Skip to main content
main-content

01.11.2011 | Basic Science | Ausgabe 11/2011

Graefe's Archive for Clinical and Experimental Ophthalmology 11/2011

Role of benzalkonium chloride in DNA strand breaks in human corneal epithelial cells

Zeitschrift:
Graefe's Archive for Clinical and Experimental Ophthalmology > Ausgabe 11/2011
Autoren:
Juan Ye, Han Wu, Huina Zhang, Yihua Wu, Jun Yang, Xiuming Jin, Xin Shi
Wichtige Hinweise
The authors have full control of all primary data, and all the authors agree to allow Graefe's Archive for Clinical and Experimental Ophthalmology to review our data upon request.

Abstract

Purpose

To investigate the toxic effects of benzalkonium chloride (BAC), a preservative commonly used in ophthalmic preparations, on DNA single- and double-strand breaks in immortalized human corneal epithelial cells (HCEs).

Methods

HCEs were treated with BAC in concentrations ranging from 0.00005% to 0.001% for 30 min. Cells were examined immediately after BAC exposure and after 24-h recovery. Alkaline comet assay was used to detect DNA single-strand breaks (SSBs). Immunofluorescence microscope detection of the phosphorylated form of histone variant H2AX (γH2AX) foci indicated DNA double-strand breaks (DSBs). Cell viability was measured by the MTT test.

Results

A significant increase of SSBs, detected by alkaline comet assay, was observed in a dose-dependent manner with BAC exposure in HCEs at concentrations of 0.00005% and higher. Such BAC treatment also exhibited a dose-dependent increase in DSBs, evaluated by number of γH2AX foci. In addition, a significant change in the relative cell survival rate of HCEs was observed after exposure to 0.001% BAC for 30 min. Although the toxic effects of BAC could be partly repaired after 24 h of cell recovery, SSBs and DSBs in HCEs were still present after BAC removal.

Conclusions

The results demonstrated that exposure to BAC in HCEs, even at low concentrations, could induce DNA strand breaks, which were present after BAC removal. Cell survival analysis indicated that BAC-induced DNA damage was correlated with the cytotoxic effects.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2011

Graefe's Archive for Clinical and Experimental Ophthalmology 11/2011 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde