Skip to main content
Erschienen in: Current HIV/AIDS Reports 1/2013

01.03.2013 | HIV Pathogenesis and Treatment (A Landay, Section Editor)

Revising the Role of Myeloid cells in HIV Pathogenesis

verfasst von: Anupriya Aggarwal, Samantha McAllery, Stuart G. Turville

Erschienen in: Current HIV/AIDS Reports | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Lentiviruses are characterized by their ability to infect resting cells, such as CD4 T cells, macrophages and dendritic cells (DC). Cells of myeloid lineage, which herein we include including monocytes, macrophages, and dendritic cells, play a pivotal role in HIV infection by not only promoting transmission and spread but also serving as viral reservoirs. However, the recent discovery of the HIV restriction factor SAMHD1 within myeloid cells has again led us to question the role of this lineage both in HIV transmission and pathogenesis. Herein we will summarize what the potential role of myeloid cells in HIV pathogenesis is and how recent observations have or haven’t reshaped this view. Finally we highlight the idea that cells of myeloid lineage are quality rather than quantity HIV substrates. Thus, whilst is may indeed be difficult for a lentivirus like HIV to infect a resting cell like a macrophage and/or Dendritic cell, there are significant benefits in doing so, even at low frequency.
Literatur
1.
Zurück zum Zitat Narayan O, Kennedy-Stoskopf S, Zink MC. Lentivirus-host interactions: lessons from visna and caprine arthritis-encephalitis viruses. Ann Neurol. 1988;23(Suppl):S95–S100.PubMedCrossRef Narayan O, Kennedy-Stoskopf S, Zink MC. Lentivirus-host interactions: lessons from visna and caprine arthritis-encephalitis viruses. Ann Neurol. 1988;23(Suppl):S95–S100.PubMedCrossRef
2.
Zurück zum Zitat Gendelman HE, Narayan O, Molineaux S, Clements JE, Ghotbi Z. Slow, persistent replication of lentiviruses: role of tissue macrophages and macrophage precursors in bone marrow. Proc Natl Acad Sci U S A. 1985;82:7086–90.PubMedCrossRef Gendelman HE, Narayan O, Molineaux S, Clements JE, Ghotbi Z. Slow, persistent replication of lentiviruses: role of tissue macrophages and macrophage precursors in bone marrow. Proc Natl Acad Sci U S A. 1985;82:7086–90.PubMedCrossRef
3.
Zurück zum Zitat Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature. 2011;474:658–61.PubMedCrossRef Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature. 2011;474:658–61.PubMedCrossRef
4.
Zurück zum Zitat •• Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 2011;474:654–7. Discovery of the VPX binding partner SAMHD1 and its role in viral restriction in DC and macrophages.PubMedCrossRef •• Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 2011;474:654–7. Discovery of the VPX binding partner SAMHD1 and its role in viral restriction in DC and macrophages.PubMedCrossRef
5.
Zurück zum Zitat Koenig S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, et al. Detection of AIDS. virus in macrophages in brain tissue from AIDS. patients with encephalopathy. Science. 1986;233:1089–93.PubMedCrossRef Koenig S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, et al. Detection of AIDS. virus in macrophages in brain tissue from AIDS. patients with encephalopathy. Science. 1986;233:1089–93.PubMedCrossRef
6.
Zurück zum Zitat Merrill JE, Chen IS. HIV-1, macrophages, glial cells, and cytokines in AIDS. nervous system disease. FASEB J. 1991;5:2391–7.PubMed Merrill JE, Chen IS. HIV-1, macrophages, glial cells, and cytokines in AIDS. nervous system disease. FASEB J. 1991;5:2391–7.PubMed
7.
Zurück zum Zitat Orenstein JM, Fox C, Wahl SM. Macrophages as a source of HIV during opportunistic infections. Science. 1997;276:1857–61.PubMedCrossRef Orenstein JM, Fox C, Wahl SM. Macrophages as a source of HIV during opportunistic infections. Science. 1997;276:1857–61.PubMedCrossRef
8.
Zurück zum Zitat Wahl SM, Greenwell-Wild T, Peng G, Hale-Donze H, Doherty TM, Mizel D, et al. Mycobacterium avium complex augments macrophage HIV-1 production and increases CCR5 expression. Proc Natl Acad Sci U S A. 1998;95:12574–9.PubMedCrossRef Wahl SM, Greenwell-Wild T, Peng G, Hale-Donze H, Doherty TM, Mizel D, et al. Mycobacterium avium complex augments macrophage HIV-1 production and increases CCR5 expression. Proc Natl Acad Sci U S A. 1998;95:12574–9.PubMedCrossRef
9.
Zurück zum Zitat Frankel SS, Wenig BM, Burke AP, Mannan P, Thompson LD, Abbondanzo SL, et al. Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid. Science. 1996;272:115–7.PubMedCrossRef Frankel SS, Wenig BM, Burke AP, Mannan P, Thompson LD, Abbondanzo SL, et al. Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid. Science. 1996;272:115–7.PubMedCrossRef
10.
Zurück zum Zitat Frankel SS, Tenner-Racz K, Racz P, Wenig BM, Hansen CH, Heffner D, et al. Active replication of HIV-1 at the lymphoepithelial surface of the tonsil. Am J Pathol. 1997;151:89–96.PubMed Frankel SS, Tenner-Racz K, Racz P, Wenig BM, Hansen CH, Heffner D, et al. Active replication of HIV-1 at the lymphoepithelial surface of the tonsil. Am J Pathol. 1997;151:89–96.PubMed
11.
12.
Zurück zum Zitat Quayle AJ, Xu C, Mayer KH, Anderson DJ. T lymphocytes and macrophages, but not motile spermatozoa, are a significant source of human immunodeficiency virus in semen. J Infect Dis. 1997;176:960–8.PubMedCrossRef Quayle AJ, Xu C, Mayer KH, Anderson DJ. T lymphocytes and macrophages, but not motile spermatozoa, are a significant source of human immunodeficiency virus in semen. J Infect Dis. 1997;176:960–8.PubMedCrossRef
13.
Zurück zum Zitat Hu Q, Frank I, Williams V, Santos JJ, Watts P, Griffin GE, et al. Blockade of attachment and fusion receptors inhibits HIV-1 infection of human cervical tissue. J Exp Med. 2004;199:1065–75.PubMedCrossRef Hu Q, Frank I, Williams V, Santos JJ, Watts P, Griffin GE, et al. Blockade of attachment and fusion receptors inhibits HIV-1 infection of human cervical tissue. J Exp Med. 2004;199:1065–75.PubMedCrossRef
14.
Zurück zum Zitat Miller CJ, Hu J. T cell-tropic simian immunodeficiency virus (SIV) and simian-human immunodeficiency viruses are readily transmitted by vaginal inoculation of rhesus macaques, and Langerhans' cells of the female genital tract are infected with SIV. J Infect Dis. 1999;179 Suppl 3:S413–7.PubMedCrossRef Miller CJ, Hu J. T cell-tropic simian immunodeficiency virus (SIV) and simian-human immunodeficiency viruses are readily transmitted by vaginal inoculation of rhesus macaques, and Langerhans' cells of the female genital tract are infected with SIV. J Infect Dis. 1999;179 Suppl 3:S413–7.PubMedCrossRef
15.
Zurück zum Zitat Spira AI, Marx PA, Patterson BK, Mahoney J, Koup RA, Wolinsky SM, et al. Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med. 1996;183:215–25.PubMedCrossRef Spira AI, Marx PA, Patterson BK, Mahoney J, Koup RA, Wolinsky SM, et al. Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med. 1996;183:215–25.PubMedCrossRef
16.
Zurück zum Zitat Ellery PJ, Tippett E, Chiu YL, Paukovics G, Cameron PU, Solomon A, et al. The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol. 2007;178:6581–9.PubMed Ellery PJ, Tippett E, Chiu YL, Paukovics G, Cameron PU, Solomon A, et al. The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol. 2007;178:6581–9.PubMed
17.
Zurück zum Zitat Jaworowski A, Kamwendo DD, Ellery P, Sonza S, Mwapasa V, Tadesse E, et al. CD16+ monocyte subset preferentially harbors HIV-1 and is expanded in pregnant Malawian women with Plasmodium falciparum malaria and HIV-1 infection. J Infect Dis. 2007;196:38–42.PubMedCrossRef Jaworowski A, Kamwendo DD, Ellery P, Sonza S, Mwapasa V, Tadesse E, et al. CD16+ monocyte subset preferentially harbors HIV-1 and is expanded in pregnant Malawian women with Plasmodium falciparum malaria and HIV-1 infection. J Infect Dis. 2007;196:38–42.PubMedCrossRef
18.
Zurück zum Zitat Pope M, Gezelter S, Gallo N, Hoffman L, Steinman RM. Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4+ T cells. J Exp Med. 1995;182:2045–56.PubMedCrossRef Pope M, Gezelter S, Gallo N, Hoffman L, Steinman RM. Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4+ T cells. J Exp Med. 1995;182:2045–56.PubMedCrossRef
19.
Zurück zum Zitat Reece JC, Handley AJ, Anstee EJ, Morrison WA, Crowe SM, Cameron PU. HIV-1 selection by epidermal dendritic cells during transmission across human skin. J Exp Med. 1998;187:1623–31.PubMedCrossRef Reece JC, Handley AJ, Anstee EJ, Morrison WA, Crowe SM, Cameron PU. HIV-1 selection by epidermal dendritic cells during transmission across human skin. J Exp Med. 1998;187:1623–31.PubMedCrossRef
20.
Zurück zum Zitat Kawamura T, Gulden FO, Sugaya M, McNamara DT, Borris DL, Lederman MM, et al. R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms. Proc Natl Acad Sci U S A. 2003;100:8401–6.PubMedCrossRef Kawamura T, Gulden FO, Sugaya M, McNamara DT, Borris DL, Lederman MM, et al. R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms. Proc Natl Acad Sci U S A. 2003;100:8401–6.PubMedCrossRef
21.
Zurück zum Zitat Kawamura T, Cohen SS, Borris DL, Aquilino EA, Glushakova S, Margolis LB, et al. Candidate microbicides block HIV-1 infection of human immature Langerhans cells within epithelial tissue explants. J Exp Med. 2000;192:1491–500.PubMedCrossRef Kawamura T, Cohen SS, Borris DL, Aquilino EA, Glushakova S, Margolis LB, et al. Candidate microbicides block HIV-1 infection of human immature Langerhans cells within epithelial tissue explants. J Exp Med. 2000;192:1491–500.PubMedCrossRef
22.
Zurück zum Zitat Zhang Z, Schuler T, Zupancic M, Wietgrefe S, Staskus KA, Reimann KA, et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science. 1999;286:1353–7.PubMedCrossRef Zhang Z, Schuler T, Zupancic M, Wietgrefe S, Staskus KA, Reimann KA, et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science. 1999;286:1353–7.PubMedCrossRef
23.
Zurück zum Zitat Zhang ZQ, Wietgrefe SW, Li Q, Shore MD, Duan L, Reilly C, et al. Roles of substrate availability and infection of resting and activated CD4+ T cells in transmission and acute simian immunodeficiency virus infection. Proc Natl Acad Sci U S A. 2004;101:5640–5.PubMedCrossRef Zhang ZQ, Wietgrefe SW, Li Q, Shore MD, Duan L, Reilly C, et al. Roles of substrate availability and infection of resting and activated CD4+ T cells in transmission and acute simian immunodeficiency virus infection. Proc Natl Acad Sci U S A. 2004;101:5640–5.PubMedCrossRef
24.
Zurück zum Zitat Lackner AA, Veazey RS. Current concepts in AIDS. pathogenesis: insights from the SIV/macaque model. Annu Rev Med. 2007;58:461–76.PubMedCrossRef Lackner AA, Veazey RS. Current concepts in AIDS. pathogenesis: insights from the SIV/macaque model. Annu Rev Med. 2007;58:461–76.PubMedCrossRef
25.
Zurück zum Zitat McDermott AB, Mitchen J, Piaskowski S, De Souza I, Yant LJ, Stephany J, et al. Repeated low-dose mucosal simian immunodeficiency virus SIVmac239 challenge results in the same viral and immunological kinetics as high-dose challenge: a model for the evaluation of vaccine efficacy in nonhuman primates. J Virol. 2004;78:3140–4.PubMedCrossRef McDermott AB, Mitchen J, Piaskowski S, De Souza I, Yant LJ, Stephany J, et al. Repeated low-dose mucosal simian immunodeficiency virus SIVmac239 challenge results in the same viral and immunological kinetics as high-dose challenge: a model for the evaluation of vaccine efficacy in nonhuman primates. J Virol. 2004;78:3140–4.PubMedCrossRef
26.
Zurück zum Zitat Chakraborty H, Sen PK, Helms RW, Vernazza PL, Fiscus SA, Eron JJ, et al. Viral burden in genital secretions determines male-to-female sexual transmission of HIV-1: a probabilistic empiric model. AIDS. 2001;15:621–7.PubMedCrossRef Chakraborty H, Sen PK, Helms RW, Vernazza PL, Fiscus SA, Eron JJ, et al. Viral burden in genital secretions determines male-to-female sexual transmission of HIV-1: a probabilistic empiric model. AIDS. 2001;15:621–7.PubMedCrossRef
27.
Zurück zum Zitat Tachet A, Dulioust E, Salmon D, De Almeida M, Rivalland S, Finkielsztejn L, et al. Detection and quantification of HIV-1 in semen: identification of a subpopulation of men at high potential risk of viral sexual transmission. AIDS. 1999;13:823–31.PubMedCrossRef Tachet A, Dulioust E, Salmon D, De Almeida M, Rivalland S, Finkielsztejn L, et al. Detection and quantification of HIV-1 in semen: identification of a subpopulation of men at high potential risk of viral sexual transmission. AIDS. 1999;13:823–31.PubMedCrossRef
28.
Zurück zum Zitat Daniel MD, Letvin NL, King NW, Kannagi M, Sehgal PK, Hunt RD, et al. Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. Science. 1985;228:1201–4.PubMedCrossRef Daniel MD, Letvin NL, King NW, Kannagi M, Sehgal PK, Hunt RD, et al. Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. Science. 1985;228:1201–4.PubMedCrossRef
29.
Zurück zum Zitat Reimann KA, Li JT, Veazey R, Halloran M, Park IW, Karlsson GB, et al. A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an AIDS.-like disease after in vivo passage in rhesus monkeys. J Virol. 1996;70:6922–8.PubMed Reimann KA, Li JT, Veazey R, Halloran M, Park IW, Karlsson GB, et al. A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an AIDS.-like disease after in vivo passage in rhesus monkeys. J Virol. 1996;70:6922–8.PubMed
30.
Zurück zum Zitat Harouse JM, Gettie A, Tan RC, Blanchard J, Cheng-Mayer C. Distinct pathogenic sequela in rhesus macaques infected with CCR5 or CXCR4 utilizing SHIVs. Science. 1999;284:816–9.PubMedCrossRef Harouse JM, Gettie A, Tan RC, Blanchard J, Cheng-Mayer C. Distinct pathogenic sequela in rhesus macaques infected with CCR5 or CXCR4 utilizing SHIVs. Science. 1999;284:816–9.PubMedCrossRef
31.
Zurück zum Zitat Ambrose Z, Palmer S, Boltz VF, Kearney M, Larsen K, Polacino P, et al. Suppression of viremia and evolution of human immunodeficiency virus type 1 drug resistance in a macaque model for antiretroviral therapy. J Virol. 2007;81:12145–55.PubMedCrossRef Ambrose Z, Palmer S, Boltz VF, Kearney M, Larsen K, Polacino P, et al. Suppression of viremia and evolution of human immunodeficiency virus type 1 drug resistance in a macaque model for antiretroviral therapy. J Virol. 2007;81:12145–55.PubMedCrossRef
32.
Zurück zum Zitat Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 2004;427:848–53.PubMedCrossRef Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 2004;427:848–53.PubMedCrossRef
33.
Zurück zum Zitat Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, et al. DNA deamination mediates innate immunity to retroviral infection. Cell. 2003;113:803–9.PubMedCrossRef Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, et al. DNA deamination mediates innate immunity to retroviral infection. Cell. 2003;113:803–9.PubMedCrossRef
34.
Zurück zum Zitat Hatziioannou T, Ambrose Z, Chung NP, Piatak Jr M, Yuan F, Trubey CM, et al. A macaque model of HIV-1 infection. Proc Natl Acad Sci U S A. 2009;106:4425–9.PubMedCrossRef Hatziioannou T, Ambrose Z, Chung NP, Piatak Jr M, Yuan F, Trubey CM, et al. A macaque model of HIV-1 infection. Proc Natl Acad Sci U S A. 2009;106:4425–9.PubMedCrossRef
35.
Zurück zum Zitat •• Baldauf HM, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, et al. SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med. 2012;18:1682–9. Seminal and important contribution to demonstrate the SAMHD1 phenotype is not myeloid-cell-specific, but rather covers all resting cell types, including resting CD4 T cells. •• Baldauf HM, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, et al. SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med. 2012;18:1682–9. Seminal and important contribution to demonstrate the SAMHD1 phenotype is not myeloid-cell-specific, but rather covers all resting cell types, including resting CD4 T cells.
36.
Zurück zum Zitat • Berger A, Sommer AF, Zwarg J, Hamdorf M, Welzel K, Esly N, et al. SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutieres syndrome are highly susceptible to HIV-1 infection. PLoS Pathog. 2011;7:e1002425. Ex vivo monocytes from patients deficient of SAMHD1 can be readily infected with HIV. Further evidence independently supporting in vitro protein knock down data and that ex vivo monocytes also restrict infection with this particular restyrcion factor.PubMedCrossRef • Berger A, Sommer AF, Zwarg J, Hamdorf M, Welzel K, Esly N, et al. SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutieres syndrome are highly susceptible to HIV-1 infection. PLoS Pathog. 2011;7:e1002425. Ex vivo monocytes from patients deficient of SAMHD1 can be readily infected with HIV. Further evidence independently supporting in vitro protein knock down data and that ex vivo monocytes also restrict infection with this particular restyrcion factor.PubMedCrossRef
37.
Zurück zum Zitat •• Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol. 2012;13:223–8. Mechanism of action of SAMHD1 is defined in this important contribution and related to its ability to cleave and therefore deplete deoxynucleoside triphosphates and thus reduced the virus' ability to reverse transcribe in resting cells.PubMedCrossRef •• Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol. 2012;13:223–8. Mechanism of action of SAMHD1 is defined in this important contribution and related to its ability to cleave and therefore deplete deoxynucleoside triphosphates and thus reduced the virus' ability to reverse transcribe in resting cells.PubMedCrossRef
38.
Zurück zum Zitat Wang YF, Holstein AF. Intraepithelial lymphocytes and macrophages in the human epididymis. Cell Tissue Res. 1983;233:517–21.PubMed Wang YF, Holstein AF. Intraepithelial lymphocytes and macrophages in the human epididymis. Cell Tissue Res. 1983;233:517–21.PubMed
39.
Zurück zum Zitat Wolff H. The biologic significance of white blood cells in semen. Fertil Steril. 1995;63:1143–57.PubMed Wolff H. The biologic significance of white blood cells in semen. Fertil Steril. 1995;63:1143–57.PubMed
40.
Zurück zum Zitat Smith DC, Barratt CL, Williams MA. The characterization of non-sperm cells in the ejaculates of fertile men using transmission electron microscopy. Andrologia. 1989;21:319–33.PubMedCrossRef Smith DC, Barratt CL, Williams MA. The characterization of non-sperm cells in the ejaculates of fertile men using transmission electron microscopy. Andrologia. 1989;21:319–33.PubMedCrossRef
41.
Zurück zum Zitat Tremellen K, Tunc O. Macrophage activity in semen is significantly correlated with sperm quality in infertile men. Int J Androl. 2010;33:823–31.PubMedCrossRef Tremellen K, Tunc O. Macrophage activity in semen is significantly correlated with sperm quality in infertile men. Int J Androl. 2010;33:823–31.PubMedCrossRef
42.
Zurück zum Zitat Ochsendorf FR. Infections in the male genital tract and reactive oxygen species. Hum Reprod Updat. 1999;5:399–420.CrossRef Ochsendorf FR. Infections in the male genital tract and reactive oxygen species. Hum Reprod Updat. 1999;5:399–420.CrossRef
43.
Zurück zum Zitat Sharma RK, Pasqualotto AE, Nelson DR, Thomas Jr AJ, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22:575–83.PubMed Sharma RK, Pasqualotto AE, Nelson DR, Thomas Jr AJ, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22:575–83.PubMed
44.
Zurück zum Zitat Henkel R, Maass G, Hajimohammad M, Menkveld R, Stalf T, Villegas J, et al. Urogenital inflammation: changes of leucocytes and ROS. Andrologia. 2003;35:309–13.PubMed Henkel R, Maass G, Hajimohammad M, Menkveld R, Stalf T, Villegas J, et al. Urogenital inflammation: changes of leucocytes and ROS. Andrologia. 2003;35:309–13.PubMed
45.
Zurück zum Zitat Ricci G, Perticarari S, Boscolo R, Simeone R, Martinelli M, Fischer-Tamaro L, et al. Leukocytospermia and sperm preparation—a flow cytometric study. Reprod Biol Endocrinol. 2009;7:128.PubMedCrossRef Ricci G, Perticarari S, Boscolo R, Simeone R, Martinelli M, Fischer-Tamaro L, et al. Leukocytospermia and sperm preparation—a flow cytometric study. Reprod Biol Endocrinol. 2009;7:128.PubMedCrossRef
46.
Zurück zum Zitat Riedel HH. Techniques for the detection of leukocytospermia in human semen. Arch Androl. 1980;5:287–93.PubMedCrossRef Riedel HH. Techniques for the detection of leukocytospermia in human semen. Arch Androl. 1980;5:287–93.PubMedCrossRef
47.
Zurück zum Zitat • Anderson DJ, Politch JA, Nadolski AM, Blaskewicz CD, Pudney J, Mayer KH. Targeting trojan horse leukocytes for HIV prevention. AIDS. 2010;24:163–87. Excellent overview of how infected cells in either the male and female genital tract have the potential to transmit virus to the next host.PubMedCrossRef • Anderson DJ, Politch JA, Nadolski AM, Blaskewicz CD, Pudney J, Mayer KH. Targeting trojan horse leukocytes for HIV prevention. AIDS. 2010;24:163–87. Excellent overview of how infected cells in either the male and female genital tract have the potential to transmit virus to the next host.PubMedCrossRef
48.
Zurück zum Zitat Bagasra O, Farzadegan H, Seshamma T, Oakes JW, Saah A, Pomerantz RJ. Detection of HIV-1 proviral DNA in sperm from HIV-1-infected men. AIDS. 1994;8:1669–74.PubMedCrossRef Bagasra O, Farzadegan H, Seshamma T, Oakes JW, Saah A, Pomerantz RJ. Detection of HIV-1 proviral DNA in sperm from HIV-1-infected men. AIDS. 1994;8:1669–74.PubMedCrossRef
49.
Zurück zum Zitat Nuovo GJ, Becker J, Simsir A, Margiotta M, Khalife G, Shevchuk M. HIV-1 nucleic acids localize to the spermatogonia and their progeny. A study by polymerase chain reaction in situ hybridization. Am J Pathol. 1994;144:1142–8.PubMed Nuovo GJ, Becker J, Simsir A, Margiotta M, Khalife G, Shevchuk M. HIV-1 nucleic acids localize to the spermatogonia and their progeny. A study by polymerase chain reaction in situ hybridization. Am J Pathol. 1994;144:1142–8.PubMed
50.
Zurück zum Zitat Muciaccia B, Uccini S, Filippini A, Ziparo E, Paraire F, Baroni CD, et al. Presence and cellular distribution of HIV in the testes of seropositive subjects: an evaluation by in situ PCR hybridization. FASEB J. 1998;12:151–63.PubMed Muciaccia B, Uccini S, Filippini A, Ziparo E, Paraire F, Baroni CD, et al. Presence and cellular distribution of HIV in the testes of seropositive subjects: an evaluation by in situ PCR hybridization. FASEB J. 1998;12:151–63.PubMed
51.
Zurück zum Zitat Bujan L, Daudin M, Matsuda T, Righi L, Thauvin L, Berges L, et al. Factors of intermittent HIV-1 excretion in semen and efficiency of sperm processing in obtaining spermatozoa without HIV-1 genomes. AIDS. 2004;18:757–66.PubMedCrossRef Bujan L, Daudin M, Matsuda T, Righi L, Thauvin L, Berges L, et al. Factors of intermittent HIV-1 excretion in semen and efficiency of sperm processing in obtaining spermatozoa without HIV-1 genomes. AIDS. 2004;18:757–66.PubMedCrossRef
52.
Zurück zum Zitat Persico T, Savasi V, Ferrazzi E, Oneta M, Semprini AE, Simoni G. Detection of human immunodeficiency virus-1 RNA and DNA by extractive and in situ PCR in unprocessed semen and seminal fractions isolated by semen-washing procedure. Hum Reprod. 2006;21:1525–30.PubMedCrossRef Persico T, Savasi V, Ferrazzi E, Oneta M, Semprini AE, Simoni G. Detection of human immunodeficiency virus-1 RNA and DNA by extractive and in situ PCR in unprocessed semen and seminal fractions isolated by semen-washing procedure. Hum Reprod. 2006;21:1525–30.PubMedCrossRef
53.
Zurück zum Zitat Quayle AJ, Xu C, Tucker L, Anderson DJ. The case against an association between HIV-1 and sperm: molecular evidence. J Reprod Immunol. 1998;41:127–36.PubMedCrossRef Quayle AJ, Xu C, Tucker L, Anderson DJ. The case against an association between HIV-1 and sperm: molecular evidence. J Reprod Immunol. 1998;41:127–36.PubMedCrossRef
54.
Zurück zum Zitat Politch JA, Mayer KH, Anderson DJ. Depletion of CD4+ T cells in semen during HIV infection and their restoration following antiretroviral therapy. J Acquir Immune Defic Syndr. 2009;50:283–9.PubMedCrossRef Politch JA, Mayer KH, Anderson DJ. Depletion of CD4+ T cells in semen during HIV infection and their restoration following antiretroviral therapy. J Acquir Immune Defic Syndr. 2009;50:283–9.PubMedCrossRef
55.
Zurück zum Zitat Muller CH, Coombs RW, Krieger JN. Effects of clinical stage and immunological status on semen analysis results in human immunodeficiency virus type 1-seropositive men. Andrologia. 1998;30 Suppl 1:15–22.PubMed Muller CH, Coombs RW, Krieger JN. Effects of clinical stage and immunological status on semen analysis results in human immunodeficiency virus type 1-seropositive men. Andrologia. 1998;30 Suppl 1:15–22.PubMed
56.
Zurück zum Zitat • Malim MH, Bieniasz PD. HIV restriction factors and mechanisms of evasion. Cold Spring Harb Perspect Med. 2012;2:a006940. Comprehensive overview of HIV restriction factors and the virus' ability to evade this reponse.PubMed • Malim MH, Bieniasz PD. HIV restriction factors and mechanisms of evasion. Cold Spring Harb Perspect Med. 2012;2:a006940. Comprehensive overview of HIV restriction factors and the virus' ability to evade this reponse.PubMed
57.
Zurück zum Zitat Kirchhoff F. Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe. 2010;8:55–67.PubMedCrossRef Kirchhoff F. Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe. 2010;8:55–67.PubMedCrossRef
58.
Zurück zum Zitat Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004;101:6062–7.PubMedCrossRef Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004;101:6062–7.PubMedCrossRef
59.
Zurück zum Zitat Hirsch VM, Sharkey ME, Brown CR, Brichacek B, Goldstein S, Wakefield J, et al. Vpx is required for dissemination and pathogenesis of SIV(SM) PBj: evidence of macrophage-dependent viral amplification. Nat Med. 1998;4:1401–8.PubMedCrossRef Hirsch VM, Sharkey ME, Brown CR, Brichacek B, Goldstein S, Wakefield J, et al. Vpx is required for dissemination and pathogenesis of SIV(SM) PBj: evidence of macrophage-dependent viral amplification. Nat Med. 1998;4:1401–8.PubMedCrossRef
60.
Zurück zum Zitat Gibbs JS, Lackner AA, Lang SM, Simon MA, Sehgal PK, Daniel MD, et al. Progression to AIDS. in the absence of a gene for vpr or vpx. J Virol. 1995;69:2378–83.PubMed Gibbs JS, Lackner AA, Lang SM, Simon MA, Sehgal PK, Daniel MD, et al. Progression to AIDS. in the absence of a gene for vpr or vpx. J Virol. 1995;69:2378–83.PubMed
61.
Zurück zum Zitat Fujita M, Otsuka M, Miyoshi M, Khamsri B, Nomaguchi M, Adachi A. Vpx is critical for reverse transcription of the human immunodeficiency virus type 2 genome in macrophages. J Virol. 2008;82:7752–6.PubMedCrossRef Fujita M, Otsuka M, Miyoshi M, Khamsri B, Nomaguchi M, Adachi A. Vpx is critical for reverse transcription of the human immunodeficiency virus type 2 genome in macrophages. J Virol. 2008;82:7752–6.PubMedCrossRef
62.
Zurück zum Zitat Goujon C, Riviere L, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, et al. SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology. 2007;4:2.PubMedCrossRef Goujon C, Riviere L, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, et al. SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology. 2007;4:2.PubMedCrossRef
63.
Zurück zum Zitat Srivastava S, Swanson SK, Manel N, Florens L, Washburn MP, Skowronski J. Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection. PLoS Pathog. 2008;4:e1000059.PubMedCrossRef Srivastava S, Swanson SK, Manel N, Florens L, Washburn MP, Skowronski J. Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection. PLoS Pathog. 2008;4:e1000059.PubMedCrossRef
64.
Zurück zum Zitat Lee J, Zhou P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell. 2007;26:775–80.PubMedCrossRef Lee J, Zhou P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell. 2007;26:775–80.PubMedCrossRef
65.
Zurück zum Zitat Bergamaschi A, Ayinde D, David A, Le Rouzic E, Morel M, Collin G, et al. The human immunodeficiency virus type 2 Vpx protein usurps the CUL4A-DDB1 DCAF1 ubiquitin ligase to overcome a postentry block in macrophage infection. J Virol. 2009;83:4854–60.PubMedCrossRef Bergamaschi A, Ayinde D, David A, Le Rouzic E, Morel M, Collin G, et al. The human immunodeficiency virus type 2 Vpx protein usurps the CUL4A-DDB1 DCAF1 ubiquitin ligase to overcome a postentry block in macrophage infection. J Virol. 2009;83:4854–60.PubMedCrossRef
66.
Zurück zum Zitat Xie Y, Varshavsky A. Physical association of ubiquitin ligases and the 26S proteasome. Proc Natl Acad Sci U S A. 2000;97:2497–502.PubMedCrossRef Xie Y, Varshavsky A. Physical association of ubiquitin ligases and the 26S proteasome. Proc Natl Acad Sci U S A. 2000;97:2497–502.PubMedCrossRef
67.
Zurück zum Zitat Laguette N, Benkirane M. How SAMHD1 changes our view of viral restriction. TrendsImmunol. 2012;33:26–33. Laguette N, Benkirane M. How SAMHD1 changes our view of viral restriction. TrendsImmunol. 2012;33:26–33.
68.
Zurück zum Zitat Schultz J, Ponting CP, Hofmann K, Bork P. SAM as a protein interaction domain involved in developmental regulation. Protein Sci. 1997;6:249–53.PubMedCrossRef Schultz J, Ponting CP, Hofmann K, Bork P. SAM as a protein interaction domain involved in developmental regulation. Protein Sci. 1997;6:249–53.PubMedCrossRef
69.
Zurück zum Zitat Aravind L, Koonin EV. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci. 1998;23:469–72.PubMedCrossRef Aravind L, Koonin EV. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci. 1998;23:469–72.PubMedCrossRef
70.
Zurück zum Zitat Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature. 2011;480:379–82.PubMedCrossRef Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature. 2011;480:379–82.PubMedCrossRef
71.
Zurück zum Zitat Hofmann H, Logue EC, Bloch N, Daddacha W, Polsky SB, Schultz ML, et al. The Vpx lentiviral accessory protein targets SAMHD1 for degradation in the nucleus. J Virol. 2012;86:12552–60. Hofmann H, Logue EC, Bloch N, Daddacha W, Polsky SB, Schultz ML, et al. The Vpx lentiviral accessory protein targets SAMHD1 for degradation in the nucleus. J Virol. 2012;86:12552–60.
72.
Zurück zum Zitat Brandariz-Nunez A, Valle-Casuso JC, White TE, Laguette N, Benkirane M, Brojatsch J, et al. Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac. Retrovirology. 2012;9:49.PubMedCrossRef Brandariz-Nunez A, Valle-Casuso JC, White TE, Laguette N, Benkirane M, Brojatsch J, et al. Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac. Retrovirology. 2012;9:49.PubMedCrossRef
73.
Zurück zum Zitat Humbert JM, Frecha C, Amirache Bouafia F, N'Guyen TH, Boni S, Cosset FL, et al. Measles virus glycoprotein-pseudotyped lentiviral vectors are highly superior to vesicular stomatitis virus G pseudotypes for genetic modification of monocyte-derived dendritic cells. J Virol. 2012;86:5192–203.PubMedCrossRef Humbert JM, Frecha C, Amirache Bouafia F, N'Guyen TH, Boni S, Cosset FL, et al. Measles virus glycoprotein-pseudotyped lentiviral vectors are highly superior to vesicular stomatitis virus G pseudotypes for genetic modification of monocyte-derived dendritic cells. J Virol. 2012;86:5192–203.PubMedCrossRef
74.
Zurück zum Zitat • Pace MJ, Graf EH, Agosto LM, Mexas AM, Male F, Brady T, et al. Directly Infected resting CD4+T cells can produce HIV gag without spreading infection in a model of HIV latency. PLoS Pathog. 2012;8:e1002818. Important observation that resting CD4 T cells may be infected at low levels but cannot produce virus to allow spread. This observation impacts how we view HIV substrate availability and how the virus is spread.PubMedCrossRef • Pace MJ, Graf EH, Agosto LM, Mexas AM, Male F, Brady T, et al. Directly Infected resting CD4+T cells can produce HIV gag without spreading infection in a model of HIV latency. PLoS Pathog. 2012;8:e1002818. Important observation that resting CD4 T cells may be infected at low levels but cannot produce virus to allow spread. This observation impacts how we view HIV substrate availability and how the virus is spread.PubMedCrossRef
75.
Zurück zum Zitat Nowak MA, Bangham CR. Population dynamics of immune responses to persistent viruses. Science. 1996;272:74–9.PubMedCrossRef Nowak MA, Bangham CR. Population dynamics of immune responses to persistent viruses. Science. 1996;272:74–9.PubMedCrossRef
76.
Zurück zum Zitat De Boer RJ, Perelson AS. Target cell limited and immune control models of HIV infection: a comparison. J Theor Biol. 1998;190:201–14.PubMedCrossRef De Boer RJ, Perelson AS. Target cell limited and immune control models of HIV infection: a comparison. J Theor Biol. 1998;190:201–14.PubMedCrossRef
77.
Zurück zum Zitat May RM, Anderson RM. Population biology of infectious diseases: Part II. Nature. 1979;280:455–61.PubMedCrossRef May RM, Anderson RM. Population biology of infectious diseases: Part II. Nature. 1979;280:455–61.PubMedCrossRef
78.
Zurück zum Zitat Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol. 2012;30:1–22.PubMedCrossRef Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol. 2012;30:1–22.PubMedCrossRef
79.
Zurück zum Zitat Miller MJ, Hejazi AS, Wei SH, Cahalan MD, Parker I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc Natl Acad Sci U S A. 2004;101:998–1003.PubMedCrossRef Miller MJ, Hejazi AS, Wei SH, Cahalan MD, Parker I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc Natl Acad Sci U S A. 2004;101:998–1003.PubMedCrossRef
80.
Zurück zum Zitat •• Aggarwal A, Iemma TL, Shih I, Newsome TP, McAllery S, Cunningham AL, et al. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog. 2012;8:e1002762. Discovery that true filopodia from cells of myeloid lineage can launch HIV virions as they bud from the plasma membrane.PubMedCrossRef •• Aggarwal A, Iemma TL, Shih I, Newsome TP, McAllery S, Cunningham AL, et al. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog. 2012;8:e1002762. Discovery that true filopodia from cells of myeloid lineage can launch HIV virions as they bud from the plasma membrane.PubMedCrossRef
81.
82.
Zurück zum Zitat Hu J, Miller CJ, O'Doherty U, Marx PA, Pope M. The dendritic cell-T cell milieu of the lymphoid tissue of the tonsil provides a locale in which SIV can reside and propagate at chronic stages of infection. AIDS Res Hum Retrovir. 1999;15:1305–14.PubMedCrossRef Hu J, Miller CJ, O'Doherty U, Marx PA, Pope M. The dendritic cell-T cell milieu of the lymphoid tissue of the tonsil provides a locale in which SIV can reside and propagate at chronic stages of infection. AIDS Res Hum Retrovir. 1999;15:1305–14.PubMedCrossRef
83.
Zurück zum Zitat Pope M, Betjes MG, Romani N, Hirmand H, Cameron PU, Hoffman L, et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell. 1994;78:389–98.PubMedCrossRef Pope M, Betjes MG, Romani N, Hirmand H, Cameron PU, Hoffman L, et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell. 1994;78:389–98.PubMedCrossRef
84.
Zurück zum Zitat Popov S, Chenine AL, Gruber A, Li PL, Ruprecht RM. Long-term productive human immunodeficiency virus infection of CD1a-sorted myeloid dendritic cells. J Virol. 2005;79:602–8.PubMedCrossRef Popov S, Chenine AL, Gruber A, Li PL, Ruprecht RM. Long-term productive human immunodeficiency virus infection of CD1a-sorted myeloid dendritic cells. J Virol. 2005;79:602–8.PubMedCrossRef
85.
Zurück zum Zitat Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999;5:512–7.PubMedCrossRef Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999;5:512–7.PubMedCrossRef
86.
Zurück zum Zitat Gendelman HE, Orenstein JM, Martin MA, Ferrua C, Mitra R, Phipps T, et al. Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes. J Exp Med. 1988;167:1428–41.PubMedCrossRef Gendelman HE, Orenstein JM, Martin MA, Ferrua C, Mitra R, Phipps T, et al. Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes. J Exp Med. 1988;167:1428–41.PubMedCrossRef
87.
Zurück zum Zitat Welsch S, Keppler OT, Habermann A, Allespach I, Krijnse-Locker J, Krausslich HG. HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog. 2007;3:e36.PubMedCrossRef Welsch S, Keppler OT, Habermann A, Allespach I, Krijnse-Locker J, Krausslich HG. HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog. 2007;3:e36.PubMedCrossRef
88.
Zurück zum Zitat Jouvenet N, Neil SJ, Bess C, Johnson MC, Virgen CA, Simon SM, et al. Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol. 2006;4:e435.PubMedCrossRef Jouvenet N, Neil SJ, Bess C, Johnson MC, Virgen CA, Simon SM, et al. Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol. 2006;4:e435.PubMedCrossRef
89.
Zurück zum Zitat Pelchen-Matthews A, Giese S, Mlcochova P, Turner J, Marsh M. beta2 integrin adhesion complexes maintain the integrity of HIV-1 assembly compartments in primary macrophages. Traffic. 2012;13:273–91.PubMedCrossRef Pelchen-Matthews A, Giese S, Mlcochova P, Turner J, Marsh M. beta2 integrin adhesion complexes maintain the integrity of HIV-1 assembly compartments in primary macrophages. Traffic. 2012;13:273–91.PubMedCrossRef
90.
Zurück zum Zitat Marsh M, Theusner K, Pelchen-Matthews A. HIV assembly and budding in macrophages. Biochem Soc Trans. 2009;37:185–9.PubMedCrossRef Marsh M, Theusner K, Pelchen-Matthews A. HIV assembly and budding in macrophages. Biochem Soc Trans. 2009;37:185–9.PubMedCrossRef
91.
Zurück zum Zitat Chu H, Wang JJ, Qi M, Yoon JJ, Wen X, Chen X, et al. The intracellular virus-containing compartments in primary human macrophages are largely inaccessible to antibodies and small molecules. PLoS One. 2012;7:e35297.PubMedCrossRef Chu H, Wang JJ, Qi M, Yoon JJ, Wen X, Chen X, et al. The intracellular virus-containing compartments in primary human macrophages are largely inaccessible to antibodies and small molecules. PLoS One. 2012;7:e35297.PubMedCrossRef
92.
Zurück zum Zitat Gousset K, Ablan SD, Coren LV, Ono A, Soheilian F, Nagashima K, et al. Real-time visualization of HIV-1 GAG trafficking in infected macrophages. PLoS Pathog. 2008;4:e1000015.PubMedCrossRef Gousset K, Ablan SD, Coren LV, Ono A, Soheilian F, Nagashima K, et al. Real-time visualization of HIV-1 GAG trafficking in infected macrophages. PLoS Pathog. 2008;4:e1000015.PubMedCrossRef
93.
Zurück zum Zitat Bourinbaiar AS, Phillips DM. Transmission of human immunodeficiency virus from monocytes to epithelia. J Acquir Immune Defic Syndr. 1991;4:56–63.PubMedCrossRef Bourinbaiar AS, Phillips DM. Transmission of human immunodeficiency virus from monocytes to epithelia. J Acquir Immune Defic Syndr. 1991;4:56–63.PubMedCrossRef
94.
Zurück zum Zitat Pearce-Pratt R, Malamud D, Phillips DM. Role of the cytoskeleton in cell-to-cell transmission of human immunodeficiency virus. J Virol. 1994;68:2898–905.PubMed Pearce-Pratt R, Malamud D, Phillips DM. Role of the cytoskeleton in cell-to-cell transmission of human immunodeficiency virus. J Virol. 1994;68:2898–905.PubMed
95.
Zurück zum Zitat Turville SG, Aravantinou M, Stossel H, Romani N, Robbiani M. Resolution of de novo HIV production and trafficking in immature dendritic cells. Nat Methods. 2008;5:75–85.PubMedCrossRef Turville SG, Aravantinou M, Stossel H, Romani N, Robbiani M. Resolution of de novo HIV production and trafficking in immature dendritic cells. Nat Methods. 2008;5:75–85.PubMedCrossRef
96.
Zurück zum Zitat Arhel N, Genovesio A, Kim KA, Miko S, Perret E, Olivo-Marin JC, et al. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat Methods. 2006;3:817–24.PubMedCrossRef Arhel N, Genovesio A, Kim KA, Miko S, Perret E, Olivo-Marin JC, et al. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat Methods. 2006;3:817–24.PubMedCrossRef
97.
Zurück zum Zitat Hubner W, Chen P, Del Portillo A, Liu Y, Gordon RE, Chen BK. Sequence of human immunodeficiency virus type 1 (HIV-1) Gag localization and oligomerization monitored with live confocal imaging of a replication-competent, fluorescently tagged HIV-1. J Virol. 2007;81:12596–607.PubMedCrossRef Hubner W, Chen P, Del Portillo A, Liu Y, Gordon RE, Chen BK. Sequence of human immunodeficiency virus type 1 (HIV-1) Gag localization and oligomerization monitored with live confocal imaging of a replication-competent, fluorescently tagged HIV-1. J Virol. 2007;81:12596–607.PubMedCrossRef
98.
Zurück zum Zitat Muller B, Daecke J, Fackler OT, Dittmar MT, Zentgraf H, Krausslich HG. Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative. J Virol. 2004;78:10803–13.PubMedCrossRef Muller B, Daecke J, Fackler OT, Dittmar MT, Zentgraf H, Krausslich HG. Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative. J Virol. 2004;78:10803–13.PubMedCrossRef
99.
Zurück zum Zitat Yang C, Czech L, Gerboth S, Kojima S, Scita G, Svitkina T. Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol. 2007;5:e317.PubMedCrossRef Yang C, Czech L, Gerboth S, Kojima S, Scita G, Svitkina T. Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol. 2007;5:e317.PubMedCrossRef
Metadaten
Titel
Revising the Role of Myeloid cells in HIV Pathogenesis
verfasst von
Anupriya Aggarwal
Samantha McAllery
Stuart G. Turville
Publikationsdatum
01.03.2013
Verlag
Current Science Inc.
Erschienen in
Current HIV/AIDS Reports / Ausgabe 1/2013
Print ISSN: 1548-3568
Elektronische ISSN: 1548-3576
DOI
https://doi.org/10.1007/s11904-012-0149-1

Weitere Artikel der Ausgabe 1/2013

Current HIV/AIDS Reports 1/2013 Zur Ausgabe

HIV Pathogenesis and Treatment (A Landay, Section Editor)

Immunity and Hepatitis C: A Review

HIV Pathogenesis and Treatment (A Landay, Section Editor)

Attacking the HIV Reservoir from the Immune and Viral Perspective

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Perioperative Checkpointhemmer-Therapie verbessert NSCLC-Prognose

28.05.2024 NSCLC Nachrichten

Eine perioperative Therapie mit Nivolumab reduziert das Risiko für Rezidive und Todesfälle bei operablem NSCLC im Vergleich zu einer alleinigen neoadjuvanten Chemotherapie um über 40%. Darauf deuten die Resultate der Phase-3-Studie CheckMate 77T.

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.