Skip to main content
Erschienen in: Journal of Artificial Organs 4/2014

01.12.2014 | Review

Repopulation of decellularized whole organ scaffold using stem cells: an emerging technology for the development of neo-organ

verfasst von: Aleem Ahmed Khan, Sandeep Kumar Vishwakarma, Avinash Bardia, J. Venkateshwarulu

Erschienen in: Journal of Artificial Organs | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

Demand of donor organs for transplantation in treatment of organ failure is increasing. Hence there is a need to develop new strategies for the alternative sources of organ development. Attempts are being made to use xenogenic organs by genetic manipulation but the organ rejection against human always has been a major challenge for the survival of the graft. Advancement in the genetic bioengineering and combination of different allied sciences for the development of humanized organ system, the therapeutic influence of stem cell fraction on the reconstitution of organ architecture and their regenerative abilities in different tissues and organs provides a better approach to solve the problem of organ shortage. However, the available strategies for generating the organ/tissue scaffolds limit its application due to the absence of complete three-dimensional (3D) organ architecture, mechanical strength, long-term cell survival, and vascularization. Repopulation of whole decellularized organ scaffolds using stem cells has added a new dimension for creating new bioengineered organs. In recent years, several studies have demonstrated the potential application of decellularization and recellularization approach for the development of functional bio-artificial organs. With the help of established procedures for conditioning, extensive stem cells and organ engineering experiments/transplants for the development of humanized organs will allow its preclinical evaluation for organ regeneration before translation to the clinic. This review focuses on the major aspects of organ scaffold generation and repopulation of different types of whole decellularized organ scaffolds using stem cells for the functional benefit and their confines.
Literatur
1.
Zurück zum Zitat Bailey LL, Nehlsen-Cannarella SL, Concepcion W, Jolley WB. Baboon-to-human cardiac xenotransplantation in a neonate. JAMA. 1985;254:3321–9.PubMedCrossRef Bailey LL, Nehlsen-Cannarella SL, Concepcion W, Jolley WB. Baboon-to-human cardiac xenotransplantation in a neonate. JAMA. 1985;254:3321–9.PubMedCrossRef
2.
Zurück zum Zitat Lan C, Xiao W, Xiao-Hui D, Chun-Yan H, Hong-Ling Y. Tissue culture before transplantation of frozen–thawed human fetal ovarian tissue into immunodeficient mice. Fertil Steril. 2010;93:913–9.PubMedCrossRef Lan C, Xiao W, Xiao-Hui D, Chun-Yan H, Hong-Ling Y. Tissue culture before transplantation of frozen–thawed human fetal ovarian tissue into immunodeficient mice. Fertil Steril. 2010;93:913–9.PubMedCrossRef
3.
Zurück zum Zitat Van Eyck AS, Bouzin C, Feron O, Romeu L, Van Langendonckt A, Donnez J, Dolmans MM. Both host and graft vessels contribute to revascularization of xenografted human ovarian tissue in a murine model. Fertil Steril. 2010;93:1676–85.PubMedCrossRef Van Eyck AS, Bouzin C, Feron O, Romeu L, Van Langendonckt A, Donnez J, Dolmans MM. Both host and graft vessels contribute to revascularization of xenografted human ovarian tissue in a murine model. Fertil Steril. 2010;93:1676–85.PubMedCrossRef
4.
Zurück zum Zitat Baksh D, Davies E, Kim S. Three-dimensional matrices of calcium polyphosphates support bone growth in vitro and in vivo. J Mater Sci. 1998;9:743. Baksh D, Davies E, Kim S. Three-dimensional matrices of calcium polyphosphates support bone growth in vitro and in vivo. J Mater Sci. 1998;9:743.
5.
Zurück zum Zitat Ishaug SL, Crane GM, Miller J, et al. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res. 1997;36:17.PubMedCrossRef Ishaug SL, Crane GM, Miller J, et al. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res. 1997;36:17.PubMedCrossRef
6.
Zurück zum Zitat Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.PubMedCrossRef Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.PubMedCrossRef
7.
Zurück zum Zitat Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Ddson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MR, Birchall MA. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372:2023–30.PubMedCrossRef Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Ddson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MR, Birchall MA. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372:2023–30.PubMedCrossRef
8.
Zurück zum Zitat Hollander A, Macchiarini P, Gordijn B, Birchall M. The first stem cell-based tissue-engineered organ replacement: implications for regenerative medicine and society. Regen Med. 2009;4:147–8.PubMedCrossRef Hollander A, Macchiarini P, Gordijn B, Birchall M. The first stem cell-based tissue-engineered organ replacement: implications for regenerative medicine and society. Regen Med. 2009;4:147–8.PubMedCrossRef
9.
Zurück zum Zitat Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE. Generation of a functional mammary gland from a single stem cell. Nat. 2006;439:84–8.CrossRef Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE. Generation of a functional mammary gland from a single stem cell. Nat. 2006;439:84–8.CrossRef
10.
Zurück zum Zitat Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI. Eaves purification and unique properties of mammary epithelial stem cells. Nat. 2006;439:993–7. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI. Eaves purification and unique properties of mammary epithelial stem cells. Nat. 2006;439:993–7.
11.
Zurück zum Zitat Leong KG, Wang BE, Johnson L, Gao WQ. Generation of a prostate from a single adult stem cell. Nat. 2008;456:804–8.CrossRef Leong KG, Wang BE, Johnson L, Gao WQ. Generation of a prostate from a single adult stem cell. Nat. 2008;456:804–8.CrossRef
12.
Zurück zum Zitat Chen J, Lansford R, Stewart V, Young F, Alt FW. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc Natl Acad Sci USA. 1993;90:4528–32.PubMedCentralPubMedCrossRef Chen J, Lansford R, Stewart V, Young F, Alt FW. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc Natl Acad Sci USA. 1993;90:4528–32.PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, Sato H, Lee YS, Usui J, Knisely AS, Hirabayashi M, Nakauchi H. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010;142:787–99.PubMedCrossRef Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, Sato H, Lee YS, Usui J, Knisely AS, Hirabayashi M, Nakauchi H. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010;142:787–99.PubMedCrossRef
14.
Zurück zum Zitat Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg. 1997;100:297–302.PubMedCrossRef Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg. 1997;100:297–302.PubMedCrossRef
15.
Zurück zum Zitat Takebe T, Koike N, Sekine K, Enomura M, Chiba Y, Ueno Y, Zheng YW, Taniguchi H. Generation of functional human vascular network. Transpl Proc. 2012;44:1130–3.CrossRef Takebe T, Koike N, Sekine K, Enomura M, Chiba Y, Ueno Y, Zheng YW, Taniguchi H. Generation of functional human vascular network. Transpl Proc. 2012;44:1130–3.CrossRef
16.
Zurück zum Zitat Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Ann Rev Biomed Eng. 2011;13:27–53.CrossRef Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Ann Rev Biomed Eng. 2011;13:27–53.CrossRef
17.
Zurück zum Zitat Baptista PM, Orlando G, Mirmalek-Sani SH, Siddiqui M, Atala A, Soker S. Whole organ decellularization: a tool for bioscaffold fabrication and organ bioengineering. Conf Proc IEEE Eng Med Biol Soc. 2009;65:26–9. Baptista PM, Orlando G, Mirmalek-Sani SH, Siddiqui M, Atala A, Soker S. Whole organ decellularization: a tool for bioscaffold fabrication and organ bioengineering. Conf Proc IEEE Eng Med Biol Soc. 2009;65:26–9.
18.
Zurück zum Zitat Habibullah CM, Vijayalakshmi V, Naseem B, Habeeb MH, Shashi S, Rao M. Hepatofunctional study of UV-B (302 nm) irradiated goat hepatocytes. Am J Gastroenterol. 2000;95:2511–2.CrossRef Habibullah CM, Vijayalakshmi V, Naseem B, Habeeb MH, Shashi S, Rao M. Hepatofunctional study of UV-B (302 nm) irradiated goat hepatocytes. Am J Gastroenterol. 2000;95:2511–2.CrossRef
19.
Zurück zum Zitat Khan AA, Capoor AK, Parveen N, Naseem S, Vijayalakshmi V, Venkateshan V, Habibullah CM. In vitro studies on a bioreactor module containing encapsulated goat hepatocytes for the development of bioartificial liver. Ind J Gastroenterol. 2002;21:55–8. Khan AA, Capoor AK, Parveen N, Naseem S, Vijayalakshmi V, Venkateshan V, Habibullah CM. In vitro studies on a bioreactor module containing encapsulated goat hepatocytes for the development of bioartificial liver. Ind J Gastroenterol. 2002;21:55–8.
20.
Zurück zum Zitat Ross EA, Abrahamson DR, John PL, Clapp WL, Williams MJ, et al. Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogen. 2012;8:49–55.CrossRef Ross EA, Abrahamson DR, John PL, Clapp WL, Williams MJ, et al. Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogen. 2012;8:49–55.CrossRef
21.
Zurück zum Zitat Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:1–8.CrossRef Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:1–8.CrossRef
22.
Zurück zum Zitat Nakayama KH, Lee CCI, Batchelder CA, Tarantal AF. Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS One. 2013;8:e64134.PubMedCentralPubMedCrossRef Nakayama KH, Lee CCI, Batchelder CA, Tarantal AF. Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS One. 2013;8:e64134.PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Bowen J. By the numbers: heart transplants in the US. WSFA stories. (Online Statistics) 2012. Bowen J. By the numbers: heart transplants in the US. WSFA stories. (Online Statistics) 2012.
24.
Zurück zum Zitat Ng SL, Narayanan K, Gao S, Wan AC. Lineage restricted progenitors for the repopulation of decellularized heart. Biomat. 2011;32:7571–80.CrossRef Ng SL, Narayanan K, Gao S, Wan AC. Lineage restricted progenitors for the repopulation of decellularized heart. Biomat. 2011;32:7571–80.CrossRef
25.
Zurück zum Zitat Lu TY, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun. 2013;4:2307.PubMed Lu TY, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun. 2013;4:2307.PubMed
26.
Zurück zum Zitat Zacchi V, Soranzo C, Cortivo R, Radice M, Brun P, Abatangelo G. In vitro engineering of human skin-like tissue. J Biomed Mater Res. 1998;40:187–94.PubMedCrossRef Zacchi V, Soranzo C, Cortivo R, Radice M, Brun P, Abatangelo G. In vitro engineering of human skin-like tissue. J Biomed Mater Res. 1998;40:187–94.PubMedCrossRef
27.
Zurück zum Zitat Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med. 2001;7:1035–40.PubMedCentralPubMedCrossRef Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med. 2001;7:1035–40.PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6.PubMedCrossRef Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6.PubMedCrossRef
29.
Zurück zum Zitat Griffith LG, Naughton G. Tissue engineering—current challenges and expanding opportunities. Sci. 2002;295:1009–14.CrossRef Griffith LG, Naughton G. Tissue engineering—current challenges and expanding opportunities. Sci. 2002;295:1009–14.CrossRef
30.
Zurück zum Zitat Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatol. 2011;53:604–17.CrossRef Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatol. 2011;53:604–17.CrossRef
32.
Zurück zum Zitat Rogers SA, Hammerman MR. Prolongation of life in anephric rats following de novo renal organogenesis. Organogen. 2004;1:22–5.CrossRef Rogers SA, Hammerman MR. Prolongation of life in anephric rats following de novo renal organogenesis. Organogen. 2004;1:22–5.CrossRef
33.
Zurück zum Zitat Gura V, Macy AS, Beizai M, Ezon C, Golper TA. Technical breakthroughs in the wearable artificial kidney (WAK). Clin J Am Soc Nephrol. 2009;4:1441–8.PubMedCentralPubMedCrossRef Gura V, Macy AS, Beizai M, Ezon C, Golper TA. Technical breakthroughs in the wearable artificial kidney (WAK). Clin J Am Soc Nephrol. 2009;4:1441–8.PubMedCentralPubMedCrossRef
34.
35.
Zurück zum Zitat Lopez AD, Shibuya K, Rao C, et al. Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J. 2006;27:397–412.PubMedCrossRef Lopez AD, Shibuya K, Rao C, et al. Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J. 2006;27:397–412.PubMedCrossRef
36.
Zurück zum Zitat Eisner MD, Anthonisen N, Coultas D, et al. An official American thoracic society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182:693–718.PubMedCrossRef Eisner MD, Anthonisen N, Coultas D, et al. An official American thoracic society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182:693–718.PubMedCrossRef
37.
Zurück zum Zitat Cortiella J, Niles J, Cantu A, et al. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A. 2010;16:2565–80.PubMedCrossRef Cortiella J, Niles J, Cantu A, et al. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A. 2010;16:2565–80.PubMedCrossRef
38.
Zurück zum Zitat Petersen TH, et al. Tissue-engineered lungs for in vivo implantation. Sci. 2010;329:538–41.CrossRef Petersen TH, et al. Tissue-engineered lungs for in vivo implantation. Sci. 2010;329:538–41.CrossRef
39.
Zurück zum Zitat Price AP, England KA, et al. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A. 2010;16:2581–91.PubMedCentralPubMedCrossRef Price AP, England KA, et al. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A. 2010;16:2581–91.PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat Petersen TH, Calle EA, Colehour MB, et al. Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissue Org. 2012;195:222–31.CrossRef Petersen TH, Calle EA, Colehour MB, et al. Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissue Org. 2012;195:222–31.CrossRef
41.
Zurück zum Zitat Osada H, Takeuchi S, Kojima K, Yamate N. The first step of experimental study on hybrid trachea: use of cultured fibroblasts with artificial matrix. J Cardiovasc Surg (Torino). 1994;35:165–8. Osada H, Takeuchi S, Kojima K, Yamate N. The first step of experimental study on hybrid trachea: use of cultured fibroblasts with artificial matrix. J Cardiovasc Surg (Torino). 1994;35:165–8.
42.
Zurück zum Zitat Vacanti CA, Paige KT, Kim WS, Sakata J, Upton J, et al. Experimental tracheal replacement using tissue-engineered cartilage. J Pediatr Surg. 1994;29:201–4.PubMedCrossRef Vacanti CA, Paige KT, Kim WS, Sakata J, Upton J, et al. Experimental tracheal replacement using tissue-engineered cartilage. J Pediatr Surg. 1994;29:201–4.PubMedCrossRef
43.
Zurück zum Zitat Paz AC, Kojima K, Iwasaki K, Ross JD, Canseco JA, et al. Tissue engineered trachea using decellularized aorta. J Bioeng Biomed Sci. 2011;S2:001. Paz AC, Kojima K, Iwasaki K, Ross JD, Canseco JA, et al. Tissue engineered trachea using decellularized aorta. J Bioeng Biomed Sci. 2011;S2:001.
44.
Zurück zum Zitat DeQuach JA, et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One. 2010;5:e13039.PubMedCentralPubMedCrossRef DeQuach JA, et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One. 2010;5:e13039.PubMedCentralPubMedCrossRef
45.
Zurück zum Zitat Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16:927–33.PubMedCrossRef Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16:927–33.PubMedCrossRef
46.
Zurück zum Zitat Brown BN, Freund JM, Han LI, Rubin JP, Reing JE, et al. Comparison of three methods for the derivation of a biological scaffold composed of adipose tissue extracellular matrix. Tissue Eng. 2011;17:411–21.CrossRef Brown BN, Freund JM, Han LI, Rubin JP, Reing JE, et al. Comparison of three methods for the derivation of a biological scaffold composed of adipose tissue extracellular matrix. Tissue Eng. 2011;17:411–21.CrossRef
47.
Zurück zum Zitat Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomat. 2006;27:3675–83. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomat. 2006;27:3675–83.
48.
Zurück zum Zitat Gupta SK, Dinda AK, Potdar PD, Mishra NC. Modification of decellularized goat-lung scaffold with chitosan/nanohydroxyapatite composite for bone tissue engineering applications. BioMed Res Internat 2013;2013:1–11.CrossRef Gupta SK, Dinda AK, Potdar PD, Mishra NC. Modification of decellularized goat-lung scaffold with chitosan/nanohydroxyapatite composite for bone tissue engineering applications. BioMed Res Internat 2013;2013:1–11.CrossRef
49.
Zurück zum Zitat Sano MB, Neal RE, Garcia PA, Gerber D, Robertson J, Davalos RV. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed Eng Online. 2010;9:83.PubMedCentralPubMedCrossRef Sano MB, Neal RE, Garcia PA, Gerber D, Robertson J, Davalos RV. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed Eng Online. 2010;9:83.PubMedCentralPubMedCrossRef
50.
Zurück zum Zitat Shupe T, Williams M, Brown A, Willenberg B, Petersen BE. Methods for the decellularization of intact rat liver. Organogen. 2010;6:134–6.CrossRef Shupe T, Williams M, Brown A, Willenberg B, Petersen BE. Methods for the decellularization of intact rat liver. Organogen. 2010;6:134–6.CrossRef
Metadaten
Titel
Repopulation of decellularized whole organ scaffold using stem cells: an emerging technology for the development of neo-organ
verfasst von
Aleem Ahmed Khan
Sandeep Kumar Vishwakarma
Avinash Bardia
J. Venkateshwarulu
Publikationsdatum
01.12.2014
Verlag
Springer Japan
Erschienen in
Journal of Artificial Organs / Ausgabe 4/2014
Print ISSN: 1434-7229
Elektronische ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-014-0780-2

Weitere Artikel der Ausgabe 4/2014

Journal of Artificial Organs 4/2014 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.