Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2014

01.12.2014

Role of MTA2 in human cancer

verfasst von: Kyle R. Covington, Suzanne A. W. Fuqua

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

Metastasis is the ultimate cause of death for most cancer patients. While many mechanisms have been delineated for regulation of growth and tumor initiation of the primary tumor, very little is known about the process of metastasis. Metastasis requires dynamic alteration of cellular processes in order for cells to disseminate from the primary tumor to distant sites. These alterations often involve dramatic changes in the regulation of cytoskeletal and cell-environment interactions. Furthermore, controlled refinement of these interactions requires feedback to regulatory networks in the nucleus. MTA2 is a member of the metastasis tumor-associated family of transcriptional regulators and is a central component of the nucleosome remodeling and histone deacetylation complex. MTA2 acts as a central hub for cytoskeletal organization and transcription and provides a link between nuclear and cytoskeletal organization. We will focus on MTA2 in this chapter, especially its role in breast cancer metastasis.
Literatur
2.
Zurück zum Zitat Dephoure, N., Zhou, C., Villén, J., Beausoleil, S. A., Bakalarski, C. E., Elledge, S. J., & Gygi, S. P. (2008). A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10762–10767. doi:10.1073/pnas.0805139105.PubMedCentralPubMedCrossRef Dephoure, N., Zhou, C., Villén, J., Beausoleil, S. A., Bakalarski, C. E., Elledge, S. J., & Gygi, S. P. (2008). A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10762–10767. doi:10.​1073/​pnas.​0805139105.PubMedCentralPubMedCrossRef
3.
Zurück zum Zitat Mayya, V., Lundgren, D. H., Hwang, S.-I., Rezaul, K., Wu, L., Eng, J. K., & Han, D. K. (2009). Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Science Signaling, 2(84), ra46. doi:10.1126/scisignal.2000007.PubMedCrossRef Mayya, V., Lundgren, D. H., Hwang, S.-I., Rezaul, K., Wu, L., Eng, J. K., & Han, D. K. (2009). Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Science Signaling, 2(84), ra46. doi:10.​1126/​scisignal.​2000007.PubMedCrossRef
4.
Zurück zum Zitat Olsen, J. V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M. L., Jensen, L. J., & Mann, M. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Science Signaling, 3(104), ra3. doi:10.1126/scisignal.2000475.PubMedCrossRef Olsen, J. V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M. L., Jensen, L. J., & Mann, M. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Science Signaling, 3(104), ra3. doi:10.​1126/​scisignal.​2000475.PubMedCrossRef
5.
Zurück zum Zitat Rigbolt, K. T. G., Prokhorova, T. A., Akimov, V., Henningsen, J., Johansen, P. T., Kratchmarova, I., & Blagoev, B. (2011). System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Science Signaling, 4(164), rs3. doi:10.1126/scisignal.2001570.PubMedCrossRef Rigbolt, K. T. G., Prokhorova, T. A., Akimov, V., Henningsen, J., Johansen, P. T., Kratchmarova, I., & Blagoev, B. (2011). System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Science Signaling, 4(164), rs3. doi:10.​1126/​scisignal.​2001570.PubMedCrossRef
6.
Zurück zum Zitat Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., & Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science (New York, N.Y.), 325(5942), 834–840. doi:10.1126/science.1175371.CrossRef Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., & Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science (New York, N.Y.), 325(5942), 834–840. doi:10.​1126/​science.​1175371.CrossRef
7.
Zurück zum Zitat Callebaut, I., Courvalin, J. C., & Mornon, J. P. (1999). The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Letters, 446(1), 189–193.PubMedCrossRef Callebaut, I., Courvalin, J. C., & Mornon, J. P. (1999). The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Letters, 446(1), 189–193.PubMedCrossRef
8.
Zurück zum Zitat Boyer, L. A., Latek, R. R., & Peterson, C. L. (2004). The SANT domain: a unique histone-tail-binding module? Nature Reviews. Molecular Cell Biology, 5(2), 158–163. doi:10.1038/nrm1314.PubMedCrossRef Boyer, L. A., Latek, R. R., & Peterson, C. L. (2004). The SANT domain: a unique histone-tail-binding module? Nature Reviews. Molecular Cell Biology, 5(2), 158–163. doi:10.​1038/​nrm1314.PubMedCrossRef
9.
Zurück zum Zitat Aasland, R., Stewart, A. F., & Gibson, T. (1996). The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends in Biochemical Sciences, 21(3), 87–88.PubMed Aasland, R., Stewart, A. F., & Gibson, T. (1996). The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends in Biochemical Sciences, 21(3), 87–88.PubMed
10.
Zurück zum Zitat Solari, F., Bateman, A., & Ahringer, J. (1999). The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development (Cambridge, England), 126(11), 2483–2494. Solari, F., Bateman, A., & Ahringer, J. (1999). The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development (Cambridge, England), 126(11), 2483–2494.
11.
12.
Zurück zum Zitat Cui, Y., Niu, A., Pestell, R., Kumar, R., Curran, E. M., Liu, Y., & Fuqua, S. A. W. (2006). Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. Molecular Endocrinology, 20(9), 2020–2035. doi:10.1210/me.2005-0063.PubMedCrossRef Cui, Y., Niu, A., Pestell, R., Kumar, R., Curran, E. M., Liu, Y., & Fuqua, S. A. W. (2006). Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. Molecular Endocrinology, 20(9), 2020–2035. doi:10.​1210/​me.​2005-0063.PubMedCrossRef
13.
Zurück zum Zitat Kumar, R., Wang, R.-A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminar in Oncology, 30(5 Suppl 16), 30–37.CrossRef Kumar, R., Wang, R.-A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminar in Oncology, 30(5 Suppl 16), 30–37.CrossRef
16.
Zurück zum Zitat Moon, H.-E., Cheon, H., Chun, K.-H., Lee, S. K., Kim, Y.-S., Jung, B.-K., & Lee, M.-S. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncology Reports, 16(4), 929–935.PubMed Moon, H.-E., Cheon, H., Chun, K.-H., Lee, S. K., Kim, Y.-S., Jung, B.-K., & Lee, M.-S. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncology Reports, 16(4), 929–935.PubMed
17.
18.
Zurück zum Zitat Barone, I., Brusco, L., Gu, G., Selever, J., Beyer, A., Covington, K. R., & Fuqua, S. A. W. (2011). Loss of Rho GDIα and resistance to tamoxifen via effects on estrogen receptor α. Journal of the National Cancer Institute, 103(7), 538–552. doi:10.1093/jnci/djr058.PubMedCentralPubMedCrossRef Barone, I., Brusco, L., Gu, G., Selever, J., Beyer, A., Covington, K. R., & Fuqua, S. A. W. (2011). Loss of Rho GDIα and resistance to tamoxifen via effects on estrogen receptor α. Journal of the National Cancer Institute, 103(7), 538–552. doi:10.​1093/​jnci/​djr058.PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Covington, K. R., Brusco, L., Barone, I., Tsimelzon, A., Selever, J., Corona-Rodriguez, A., & Fuqua, S. A. W. (2013). Metastasis tumor-associated protein 2 enhances metastatic behavior and is associated with poor outcomes in estrogen receptor-negative breast cancer. Breast Cancer Research and Treatment. doi:10.1007/s10549-013-2709-5.PubMed Covington, K. R., Brusco, L., Barone, I., Tsimelzon, A., Selever, J., Corona-Rodriguez, A., & Fuqua, S. A. W. (2013). Metastasis tumor-associated protein 2 enhances metastatic behavior and is associated with poor outcomes in estrogen receptor-negative breast cancer. Breast Cancer Research and Treatment. doi:10.​1007/​s10549-013-2709-5.PubMed
20.
Zurück zum Zitat Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 113(2), 207–219.PubMedCrossRef Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 113(2), 207–219.PubMedCrossRef
21.
Zurück zum Zitat Fujita, N., Kajita, M., Taysavang, P., & Wade, P. A. (2004). Hormonal regulation of metastasis-associated protein 3 transcription in breast cancer cells. Molecular Endocrinology, 18(12), 2937–2949. doi:10.1210/me.2004-0258.PubMedCrossRef Fujita, N., Kajita, M., Taysavang, P., & Wade, P. A. (2004). Hormonal regulation of metastasis-associated protein 3 transcription in breast cancer cells. Molecular Endocrinology, 18(12), 2937–2949. doi:10.​1210/​me.​2004-0258.PubMedCrossRef
22.
Zurück zum Zitat Zhang, H., Stephens, L. C., & Kumar, R. (2006). Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clinical Cancer Research, 12(5), 1479–1486. doi:10.1158/1078-0432.CCR-05-1519.PubMedCrossRef Zhang, H., Stephens, L. C., & Kumar, R. (2006). Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clinical Cancer Research, 12(5), 1479–1486. doi:10.​1158/​1078-0432.​CCR-05-1519.PubMedCrossRef
23.
Zurück zum Zitat Fidler, I. J. (1990). Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Research, 50(19), 6130–6138.PubMed Fidler, I. J. (1990). Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Research, 50(19), 6130–6138.PubMed
24.
Zurück zum Zitat Psaila, B., Kaplan, R. N., Port, E. R., & Lyden, D. (2006). Priming the “soil” for breast cancer metastasis: the pre-metastatic niche. Breast Disease, 26, 65–74.PubMed Psaila, B., Kaplan, R. N., Port, E. R., & Lyden, D. (2006). Priming the “soil” for breast cancer metastasis: the pre-metastatic niche. Breast Disease, 26, 65–74.PubMed
26.
Zurück zum Zitat Fidler, I. J. (1970). Metastasis: guantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2’-deoxyuridine. Journal of the National Cancer Institute, 45(4), 773–782.PubMed Fidler, I. J. (1970). Metastasis: guantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2’-deoxyuridine. Journal of the National Cancer Institute, 45(4), 773–782.PubMed
27.
Zurück zum Zitat Fidler, I. J., & Kripke, M. L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science, 197(4306), 893–895.PubMedCrossRef Fidler, I. J., & Kripke, M. L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science, 197(4306), 893–895.PubMedCrossRef
28.
Zurück zum Zitat Buyse, M., Loi, S., Veer, L., van’t Viale, G., Delorenzi, M., Glas, A. M., & Consortium, T. R. A. N. S. B. I. G. (2006). Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. Journal of the National Cancer Institute, 98(17), 1183–1192.PubMedCrossRef Buyse, M., Loi, S., Veer, L., van’t Viale, G., Delorenzi, M., Glas, A. M., & Consortium, T. R. A. N. S. B. I. G. (2006). Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. Journal of the National Cancer Institute, 98(17), 1183–1192.PubMedCrossRef
29.
Zurück zum Zitat Sabatier, R., Finetti, P., Cervera, N., Lambaudie, E., Esterni, B., Mamessier, E., & Bertucci, F. (2011). A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Research and Treatment, 126(2), 407–420. doi:10.1007/s10549-010-0897-9.PubMedCrossRef Sabatier, R., Finetti, P., Cervera, N., Lambaudie, E., Esterni, B., Mamessier, E., & Bertucci, F. (2011). A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Research and Treatment, 126(2), 407–420. doi:10.​1007/​s10549-010-0897-9.PubMedCrossRef
30.
Zurück zum Zitat Blick, T., Hugo, H., Widodo, E., Waltham, M., Pinto, C., Mani, S. A., & Thompson, E. W. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15(2), 235–252. doi:10.1007/s10911-010-9175-z.PubMedCrossRef Blick, T., Hugo, H., Widodo, E., Waltham, M., Pinto, C., Mani, S. A., & Thompson, E. W. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15(2), 235–252. doi:10.​1007/​s10911-010-9175-z.PubMedCrossRef
31.
Zurück zum Zitat Alves, C. C., Carneiro, F., Hoefler, H., & Becker, K.-F. (2009). Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Frontiers in Bioscience, 14, 3035–3050.CrossRef Alves, C. C., Carneiro, F., Hoefler, H., & Becker, K.-F. (2009). Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Frontiers in Bioscience, 14, 3035–3050.CrossRef
33.
Zurück zum Zitat Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., & Friedl, P. (2003). Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. The Journal of Cell Biology, 160(2), 267–277. doi:10.1083/jcb.200209006.PubMedCentralPubMedCrossRef Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., & Friedl, P. (2003). Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. The Journal of Cell Biology, 160(2), 267–277. doi:10.​1083/​jcb.​200209006.PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Carr, H. S., Zuo, Y., Oh, W., & Frost, J. A. (2013). Regulation of focal adhesion kinase activation, breast cancer cell motility, and amoeboid invasion by the RhoA guanine nucleotide exchange factor Net1. Molecular and Cellular Biology, 33(14), 2773–2786. doi:10.1128/MCB.00175-13.PubMedCentralPubMedCrossRef Carr, H. S., Zuo, Y., Oh, W., & Frost, J. A. (2013). Regulation of focal adhesion kinase activation, breast cancer cell motility, and amoeboid invasion by the RhoA guanine nucleotide exchange factor Net1. Molecular and Cellular Biology, 33(14), 2773–2786. doi:10.​1128/​MCB.​00175-13.PubMedCentralPubMedCrossRef
38.
39.
40.
Zurück zum Zitat Schackmann, R. C. J., van Amersfoort, M., Haarhuis, J. H. I., Vlug, E. J., Halim, V. A., Roodhart, J. M. L., & Derksen, P. W. B. (2011). Cytosolic p120-catenin regulates growth of metastatic lobular carcinoma through Rock1-mediated anoikis resistance. Journal of Clinical Investigation, 121(8), 3176–3188. doi:10.1172/JCI41695.PubMedCentralPubMedCrossRef Schackmann, R. C. J., van Amersfoort, M., Haarhuis, J. H. I., Vlug, E. J., Halim, V. A., Roodhart, J. M. L., & Derksen, P. W. B. (2011). Cytosolic p120-catenin regulates growth of metastatic lobular carcinoma through Rock1-mediated anoikis resistance. Journal of Clinical Investigation, 121(8), 3176–3188. doi:10.​1172/​JCI41695.PubMedCentralPubMedCrossRef
42.
Zurück zum Zitat (EBCTCG), E. B. C. T. C. G, Davies, C., Godwin, J., Gray, R., Clarke, M., Cutter, D., & Peto, R. (2011). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet, 378(9793), 771–784. doi:10.1016/S0140-6736(11)60993-8.PubMedCrossRef (EBCTCG), E. B. C. T. C. G, Davies, C., Godwin, J., Gray, R., Clarke, M., Cutter, D., & Peto, R. (2011). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet, 378(9793), 771–784. doi:10.​1016/​S0140-6736(11)60993-8.PubMedCrossRef
44.
Zurück zum Zitat Heyn, C., Ronald, J. A., Ramadan, S. S., Snir, J. A., Barry, A. M., MacKenzie, L. T., & Foster, P. J. (2006). In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magnetic Resonance in Medicine, 56(5), 1001–1010. doi:10.1002/mrm.21029.PubMedCrossRef Heyn, C., Ronald, J. A., Ramadan, S. S., Snir, J. A., Barry, A. M., MacKenzie, L. T., & Foster, P. J. (2006). In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magnetic Resonance in Medicine, 56(5), 1001–1010. doi:10.​1002/​mrm.​21029.PubMedCrossRef
45.
Zurück zum Zitat Riethdorf, S., & Pantel, K. (2008). Disseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: current state of detection and characterization. Pathobiology, 75(2), 140–148. doi:10.1159/000123852.PubMedCrossRef Riethdorf, S., & Pantel, K. (2008). Disseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: current state of detection and characterization. Pathobiology, 75(2), 140–148. doi:10.​1159/​000123852.PubMedCrossRef
46.
Zurück zum Zitat Kedrin, D., van Rheenen, J., Hernandez, L., Condeelis, J., & Segall, J. E. (2007). Cell motility and cytoskeletal regulation in invasion and metastasis. Journal of Mammary Gland Biology and Neoplasia, 12(2–3), 143–152. doi:10.1007/s10911-007-9046-4.PubMedCrossRef Kedrin, D., van Rheenen, J., Hernandez, L., Condeelis, J., & Segall, J. E. (2007). Cell motility and cytoskeletal regulation in invasion and metastasis. Journal of Mammary Gland Biology and Neoplasia, 12(2–3), 143–152. doi:10.​1007/​s10911-007-9046-4.PubMedCrossRef
49.
Zurück zum Zitat Amano, M., Nakayama, M., & Kaibuchi, K. (2010). Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken), 67(9), 545–554. doi:10.1002/cm.20472.CrossRef Amano, M., Nakayama, M., & Kaibuchi, K. (2010). Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken), 67(9), 545–554. doi:10.​1002/​cm.​20472.CrossRef
50.
Zurück zum Zitat Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., & Weinberg, R. A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117(7), 927–939.PubMedCrossRef Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., & Weinberg, R. A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117(7), 927–939.PubMedCrossRef
52.
Zurück zum Zitat Vansteenkiste, J., Cutsem, E. V., Dumez, H., Chen, C., Ricker, J. L., Randolph, S. S., & Schöffski, P. (2008). Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Investigational New Drugs, 26(5), 483–488. doi:10.1007/s10637-008-9131-6.PubMedCrossRef Vansteenkiste, J., Cutsem, E. V., Dumez, H., Chen, C., Ricker, J. L., Randolph, S. S., & Schöffski, P. (2008). Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Investigational New Drugs, 26(5), 483–488. doi:10.​1007/​s10637-008-9131-6.PubMedCrossRef
53.
54.
Zurück zum Zitat Liu, G. J., Wang, Z. J., Wang, Y. F., Xu, L. L., Wang, X. L., Liu, Y., & Zeng, Y. J. (2012). Systematic assessment and meta-analysis of the efficacy and safety of fasudil in the treatment of cerebral vasospasm in patients with subarachnoid hemorrhage. European Journal of Clinical Pharmacology, 68(2), 131–139. doi:10.1007/s00228-011-1100-x.PubMedCrossRef Liu, G. J., Wang, Z. J., Wang, Y. F., Xu, L. L., Wang, X. L., Liu, Y., & Zeng, Y. J. (2012). Systematic assessment and meta-analysis of the efficacy and safety of fasudil in the treatment of cerebral vasospasm in patients with subarachnoid hemorrhage. European Journal of Clinical Pharmacology, 68(2), 131–139. doi:10.​1007/​s00228-011-1100-x.PubMedCrossRef
55.
Zurück zum Zitat Ying, H., Biroc, S. L., Li, W.-W., Alicke, B., Xuan, J.-A., Pagila, R., & Dinter, H. (2006). The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Molecular Cancer Therapeutics, 5(9), 2158–2164. doi:10.1158/1535-7163.MCT-05-0440.PubMedCrossRef Ying, H., Biroc, S. L., Li, W.-W., Alicke, B., Xuan, J.-A., Pagila, R., & Dinter, H. (2006). The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Molecular Cancer Therapeutics, 5(9), 2158–2164. doi:10.​1158/​1535-7163.​MCT-05-0440.PubMedCrossRef
Metadaten
Titel
Role of MTA2 in human cancer
verfasst von
Kyle R. Covington
Suzanne A. W. Fuqua
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2014
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9518-0

Weitere Artikel der Ausgabe 4/2014

Cancer and Metastasis Reviews 4/2014 Zur Ausgabe

EditorialNotes

Preface

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.