (2007) Energy depletion inhibits phosphatidylinositol 3-kinase/Akt signaling and induces apoptosis via AMP-activated protein kinase-dependent phosphorylation of IRS-1 at Ser-794. J Biol Chem 282:18069–18082PubMedCrossRef Tzatsos A, Tsichlis PN (2007) Energy depletion inhibits phosphatidylinositol 3-kinase/Akt signaling and induces apoptosis via AMP-activated protein kinase-dependent phosphorylation of IRS-1 at Ser-794. J Biol Chem 282:18069–18082PubMedCrossRef
142.
Zurück zum Zitat Qiao LY, Zhande R, Jetton TL, Zhou G, Sun XJ (2002) In vivo phosphorylation of IRS-1 at Serine789 by a novel serine kinase in insulin resistant rodents. J Biol Chem 277:26530–26539PubMedCrossRef Qiao LY, Zhande R, Jetton TL, Zhou G, Sun XJ (2002) In vivo phosphorylation of IRS-1 at Serine789 by a novel serine kinase in insulin resistant rodents. J Biol Chem 277:26530–26539PubMedCrossRef
143.
Zurück zum Zitat Horike N, Takemori H, Katoh Y et al (2003) Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem 278:18440–18447PubMedCrossRef Horike N, Takemori H, Katoh Y et al (2003) Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem 278:18440–18447PubMedCrossRef
144.
Zurück zum Zitat Dentin R, Liu Y, Koo SH et al (2007) Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449:366–369PubMedCrossRef Dentin R, Liu Y, Koo SH et al (2007) Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449:366–369PubMedCrossRef
145.
Zurück zum Zitat Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE (2001) 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem 276:46912–46916PubMedCrossRef Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE (2001) 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem 276:46912–46916PubMedCrossRef
146.
Zurück zum Zitat Yu C, Chen Y, Cline GW et al (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277:50230–50236PubMedCrossRef Yu C, Chen Y, Cline GW et al (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277:50230–50236PubMedCrossRef
147.
Zurück zum Zitat Kim JK, Fillmore JJ, Sunshine MJ et al (2004) PKC-θ knockout mice are protected from fat-induced insulin resistance. J Clin Invest 114:823–827PubMed Kim JK, Fillmore JJ, Sunshine MJ et al (2004) PKC-θ knockout mice are protected from fat-induced insulin resistance. J Clin Invest 114:823–827PubMed
148.
Zurück zum Zitat Bezy O, Tran TT, Pihlajamaki J et al (2011) PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans. J Clin Invest 121:2504–2517PubMedCrossRef Bezy O, Tran TT, Pihlajamaki J et al (2011) PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans. J Clin Invest 121:2504–2517PubMedCrossRef
149.
Zurück zum Zitat Mack E, Ziv E, Reuveni H et al (2008) Prevention of insulin resistance and beta-cell loss by abrogating PKCε-induced serine phosphorylation of muscle IRS-1 in Psammomys obesus. Diabetes Metab Res Rev 24:577–584PubMedCrossRef Mack E, Ziv E, Reuveni H et al (2008) Prevention of insulin resistance and beta-cell loss by abrogating PKCε-induced serine phosphorylation of muscle IRS-1 in Psammomys obesus. Diabetes Metab Res Rev 24:577–584PubMedCrossRef
150.
Zurück zum Zitat Samuel VT, Liu ZX, Wang A et al (2007) Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 117:739–745PubMedCrossRef Samuel VT, Liu ZX, Wang A et al (2007) Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 117:739–745PubMedCrossRef
151.
Zurück zum Zitat Itani SI, Pories WJ, MacDonald KG, Dohm GL (2001) Increased protein kinase C theta in skeletal muscle of diabetic patients. Metabolism 50:553–557PubMedCrossRef Itani SI, Pories WJ, MacDonald KG, Dohm GL (2001) Increased protein kinase C theta in skeletal muscle of diabetic patients. Metabolism 50:553–557PubMedCrossRef
152.
Zurück zum Zitat Considine RV, Nyce MR, Allen LE et al (1995) Protein kinase C is increased in the liver of humans and rats with non-insulin-dependent diabetes mellitus: an alteration not due to hyperglycemia. J Clin Invest 95:2938–2944PubMedCrossRef Considine RV, Nyce MR, Allen LE et al (1995) Protein kinase C is increased in the liver of humans and rats with non-insulin-dependent diabetes mellitus: an alteration not due to hyperglycemia. J Clin Invest 95:2938–2944PubMedCrossRef
153.
Zurück zum Zitat Griffin ME, Marcucci MJ, Cline GW et al (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48:1270–1274PubMedCrossRef Griffin ME, Marcucci MJ, Cline GW et al (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48:1270–1274PubMedCrossRef
154.
Zurück zum Zitat Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes 51:2005–2011PubMedCrossRef Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes 51:2005–2011PubMedCrossRef
155.
Zurück zum Zitat De Fea K, Roth RA (1997) Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry 36:12939–12947PubMedCrossRef De Fea K, Roth RA (1997) Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry 36:12939–12947PubMedCrossRef
156.
Zurück zum Zitat Greene MW, Morrice N, Garofalo RS, Roth RA (2004) Modulation of human insulin receptor substrate-1 tyrosine phosphorylation by protein kinase Cdelta. Biochem J 378:105–116PubMedCrossRef Greene MW, Morrice N, Garofalo RS, Roth RA (2004) Modulation of human insulin receptor substrate-1 tyrosine phosphorylation by protein kinase Cdelta. Biochem J 378:105–116PubMedCrossRef
157.
Zurück zum Zitat Liu YF, Herschkovitz A, Boura-Halfon S et al (2004) Serine phosphorylation proximal to its phosphotyrosine binding domain inhibits insulin receptor substrate 1 function and promotes insulin resistance. Mol Cell Biol 24:9668–9681PubMedCrossRef Liu YF, Herschkovitz A, Boura-Halfon S et al (2004) Serine phosphorylation proximal to its phosphotyrosine binding domain inhibits insulin receptor substrate 1 function and promotes insulin resistance. Mol Cell Biol 24:9668–9681PubMedCrossRef
158.
Zurück zum Zitat Waraich RS, Weigert C, Kalbacher H et al (2008) Phosphorylation of Ser357 of rat insulin receptor substrate-1 mediates adverse effects of protein kinase C-delta on insulin action in skeletal muscle cells. J Biol Chem 283:11226–11233PubMedCrossRef Waraich RS, Weigert C, Kalbacher H et al (2008) Phosphorylation of Ser357 of rat insulin receptor substrate-1 mediates adverse effects of protein kinase C-delta on insulin action in skeletal muscle cells. J Biol Chem 283:11226–11233PubMedCrossRef
159.
Zurück zum Zitat Leitges M, Plomann M, Standaert ML et al (2002) Knockout of PKCα enhances insulin signaling through PI3K. Mol Endocrinol 16:847–858PubMedCrossRef Leitges M, Plomann M, Standaert ML et al (2002) Knockout of PKCα enhances insulin signaling through PI3K. Mol Endocrinol 16:847–858PubMedCrossRef
160.
Zurück zum Zitat Cipok M, Aga-Mizrachi S, Bak A et al (2006) Protein kinase Cα regulates insulin receptor signaling in skeletal muscle. Biochem Biophys Res Commun 345:817–824PubMedCrossRef Cipok M, Aga-Mizrachi S, Bak A et al (2006) Protein kinase Cα regulates insulin receptor signaling in skeletal muscle. Biochem Biophys Res Commun 345:817–824PubMedCrossRef
161.
Zurück zum Zitat Oriente F, Andreozzi F, Romano C et al (2005) Protein kinase Cα regulates insulin action and degradation by interacting with insulin receptor substrate-1 and 14-3-3ε. J Biol Chem 280:40642–40649PubMedCrossRef Oriente F, Andreozzi F, Romano C et al (2005) Protein kinase Cα regulates insulin action and degradation by interacting with insulin receptor substrate-1 and 14-3-3ε. J Biol Chem 280:40642–40649PubMedCrossRef
162.
Zurück zum Zitat Liberman Z, Plotkin B, Tennenbaum T, Eldar-Finkelman H (2008) Coordinated phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 and protein kinase CβII in the diabetic fat tissue. Am J Physiol Endocrinol Metab 294:E1169–E1177PubMedCrossRef Liberman Z, Plotkin B, Tennenbaum T, Eldar-Finkelman H (2008) Coordinated phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 and protein kinase CβII in the diabetic fat tissue. Am J Physiol Endocrinol Metab 294:E1169–E1177PubMedCrossRef
163.
Zurück zum Zitat Huang W, Bansode RR, Bal N, Mehta M, Mehta KD (2011) Protein kinase Cβ deficiency attenuates obesity syndrome of ob/ob mice by promoting white adipose tissue remodeling. J Lipid Res 53:368–378PubMedCrossRef Huang W, Bansode RR, Bal N, Mehta M, Mehta KD (2011) Protein kinase Cβ deficiency attenuates obesity syndrome of ob/ob mice by promoting white adipose tissue remodeling. J Lipid Res 53:368–378PubMedCrossRef
164.
Zurück zum Zitat Zisman A, Peroni OD, Abel ED et al (2000) Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 6:924–928PubMedCrossRef Zisman A, Peroni OD, Abel ED et al (2000) Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 6:924–928PubMedCrossRef
165.
Zurück zum Zitat Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316:129–139PubMedCrossRef Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316:129–139PubMedCrossRef
166.
Zurück zum Zitat Sabio G, Davis RJ (2010) cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. Trends Biochem Sci 35:490–496PubMedCrossRef Sabio G, Davis RJ (2010) cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. Trends Biochem Sci 35:490–496PubMedCrossRef
167.
Zurück zum Zitat Gao Z, Hwang D, Bataille F et al (2002) Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex. J Biol Chem 277:48115–48121PubMedCrossRef Gao Z, Hwang D, Bataille F et al (2002) Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex. J Biol Chem 277:48115–48121PubMedCrossRef
168.
Zurück zum Zitat Nakamori Y, Emoto M, Fukuda N et al (2006) Myosin motor Myo1c and its receptor NEMO/IKK-γ promote TNF-α-induced serine307 phosphorylation of IRS-1. J Cell Biol 173:665–671PubMedCrossRef Nakamori Y, Emoto M, Fukuda N et al (2006) Myosin motor Myo1c and its receptor NEMO/IKK-γ promote TNF-α-induced serine307 phosphorylation of IRS-1. J Cell Biol 173:665–671PubMedCrossRef
169.
Zurück zum Zitat Lancaster GI, Skiba B, Yang C et al (2012) IκB kinase β (IKKβ) does not mediate feedback inhibition of the insulin-signaling cascade. Biochem J 442:723–732PubMedCrossRef Lancaster GI, Skiba B, Yang C et al (2012) IκB kinase β (IKKβ) does not mediate feedback inhibition of the insulin-signaling cascade. Biochem J 442:723–732PubMedCrossRef
170.
Zurück zum Zitat Morino K, Neschen S, Bilz S et al (2008) Muscle-specific IRS-1 Ser->Ala transgenic mice are protected from fat-induced insulin resistance in skeletal muscle. Diabetes 57:2644–2651PubMedCrossRef Morino K, Neschen S, Bilz S et al (2008) Muscle-specific IRS-1 Ser->Ala transgenic mice are protected from fat-induced insulin resistance in skeletal muscle. Diabetes 57:2644–2651PubMedCrossRef
171.
Zurück zum Zitat Copps KD, Hancer NJ, Opare-Ado L, Qiu W, Walsh C, White MF (2010) Irs1 serine 307 promotes insulin sensitivity in mice. Cell Metab 11:84–92PubMedCrossRef Copps KD, Hancer NJ, Opare-Ado L, Qiu W, Walsh C, White MF (2010) Irs1 serine 307 promotes insulin sensitivity in mice. Cell Metab 11:84–92PubMedCrossRef
173.
Zurück zum Zitat White MF, Copps KD, Ozcan U, Tseng YD (2010) The molecular basis of insulin action. In: Jameson JL, DeGroot LJ (eds) Endocrinology, 6th edn. Elsevier, Philadelphia, pp 636–659 White MF, Copps KD, Ozcan U, Tseng YD (2010) The molecular basis of insulin action. In: Jameson JL, DeGroot LJ (eds) Endocrinology, 6th edn. Elsevier, Philadelphia, pp 636–659
174.
Zurück zum Zitat Hsu PP, Kang SA, Rameseder J et al (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332:1317–1322PubMedCrossRef Hsu PP, Kang SA, Rameseder J et al (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332:1317–1322PubMedCrossRef
175.
Zurück zum Zitat Wick KR, Werner ED, Langlais P et al (2003) Grb10 inhibits insulin-stimulated insulin receptor substrate (IRS)-phosphatidylinositol 3-kinase/Akt signaling pathway by disrupting the association of IRS-1/IRS-2 with the insulin receptor. J Biol Chem 278:8460–8467PubMedCrossRef Wick KR, Werner ED, Langlais P et al (2003) Grb10 inhibits insulin-stimulated insulin receptor substrate (IRS)-phosphatidylinositol 3-kinase/Akt signaling pathway by disrupting the association of IRS-1/IRS-2 with the insulin receptor. J Biol Chem 278:8460–8467PubMedCrossRef
176.
Zurück zum Zitat Dibble CC, Asara JM, Manning BD (2009) Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 29:5657–5670PubMedCrossRef Dibble CC, Asara JM, Manning BD (2009) Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 29:5657–5670PubMedCrossRef
177.
Zurück zum Zitat Das F, Ghosh-Choudhury N, Dey N et al (2012) Unrestrained mammalian target of rapamycin complexes 1 and 2 increase expression of phosphatase and tensin homolog deleted on chromosome 10 to regulate phosphorylation of akt kinase. J Biol Chem 287:3808–3822PubMedCrossRef Das F, Ghosh-Choudhury N, Dey N et al (2012) Unrestrained mammalian target of rapamycin complexes 1 and 2 increase expression of phosphatase and tensin homolog deleted on chromosome 10 to regulate phosphorylation of akt kinase. J Biol Chem 287:3808–3822PubMedCrossRef
178.
Zurück zum Zitat Sun XJ, Crimmins DL, Myers MG Jr, Miralpeix M, White MF (1993) Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol Cell Biol 13:7418–7428PubMed Sun XJ, Crimmins DL, Myers MG Jr, Miralpeix M, White MF (1993) Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol Cell Biol 13:7418–7428PubMed
Metadaten
Titel
Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2
verfasst von
K. D. Copps
M. F. White
Publikationsdatum
01.10.2012
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 10/2012
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-012-2644-8

Weitere Artikel der Ausgabe 10/2012

Diabetologia 10/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.