Skip to main content
Erschienen in: Inflammation Research 10-11/2022

06.08.2022 | Original Research article

RNF2 mediates pulmonary fibroblasts activation and proliferation by regulating mTOR and p16-CDK4-Rb1 signaling pathway

verfasst von: Linxin Pan, Ying Hu, Cheng Qian, Yan Yao, Shuxian Wang, Wanrong Shi, Tao Xu

Erschienen in: Inflammation Research | Ausgabe 10-11/2022

Einloggen, um Zugang zu erhalten

Abstract

Background

Pulmonary fibrosis (PF) is a chronic, progressive interstitial lung disease with unknown etiology, associated with increasing morbidity and pessimistic prognosis. Pulmonary fibroblasts (PFbs) are the key effector cells of PF, in which abnormal activation and proliferation is an important pathogenesis of PF. Ring finger protein 2 (RNF2), is identified as the catalytic subunit of poly-comb repressive complex 1, which is closely related to occurrence and development of lung cancer, but its function in PF has not been revealed. In this paper, we sought to identify the regulatory role of RNF2 in lung fibrogenesis and its underlying mechanisms.

Methods

The expression of RNF2 in lung fibrosis tissue (human and Bleomycin-induced mouse) and cell model (TGF-β1-induced HFL1 cells) was examined by immunoblotting analysis and immunofluorescence. Western blot, qRT-PCR were performed to evaluate the expression of pro-fibrogenic cytokines (including α-SMA, ECM and MMPs/ TIMPs) induced by TGF-β1 in HFL1 cells. Cell proliferation, cycle progression and apoptosis were examined by fow cytometric. Molecular interactions were tested by Co-IP assays.

Results

RNF2 expression was elevated in PF tissues compared to normal adjacent tissues and in PFbs (HFL1) induced by TGF-β1. Furthermore, knockdown of RNF2 could evidently inhibit the abnormal expression of pro-fibrogenic cytokines (including α-SMA, ECM and MMPs/TIMPs) induced by TGF-β1 in HFL1 cells. Functionally, RNF2 silencing could significantly suppress TGF-β1-induced anomalous proliferation, cell cycle progression, apoptosis and autophagy in HFL1 cells. Mechanistically, RNF2 deficiency could effectively inhibit the abnormal activation of mTOR signaling pathway in TGF-β1-induced HFL1 cells, and mTOR pathway had feedback regulation on the expression of RNF2. Further studies RNF2 could regulate the phosphorylation level of RB1 through interacting with p16 to destroy the binding of p16 and CDK4 competitively. Simultaneously, overexpression of RNF2 could show the opposite results.

Conclusions

These results indicated that RNF2 is a potent pro-fibrogenic molecule for PFbs activation and proliferation through mTOR and p16-CDK4-Rb signaling pathways, and RNF2 inhibition will be a potential therapeutic avenue for treating PF.
Literatur
1.
2.
Zurück zum Zitat Hutchinson J, Fogarty A, Hubbard R, et al. Global incidence and mortality of idiopathic PF: a systematic review. Eur Respir J. 2015;46(3):795–806.CrossRefPubMed Hutchinson J, Fogarty A, Hubbard R, et al. Global incidence and mortality of idiopathic PF: a systematic review. Eur Respir J. 2015;46(3):795–806.CrossRefPubMed
3.
4.
Zurück zum Zitat Bisserier M, Milara J, Abdeldjebbar Y, et al. AAV1.SERCA2a Gene Therapy Reverses PF by Blocking the STAT3/FOXM1 Pathway and Promoting the SNON/SKI Axis. Mol Ther. 2020;28(2):394–410.CrossRefPubMed Bisserier M, Milara J, Abdeldjebbar Y, et al. AAV1.SERCA2a Gene Therapy Reverses PF by Blocking the STAT3/FOXM1 Pathway and Promoting the SNON/SKI Axis. Mol Ther. 2020;28(2):394–410.CrossRefPubMed
5.
Zurück zum Zitat Ruigrok MJR, Frijlink HW, Melgert BN, et al. Gene therapy strategies for idiopathic PF: recent advances, current challenges, and future directions. Mol Ther Methods Clin Dev. 2021;20:483–96.CrossRefPubMedPubMedCentral Ruigrok MJR, Frijlink HW, Melgert BN, et al. Gene therapy strategies for idiopathic PF: recent advances, current challenges, and future directions. Mol Ther Methods Clin Dev. 2021;20:483–96.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Wu B, Tang L, Kapoor M. Fibroblasts and their responses to chronic injury in PF. Semin Arthritis Rheum. 2021;51(1):310–7.CrossRefPubMed Wu B, Tang L, Kapoor M. Fibroblasts and their responses to chronic injury in PF. Semin Arthritis Rheum. 2021;51(1):310–7.CrossRefPubMed
9.
Zurück zum Zitat Lee SJ, Choi D, Rhim H, et al. E3 ubiquitin ligase RNF2 interacts with the S6’ proteasomal ATPase subunit and increases the ATP hydrolysis activity of S6’. Biochem J. 2005;389(Pt 2):457–63.CrossRefPubMedPubMedCentral Lee SJ, Choi D, Rhim H, et al. E3 ubiquitin ligase RNF2 interacts with the S6’ proteasomal ATPase subunit and increases the ATP hydrolysis activity of S6’. Biochem J. 2005;389(Pt 2):457–63.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Wei M, Jiao D, Han D, et al. Knockdown of RNF2 induces cell cycle arrest and apoptosis in prostate cancer cells through the upregulation of TXNIP. Oncotarget. 2017;8(3):5323–38.CrossRefPubMed Wei M, Jiao D, Han D, et al. Knockdown of RNF2 induces cell cycle arrest and apoptosis in prostate cancer cells through the upregulation of TXNIP. Oncotarget. 2017;8(3):5323–38.CrossRefPubMed
12.
Zurück zum Zitat Yan Q, Chen BJ, Hu S, et al. Emerging role of RNF2 in cancer: from bench to bedside. J Cell Physiol. 2021;236(8):5453–65.CrossRefPubMed Yan Q, Chen BJ, Hu S, et al. Emerging role of RNF2 in cancer: from bench to bedside. J Cell Physiol. 2021;236(8):5453–65.CrossRefPubMed
13.
Zurück zum Zitat Choi D, Lee SJ, Hong S, et al. Prohibitin interacts with RNF2 and regulates E2F1 function via dual pathways. Oncogene. 2008;27(12):1716–25.CrossRefPubMed Choi D, Lee SJ, Hong S, et al. Prohibitin interacts with RNF2 and regulates E2F1 function via dual pathways. Oncogene. 2008;27(12):1716–25.CrossRefPubMed
14.
Zurück zum Zitat Yang J, Yu F, Guan J, et al. Knockdown of RNF2 enhances the radiosensitivity of squamous cell carcinoma in lung. Biochem Cell Biol. 2019;97(5):589–99.CrossRefPubMed Yang J, Yu F, Guan J, et al. Knockdown of RNF2 enhances the radiosensitivity of squamous cell carcinoma in lung. Biochem Cell Biol. 2019;97(5):589–99.CrossRefPubMed
15.
Zurück zum Zitat Carpagnano GE, Lacedonia D, Soccio P, et al. How strong is the association between IPF and lung cancer? An answer from airway’s DNA. Med Oncol. 2016;33(11):119.CrossRefPubMed Carpagnano GE, Lacedonia D, Soccio P, et al. How strong is the association between IPF and lung cancer? An answer from airway’s DNA. Med Oncol. 2016;33(11):119.CrossRefPubMed
16.
Zurück zum Zitat Tzouvelekis A, Gomatou G, Bouros E, et al. Common pathogenic mechanisms between idiopathic pf and lung cancer. Chest. 2019;156(2):383–91.CrossRefPubMed Tzouvelekis A, Gomatou G, Bouros E, et al. Common pathogenic mechanisms between idiopathic pf and lung cancer. Chest. 2019;156(2):383–91.CrossRefPubMed
17.
18.
Zurück zum Zitat Han Q, Lin L, Zhao B, et al. Inhibition of mTOR ameliorates bleomycin-induced PF by regulating epithelial-mesenchymal transition. Biochem Biophys Res Commun. 2018;500(4):839–45.CrossRefPubMed Han Q, Lin L, Zhao B, et al. Inhibition of mTOR ameliorates bleomycin-induced PF by regulating epithelial-mesenchymal transition. Biochem Biophys Res Commun. 2018;500(4):839–45.CrossRefPubMed
19.
Zurück zum Zitat Wong K, Di Cristofano F, Ranieri M, et al. PI3K/mTOR inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer. Endocr Relat Cancer. 2019;26(4):425–36.CrossRefPubMedPubMedCentral Wong K, Di Cristofano F, Ranieri M, et al. PI3K/mTOR inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer. Endocr Relat Cancer. 2019;26(4):425–36.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Saito A, Horie M, Micke P, et al. The Role of TGF-β signaling in lung cancer associated with idiopathic PF. Int J Mol Sci. 2018;19(11):3611.CrossRefPubMedCentral Saito A, Horie M, Micke P, et al. The Role of TGF-β signaling in lung cancer associated with idiopathic PF. Int J Mol Sci. 2018;19(11):3611.CrossRefPubMedCentral
21.
Zurück zum Zitat Zhang Y, Jiao H, Wu Y, et al. P120-catenin regulates PF and TGF-β induced lung fibroblast differentiation. Life Sci. 2019;230:35–44.CrossRefPubMed Zhang Y, Jiao H, Wu Y, et al. P120-catenin regulates PF and TGF-β induced lung fibroblast differentiation. Life Sci. 2019;230:35–44.CrossRefPubMed
22.
Zurück zum Zitat Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27.CrossRefPubMed Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27.CrossRefPubMed
23.
Zurück zum Zitat Hansen NU, Genovese F, Leeming DJ, et al. The importance of extracellular matrix for cell function and in vivo likeness. Exp Mol Pathol. 2015;98(2):286–94.CrossRefPubMed Hansen NU, Genovese F, Leeming DJ, et al. The importance of extracellular matrix for cell function and in vivo likeness. Exp Mol Pathol. 2015;98(2):286–94.CrossRefPubMed
24.
Zurück zum Zitat Upagupta C, Shimbori C, Alsilmi R, et al. Matrix abnormalities in PF. Eur Respir Rev. 2018;27(148): 180033.CrossRefPubMed Upagupta C, Shimbori C, Alsilmi R, et al. Matrix abnormalities in PF. Eur Respir Rev. 2018;27(148): 180033.CrossRefPubMed
25.
Zurück zum Zitat Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24):9739.CrossRefPubMedCentral Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24):9739.CrossRefPubMedCentral
26.
Zurück zum Zitat Wu L, Luo Z, Zheng J, et al. IL-33 can promote the process of pf by inducing the imbalance between MMP-9 and TIMP-1. Inflammation. 2018;41(3):878–85.CrossRefPubMed Wu L, Luo Z, Zheng J, et al. IL-33 can promote the process of pf by inducing the imbalance between MMP-9 and TIMP-1. Inflammation. 2018;41(3):878–85.CrossRefPubMed
27.
Zurück zum Zitat Huang C, Xiao X, Yang Y, et al. MicroRNA-101 attenuates PF by inhibiting fibroblast proliferation and activation. J Biol Chem. 2017;292(40):16420–39.CrossRefPubMedPubMedCentral Huang C, Xiao X, Yang Y, et al. MicroRNA-101 attenuates PF by inhibiting fibroblast proliferation and activation. J Biol Chem. 2017;292(40):16420–39.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Hanson KM, Hernady EB, Reed CK, et al. Apoptosis resistance in fibroblasts precedes progressive scarring in pf and is partially mediated by toll-like receptor 4 activation. Toxicol Sci. 2019;170(2):489–98.CrossRefPubMedPubMedCentral Hanson KM, Hernady EB, Reed CK, et al. Apoptosis resistance in fibroblasts precedes progressive scarring in pf and is partially mediated by toll-like receptor 4 activation. Toxicol Sci. 2019;170(2):489–98.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Yu JS, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143(17):3050–60.CrossRefPubMed Yu JS, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143(17):3050–60.CrossRefPubMed
32.
Zurück zum Zitat Huang CK, Iwagami Y, Zou J, et al. Aspartate beta-hydroxylase promotes cholangiocarcinoma progression by modulating RB1 phosphorylation. Cancer Lett. 2018;429:1–10.CrossRefPubMedPubMedCentral Huang CK, Iwagami Y, Zou J, et al. Aspartate beta-hydroxylase promotes cholangiocarcinoma progression by modulating RB1 phosphorylation. Cancer Lett. 2018;429:1–10.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Cho HS, Hayami S, Toyokawa G, et al. RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia. 2012;14(6):476–86.CrossRefPubMedPubMedCentral Cho HS, Hayami S, Toyokawa G, et al. RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia. 2012;14(6):476–86.CrossRefPubMedPubMedCentral
Metadaten
Titel
RNF2 mediates pulmonary fibroblasts activation and proliferation by regulating mTOR and p16-CDK4-Rb1 signaling pathway
verfasst von
Linxin Pan
Ying Hu
Cheng Qian
Yan Yao
Shuxian Wang
Wanrong Shi
Tao Xu
Publikationsdatum
06.08.2022
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 10-11/2022
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-022-01617-8

Weitere Artikel der Ausgabe 10-11/2022

Inflammation Research 10-11/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.