Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2018

12.12.2018

Roles of the mitochondrial genetics in cancer metastasis: not to be ignored any longer

verfasst von: Thomas C. Beadnell, Adam D. Scheid, Carolyn J. Vivian, Danny R. Welch

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Mitochondrial DNA (mtDNA) encodes for only a fraction of the proteins that are encoded within the nucleus, and therefore has typically been regarded as a lesser player in cancer biology and metastasis. Accumulating evidence, however, supports an increased role for mtDNA impacting tumor progression and metastatic susceptibility. Unfortunately, due to this delay, there is a dearth of data defining the relative contributions of specific mtDNA polymorphisms (SNP), which leads to an inability to effectively use these polymorphisms to guide and enhance therapeutic strategies and diagnosis. In addition, evidence also suggests that differences in mtDNA impact not only the cancer cells but also the cells within the surrounding tumor microenvironment, suggesting a broad encompassing role for mtDNA polymorphisms in regulating the disease progression. mtDNA may have profound implications in the regulation of cancer biology and metastasis. However, there are still great lengths to go to understand fully its contributions. Thus, herein, we discuss the recent advances in our understanding of mtDNA in cancer and metastasis, providing a framework for future functional validation and discovery.
Literatur
2.
Zurück zum Zitat Kivisild, T., Shen, P., Wall, D. P., Do, B., Sung, R., Davis, K., et al. (2006). The role of selection in the evolution of human mitochondrial genomes. Genetics, 172(1), 373–387.CrossRefPubMedPubMedCentral Kivisild, T., Shen, P., Wall, D. P., Do, B., Sung, R., Davis, K., et al. (2006). The role of selection in the evolution of human mitochondrial genomes. Genetics, 172(1), 373–387.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Wallace, D. C., & Chalkia, D. (2013). Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harbor Perspectives in Biology, 5(11), a021220.CrossRefPubMedPubMedCentral Wallace, D. C., & Chalkia, D. (2013). Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harbor Perspectives in Biology, 5(11), a021220.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Mishmar, D., Ruiz-Pesini, E., Golik, P., Macaulay, V., Clark, A. G., Hosseini, S., et al. (2003). Natural selection shaped regional mtDNA variation in humans. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 171–176.CrossRefPubMed Mishmar, D., Ruiz-Pesini, E., Golik, P., Macaulay, V., Clark, A. G., Hosseini, S., et al. (2003). Natural selection shaped regional mtDNA variation in humans. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 171–176.CrossRefPubMed
6.
Zurück zum Zitat Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual Review of Genetics, 39, 359–407.CrossRefPubMedPubMedCentral Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual Review of Genetics, 39, 359–407.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Merriwether, D. A., Clark, A. G., Ballinger, S. W., Schurr, T. G., Soodyall, H., Jenkins, T., et al. (1991). The structure of human mitochondrial DNA variation. Journal of Molecular Evolution, 33(6), 543–555.CrossRefPubMed Merriwether, D. A., Clark, A. G., Ballinger, S. W., Schurr, T. G., Soodyall, H., Jenkins, T., et al. (1991). The structure of human mitochondrial DNA variation. Journal of Molecular Evolution, 33(6), 543–555.CrossRefPubMed
8.
Zurück zum Zitat Kazuno, A. A., Munakata, K., Nagai, T., Shimozono, S., Tanaka, M., Yoneda, M., et al. (2006). Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genetics, 2(8), e128.CrossRefPubMedPubMedCentral Kazuno, A. A., Munakata, K., Nagai, T., Shimozono, S., Tanaka, M., Yoneda, M., et al. (2006). Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genetics, 2(8), e128.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Ienco, E. C., Simoncini, C., Orsucci, D., Petrucci, L., Filosto, M., Mancuso, M., et al. (2011). May “mitochondrial eve” and mitochondrial haplogroups play a role in neurodegeneration and Alzheimer’s disease? International Journal of Alzheimer's Disease, 2011, 709061.CrossRefPubMedPubMedCentral Ienco, E. C., Simoncini, C., Orsucci, D., Petrucci, L., Filosto, M., Mancuso, M., et al. (2011). May “mitochondrial eve” and mitochondrial haplogroups play a role in neurodegeneration and Alzheimer’s disease? International Journal of Alzheimer's Disease, 2011, 709061.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Taanman, J. W. (1999). The mitochondrial genome: structure, transcription, translation and replication. Biochimica et Biophysica Acta, 1410(2), 103–123.CrossRefPubMed Taanman, J. W. (1999). The mitochondrial genome: structure, transcription, translation and replication. Biochimica et Biophysica Acta, 1410(2), 103–123.CrossRefPubMed
11.
Zurück zum Zitat Wallace, D. C., & Fan, W. (2010). Energetics, epigenetics, mitochondrial genetics. Mitochondrion, 10(1), 12–31.CrossRefPubMed Wallace, D. C., & Fan, W. (2010). Energetics, epigenetics, mitochondrial genetics. Mitochondrion, 10(1), 12–31.CrossRefPubMed
12.
Zurück zum Zitat Picard, M., Zhang, J., Hancock, S., Derbeneva, O., Golhar, R., Golik, P., et al. (2014). Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proceedings of the National Academy of Sciences of the United States of America, 111(38), E4033–E4042.CrossRefPubMedPubMedCentral Picard, M., Zhang, J., Hancock, S., Derbeneva, O., Golhar, R., Golik, P., et al. (2014). Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proceedings of the National Academy of Sciences of the United States of America, 111(38), E4033–E4042.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body. Journal of General Physiology, 8(6), 519–530.CrossRefPubMed Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body. Journal of General Physiology, 8(6), 519–530.CrossRefPubMed
14.
Zurück zum Zitat Warburg, O. (1956). On respiratory impairment in cancer cells. Science, 124(3215), 269–270.PubMed Warburg, O. (1956). On respiratory impairment in cancer cells. Science, 124(3215), 269–270.PubMed
15.
16.
Zurück zum Zitat Liberti, M. V., & Locasale, J. W. (2016). The Warburg effect: how does it benefit cancer cells? Trends in Biochemical Sciences, 41(3), 211–218.CrossRefPubMedPubMedCentral Liberti, M. V., & Locasale, J. W. (2016). The Warburg effect: how does it benefit cancer cells? Trends in Biochemical Sciences, 41(3), 211–218.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Lunt, S. Y., & Vander Heiden, M. G. (2011). Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual Review of Cell and Developmental Biology, 27, 441–464.CrossRefPubMed Lunt, S. Y., & Vander Heiden, M. G. (2011). Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual Review of Cell and Developmental Biology, 27, 441–464.CrossRefPubMed
19.
Zurück zum Zitat Yang, H., Ye, D., Guan, K. L., & Xiong, Y. (2012). IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clinical Cancer Research, 18(20), 5562–5571.CrossRefPubMedPubMedCentral Yang, H., Ye, D., Guan, K. L., & Xiong, Y. (2012). IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clinical Cancer Research, 18(20), 5562–5571.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Loureiro, R., Mesquita, K. A., Magalhues-Novais, S., Oliveira, P. J., & Vega-Naredo, I. (2017). Mitochondrial biology in cancer stem cells. In Seminars in Cancer Biology - Mitochondria in Cancer (Vol. 47, pp. 18–28, Vol. Supplement C). Loureiro, R., Mesquita, K. A., Magalhues-Novais, S., Oliveira, P. J., & Vega-Naredo, I. (2017). Mitochondrial biology in cancer stem cells. In Seminars in Cancer Biology - Mitochondria in Cancer (Vol. 47, pp. 18–28, Vol. Supplement C).
21.
Zurück zum Zitat Frezza, C., & Gottlieb, E. (2009). Mitochondria in cancer: Not just innocent bystanders. Seminars in Cancer Biology, 19(1), 4–11.CrossRefPubMed Frezza, C., & Gottlieb, E. (2009). Mitochondria in cancer: Not just innocent bystanders. Seminars in Cancer Biology, 19(1), 4–11.CrossRefPubMed
22.
23.
Zurück zum Zitat Ishikawa, K., Takenaga, K., Akimoto, M., Koshikawa, N., Yamaguchi, A., Imanishi, H., et al. (2008). ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science, 320(5876), 661–664.CrossRefPubMed Ishikawa, K., Takenaga, K., Akimoto, M., Koshikawa, N., Yamaguchi, A., Imanishi, H., et al. (2008). ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science, 320(5876), 661–664.CrossRefPubMed
24.
Zurück zum Zitat Liou, G. Y., & Storz, P. (2010). Reactive oxygen species in cancer. Free Radical Research, 44(5), 479–496.CrossRefPubMed Liou, G. Y., & Storz, P. (2010). Reactive oxygen species in cancer. Free Radical Research, 44(5), 479–496.CrossRefPubMed
25.
Zurück zum Zitat Stewart, J. B., Alaei-Mahabadi, B., Sabarinathan, R., Samuelsson, T., Gorodkin, J., Gustafsson, C. M., et al. (2015). Simultaneous DNA and RNA mapping of somatic mitochondrial mutations across diverse human cancers. PLoS Genetics, 11(6), e1005333.CrossRefPubMedPubMedCentral Stewart, J. B., Alaei-Mahabadi, B., Sabarinathan, R., Samuelsson, T., Gorodkin, J., Gustafsson, C. M., et al. (2015). Simultaneous DNA and RNA mapping of somatic mitochondrial mutations across diverse human cancers. PLoS Genetics, 11(6), e1005333.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Ju, Y. S., Alexandrov, L. B., Gerstung, M., Martincorena, I., Nik-Zainal, S., Ramakrishna, M., et al. (2014). Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife, 3, e02935.CrossRefPubMedCentral Ju, Y. S., Alexandrov, L. B., Gerstung, M., Martincorena, I., Nik-Zainal, S., Ramakrishna, M., et al. (2014). Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife, 3, e02935.CrossRefPubMedCentral
27.
Zurück zum Zitat Brown, W. M., George, M., Jr., & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 76(4), 1967–1971.CrossRefPubMedPubMedCentral Brown, W. M., George, M., Jr., & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 76(4), 1967–1971.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Jones, J. B., Song, J. J., Hempen, P. M., Parmigiani, G., Hruban, R. H., & Kern, S. E. (2001). Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass”-ive advantage over detection of nuclear DNA mutations. Cancer Research, 61(4), 1299–1304.PubMed Jones, J. B., Song, J. J., Hempen, P. M., Parmigiani, G., Hruban, R. H., & Kern, S. E. (2001). Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass”-ive advantage over detection of nuclear DNA mutations. Cancer Research, 61(4), 1299–1304.PubMed
29.
Zurück zum Zitat Maybury, B. D. (2013). Mitochondrial DNA damage is uncommon in cancer but can promote aggressive behaviour. Anticancer Research, 33(9), 3543–3552.PubMed Maybury, B. D. (2013). Mitochondrial DNA damage is uncommon in cancer but can promote aggressive behaviour. Anticancer Research, 33(9), 3543–3552.PubMed
30.
Zurück zum Zitat Shokolenko, I., Venediktova, N., Bochkareva, A., Wilson, G. L., & Alexeyev, M. F. (2009). Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Research, 37(8), 2539–2548.CrossRefPubMedPubMedCentral Shokolenko, I., Venediktova, N., Bochkareva, A., Wilson, G. L., & Alexeyev, M. F. (2009). Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Research, 37(8), 2539–2548.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Alexeyev, M., Shokolenko, I., Wilson, G., & LeDoux, S. (2013). The maintenance of mitochondrial DNA integrity--critical analysis and update. Cold Spring Harbor Perspectives in Biology, 5(5), a012641.CrossRefPubMedPubMedCentral Alexeyev, M., Shokolenko, I., Wilson, G., & LeDoux, S. (2013). The maintenance of mitochondrial DNA integrity--critical analysis and update. Cold Spring Harbor Perspectives in Biology, 5(5), a012641.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Blair, I. A. (2008). DNA adducts with lipid peroxidation products. Journal of Biological Chemistry, 283(23), 15545–15549.CrossRefPubMed Blair, I. A. (2008). DNA adducts with lipid peroxidation products. Journal of Biological Chemistry, 283(23), 15545–15549.CrossRefPubMed
33.
Zurück zum Zitat Sweasy, J. B., Lauper, J. M., & Eckert, K. A. (2006). DNA polymerases and human diseases. Radiation Research, 166(5), 693–714.CrossRefPubMed Sweasy, J. B., Lauper, J. M., & Eckert, K. A. (2006). DNA polymerases and human diseases. Radiation Research, 166(5), 693–714.CrossRefPubMed
34.
Zurück zum Zitat Linnane, A. W., Marzuki, S., Ozawa, T., & Tanaka, M. (1989). Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet, 1(8639), 642–645.CrossRefPubMed Linnane, A. W., Marzuki, S., Ozawa, T., & Tanaka, M. (1989). Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet, 1(8639), 642–645.CrossRefPubMed
35.
Zurück zum Zitat Szczepanowska, K., & Trifunovic, A. (2017). Origins of mtDNA mutations in ageing. Essays in Biochemistry, 61(3), 325–337.CrossRefPubMed Szczepanowska, K., & Trifunovic, A. (2017). Origins of mtDNA mutations in ageing. Essays in Biochemistry, 61(3), 325–337.CrossRefPubMed
36.
Zurück zum Zitat Sharpley, M. S., Marciniak, C., Eckel-Mahan, K., McManus, M., Crimi, M., Waymire, K., et al. (2012). Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell, 151(2), 333–343.CrossRefPubMedPubMedCentral Sharpley, M. S., Marciniak, C., Eckel-Mahan, K., McManus, M., Crimi, M., Waymire, K., et al. (2012). Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell, 151(2), 333–343.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Seo, J. H., Agarwal, E., Bryant, K. G., Caino, M. C., Kim, E. T., Kossenkov, A. V., et al. (2018). Syntaphilin ubiquitination regulates mitochondrial dynamics and tumor cell movements. Cancer Research, 78(15), 4215–4228.CrossRefPubMedPubMedCentral Seo, J. H., Agarwal, E., Bryant, K. G., Caino, M. C., Kim, E. T., Kossenkov, A. V., et al. (2018). Syntaphilin ubiquitination regulates mitochondrial dynamics and tumor cell movements. Cancer Research, 78(15), 4215–4228.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Caino, M. C., Seo, J. H., Wang, Y., Rivadeneira, D. B., Gabrilovich, D. I., Kim, E. T., et al. (2017). Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. Journal of Clinical Investigation, 127(10), 3755–3769.CrossRefPubMed Caino, M. C., Seo, J. H., Wang, Y., Rivadeneira, D. B., Gabrilovich, D. I., Kim, E. T., et al. (2017). Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. Journal of Clinical Investigation, 127(10), 3755–3769.CrossRefPubMed
39.
Zurück zum Zitat Caino, M. C., Seo, J. H., Aguinaldo, A., Wait, E., Bryant, K. G., Kossenkov, A. V., et al. (2016). A neuronal network of mitochondrial dynamics regulates metastasis. Nature Communications, 7, 13730.CrossRefPubMedPubMedCentral Caino, M. C., Seo, J. H., Aguinaldo, A., Wait, E., Bryant, K. G., Kossenkov, A. V., et al. (2016). A neuronal network of mitochondrial dynamics regulates metastasis. Nature Communications, 7, 13730.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Caino, M. C., & Altieri, D. C. (2016). Molecular pathways: mitochondrial reprogramming in tumor progression and therapy. Clinical Cancer Research, 22(3), 540–545.CrossRefPubMed Caino, M. C., & Altieri, D. C. (2016). Molecular pathways: mitochondrial reprogramming in tumor progression and therapy. Clinical Cancer Research, 22(3), 540–545.CrossRefPubMed
41.
Zurück zum Zitat Caino, M. C., Ghosh, J. C., Chae, Y. C., Vaira, V., Rivadeneira, D. B., Faversani, A., et al. (2015). PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 112(28), 8638–8643.CrossRefPubMedPubMedCentral Caino, M. C., Ghosh, J. C., Chae, Y. C., Vaira, V., Rivadeneira, D. B., Faversani, A., et al. (2015). PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 112(28), 8638–8643.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Chatterjee, A., Mambo, E., & Sidransky, D. (2006). Mitochondrial DNA mutations in human cancer. Oncogene, 25(34), 4663–4674.CrossRefPubMed Chatterjee, A., Mambo, E., & Sidransky, D. (2006). Mitochondrial DNA mutations in human cancer. Oncogene, 25(34), 4663–4674.CrossRefPubMed
43.
Zurück zum Zitat Lu, J., Sharma, L. K., & Bai, Y. (2009). Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Research, 19(7), 802–815.CrossRefPubMedPubMedCentral Lu, J., Sharma, L. K., & Bai, Y. (2009). Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Research, 19(7), 802–815.CrossRefPubMedPubMedCentral
44.
45.
Zurück zum Zitat Brandon, M. C., Lott, M. T., Nguyen, K. C., Spolim, S., Navathe, S. B., Baldi, P., et al. (2005). MITOMAP: a human mitochondrial genome database--2004 update. Nucleic Acids Research, 33(Database issue), D611–D613.CrossRefPubMed Brandon, M. C., Lott, M. T., Nguyen, K. C., Spolim, S., Navathe, S. B., Baldi, P., et al. (2005). MITOMAP: a human mitochondrial genome database--2004 update. Nucleic Acids Research, 33(Database issue), D611–D613.CrossRefPubMed
46.
Zurück zum Zitat Akouchekian, M., Houshmand, M., Hemati, S., Ansaripour, M., & Shafa, M. (2009). High rate of mutation in mitochondrial DNA displacement loop region in human colorectal cancer. Diseases of the Colon and Rectum, 52(3), 526–530.CrossRefPubMed Akouchekian, M., Houshmand, M., Hemati, S., Ansaripour, M., & Shafa, M. (2009). High rate of mutation in mitochondrial DNA displacement loop region in human colorectal cancer. Diseases of the Colon and Rectum, 52(3), 526–530.CrossRefPubMed
47.
Zurück zum Zitat Bragoszewski, P., Kupryjanczyk, J., Bartnik, E., Rachinger, A., & Ostrowski, J. (2008). Limited clinical relevance of mitochondrial DNA mutation and gene expression analyses in ovarian cancer. BMC Cancer, 8, 292.CrossRefPubMedPubMedCentral Bragoszewski, P., Kupryjanczyk, J., Bartnik, E., Rachinger, A., & Ostrowski, J. (2008). Limited clinical relevance of mitochondrial DNA mutation and gene expression analyses in ovarian cancer. BMC Cancer, 8, 292.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Parrella, P., Seripa, D., Matera, M. G., Rabitti, C., Rinaldi, M., Mazzarelli, P., et al. (2003). Mutations of the D310 mitochondrial mononucleotide repeat in primary tumors and cytological specimens. Cancer Letters, 190(1), 73–77.CrossRefPubMed Parrella, P., Seripa, D., Matera, M. G., Rabitti, C., Rinaldi, M., Mazzarelli, P., et al. (2003). Mutations of the D310 mitochondrial mononucleotide repeat in primary tumors and cytological specimens. Cancer Letters, 190(1), 73–77.CrossRefPubMed
49.
Zurück zum Zitat Zhang, W., Bojorquez-Gomez, A., Velez, D. O., Xu, G., Sanchez, K. S., Shen, J. P., et al. (2018). A global transcriptional network connecting noncoding mutations to changes in tumor gene expression. Nature Genetics, 50(4), 613–620.CrossRefPubMedPubMedCentral Zhang, W., Bojorquez-Gomez, A., Velez, D. O., Xu, G., Sanchez, K. S., Shen, J. P., et al. (2018). A global transcriptional network connecting noncoding mutations to changes in tumor gene expression. Nature Genetics, 50(4), 613–620.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Cookson, W., Liang, L., Abecasis, G., Moffatt, M., & Lathrop, M. (2009). Mapping complex disease traits with global gene expression. Nature Reviews: Genetics, 10(3), 184–194.CrossRefPubMed Cookson, W., Liang, L., Abecasis, G., Moffatt, M., & Lathrop, M. (2009). Mapping complex disease traits with global gene expression. Nature Reviews: Genetics, 10(3), 184–194.CrossRefPubMed
51.
Zurück zum Zitat Hunter, K. W., Amin, R., Deasy, S., Ha, N. H., & Wakefield, L. (2018). Genetic insights into the morass of metastatic heterogeneity. Nature Reviews: Cancer, 18(4), 211–223.PubMed Hunter, K. W., Amin, R., Deasy, S., Ha, N. H., & Wakefield, L. (2018). Genetic insights into the morass of metastatic heterogeneity. Nature Reviews: Cancer, 18(4), 211–223.PubMed
52.
Zurück zum Zitat Abiola, O., Angel, J. M., Avner, P., Bachmanov, A. A., Belknap, J. K., Bennett, B., et al. (2003). The nature and identification of quantitative trait loci: a community’s view. Nature Reviews: Genetics, 4(11), 911–916.CrossRefPubMed Abiola, O., Angel, J. M., Avner, P., Bachmanov, A. A., Belknap, J. K., Bennett, B., et al. (2003). The nature and identification of quantitative trait loci: a community’s view. Nature Reviews: Genetics, 4(11), 911–916.CrossRefPubMed
53.
Zurück zum Zitat Webb, E., Broderick, P., Chandler, I., Lubbe, S., Penegar, S., Tomlinson, I. P., et al. (2008). Comprehensive analysis of common mitochondrial DNA variants and colorectal cancer risk. British Journal of Cancer, 99(12), 2088–2093.CrossRefPubMedPubMedCentral Webb, E., Broderick, P., Chandler, I., Lubbe, S., Penegar, S., Tomlinson, I. P., et al. (2008). Comprehensive analysis of common mitochondrial DNA variants and colorectal cancer risk. British Journal of Cancer, 99(12), 2088–2093.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Hunter, K. W. (2012). Mouse models of cancer: does the strain matter? Nature Rev Cancer, 12(2), 144–149.CrossRef Hunter, K. W. (2012). Mouse models of cancer: does the strain matter? Nature Rev Cancer, 12(2), 144–149.CrossRef
55.
Zurück zum Zitat Le Voyer, T., Lu, Z., Babb, J., Lifsted, T., Williams, M., & Hunter, K. (2000). An epistatic interaction controls the latency of a transgene-induced mammary tumor. Mammalian Genome, 11(10), 883–889.CrossRefPubMed Le Voyer, T., Lu, Z., Babb, J., Lifsted, T., Williams, M., & Hunter, K. (2000). An epistatic interaction controls the latency of a transgene-induced mammary tumor. Mammalian Genome, 11(10), 883–889.CrossRefPubMed
56.
Zurück zum Zitat Le Voyer, T., Rouse, J., Lu, Z., Lifsted, T., Williams, M., & Hunter, K. W. (2001). Three loci modify growth of a transgene-induced mammary tumor: suppression of proliferation associated with decreased microvessel density. Genomics, 74(3), 253–261.CrossRefPubMed Le Voyer, T., Rouse, J., Lu, Z., Lifsted, T., Williams, M., & Hunter, K. W. (2001). Three loci modify growth of a transgene-induced mammary tumor: suppression of proliferation associated with decreased microvessel density. Genomics, 74(3), 253–261.CrossRefPubMed
57.
Zurück zum Zitat Lifsted, T., Le Voyer, T., Williams, M., Muller, W., Klein-Szanto, A., Buetow, K. H., et al. (1998). Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. International Journal of Cancer, 77(4), 640–644.CrossRefPubMed Lifsted, T., Le Voyer, T., Williams, M., Muller, W., Klein-Szanto, A., Buetow, K. H., et al. (1998). Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. International Journal of Cancer, 77(4), 640–644.CrossRefPubMed
58.
Zurück zum Zitat Winter, J. M., Gildea, D. E., Andreas, J. P., Gatti, D. M., Williams, K. A., Lee, M., et al. (2017). Mapping complex traits in a diversity outbred F1 mouse population identifies germline modifiers of metastasis in human prostate Cancer. Cell Systems, 4(1), 31–45 e36.CrossRefPubMed Winter, J. M., Gildea, D. E., Andreas, J. P., Gatti, D. M., Williams, K. A., Lee, M., et al. (2017). Mapping complex traits in a diversity outbred F1 mouse population identifies germline modifiers of metastasis in human prostate Cancer. Cell Systems, 4(1), 31–45 e36.CrossRefPubMed
59.
Zurück zum Zitat Feeley, K. P., Bray, A. W., Westbrook, D. G., Johnson, L. W., Kesterson, R. A., Ballinger, S. W., et al. (2015). Mitochondrial genetics regulate breast cancer tumorigenicity and metastatic potential. Cancer Research, 75(20), 4429–4436.CrossRefPubMedPubMedCentral Feeley, K. P., Bray, A. W., Westbrook, D. G., Johnson, L. W., Kesterson, R. A., Ballinger, S. W., et al. (2015). Mitochondrial genetics regulate breast cancer tumorigenicity and metastatic potential. Cancer Research, 75(20), 4429–4436.CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Kesterson, R. A., Johnson, L. W., Lambert, L. J., Vivian, J. L., Welch, D. R., & Ballinger, S. W. (2016). Generation of mitochondrial-nuclear eXchange mice via pronuclear transfer. BioProtocols, 6(20). Kesterson, R. A., Johnson, L. W., Lambert, L. J., Vivian, J. L., Welch, D. R., & Ballinger, S. W. (2016). Generation of mitochondrial-nuclear eXchange mice via pronuclear transfer. BioProtocols, 6(20).
61.
Zurück zum Zitat Fetterman, J. L., Zelickson, B. R., Johnson, L. W., Moellering, D. R., Westbrook, D. G., Pompilius, M., et al. (2013). Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload. Biochemical Journal, 455(2), 157–167.CrossRefPubMed Fetterman, J. L., Zelickson, B. R., Johnson, L. W., Moellering, D. R., Westbrook, D. G., Pompilius, M., et al. (2013). Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload. Biochemical Journal, 455(2), 157–167.CrossRefPubMed
62.
Zurück zum Zitat Brinker, A. E., Vivian, C. J., Koestler, D. C., Tsue, T. T., Jensen, R. A., & Welch, D. R. (2017). Mitochondrial haplotype alters mammary cancer tumorigenicity and metastasis in an oncogenic driver-dependent manner. Cancer Research, 77(24), 6941–6949.CrossRefPubMedPubMedCentral Brinker, A. E., Vivian, C. J., Koestler, D. C., Tsue, T. T., Jensen, R. A., & Welch, D. R. (2017). Mitochondrial haplotype alters mammary cancer tumorigenicity and metastasis in an oncogenic driver-dependent manner. Cancer Research, 77(24), 6941–6949.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Vivian, C. J., Brinker, A. E., Graw, S., Koestler, D. C., Legendre, C., Gooden, G. C., et al. (2017). Mitochondrial genomic backgrounds affect nuclear DNA methylation and gene expression. Cancer Research, 77(22), 6202–6214.CrossRefPubMedPubMedCentral Vivian, C. J., Brinker, A. E., Graw, S., Koestler, D. C., Legendre, C., Gooden, G. C., et al. (2017). Mitochondrial genomic backgrounds affect nuclear DNA methylation and gene expression. Cancer Research, 77(22), 6202–6214.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Krzywanski, D. M., Moellering, D. R., Westbrook, D. G., Dunham-Snary, K. J., Brown, J., Bray, A. W., et al. (2016). Endothelial cell bioenergetics and mitochondrial DNA damage differ in humans having African or West Eurasian maternal ancestry. Circulation-Cardiovascular Genetics, 9(1), 26–36.CrossRefPubMedPubMedCentral Krzywanski, D. M., Moellering, D. R., Westbrook, D. G., Dunham-Snary, K. J., Brown, J., Bray, A. W., et al. (2016). Endothelial cell bioenergetics and mitochondrial DNA damage differ in humans having African or West Eurasian maternal ancestry. Circulation-Cardiovascular Genetics, 9(1), 26–36.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Dunham-Snary, K. J., & Ballinger, S. W. (2015). Genetics. Mitochondrial-nuclear DNA mismatch matters. Science, 349(6255), 1449–1450.CrossRefPubMed Dunham-Snary, K. J., & Ballinger, S. W. (2015). Genetics. Mitochondrial-nuclear DNA mismatch matters. Science, 349(6255), 1449–1450.CrossRefPubMed
67.
Zurück zum Zitat Ishikawa, K., & Hayashi, J. (2010). A novel function of mtDNA: its involvement in metastasis. Annals of the New York Academy of Sciences, 1201, 40–43.CrossRefPubMed Ishikawa, K., & Hayashi, J. (2010). A novel function of mtDNA: its involvement in metastasis. Annals of the New York Academy of Sciences, 1201, 40–43.CrossRefPubMed
68.
Zurück zum Zitat Imanishi, H., Hattori, K., Wada, R., Ishikawa, K., Fukuda, S., Takenaga, K., et al. (2011). Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS One, 6(8), e23401.CrossRefPubMedPubMedCentral Imanishi, H., Hattori, K., Wada, R., Ishikawa, K., Fukuda, S., Takenaga, K., et al. (2011). Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS One, 6(8), e23401.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Koshikawa, N., Akimoto, M., Hayashi, J. I., Nagase, H., & Takenaga, K. (2017). Association of predicted pathogenic mutations in mitochondrial ND genes with distant metastasis in NSCLC and colon cancer. Scientific Reports, 7(1), 15535.CrossRefPubMedPubMedCentral Koshikawa, N., Akimoto, M., Hayashi, J. I., Nagase, H., & Takenaga, K. (2017). Association of predicted pathogenic mutations in mitochondrial ND genes with distant metastasis in NSCLC and colon cancer. Scientific Reports, 7(1), 15535.CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Yuan, Y., Wang, W., Li, H., Yu, Y., Tao, J., Huang, S., et al. (2015). Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma. BMC Cancer, 15, 346.CrossRefPubMedPubMedCentral Yuan, Y., Wang, W., Li, H., Yu, Y., Tao, J., Huang, S., et al. (2015). Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma. BMC Cancer, 15, 346.CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Tang, S., Batra, A., Zhang, Y., Ebenroth, E. S., & Huang, T. (2010). Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion, 10(4), 350–357.CrossRefPubMed Tang, S., Batra, A., Zhang, Y., Ebenroth, E. S., & Huang, T. (2010). Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion, 10(4), 350–357.CrossRefPubMed
72.
Zurück zum Zitat Ji, Y. C., Liu, X. L., Zhao, F. X., Zhang, J. J., Zhang, Y., Zhou, X. T., et al. (2011). The mitochondrial ND5 T12338C mutation may be associated with Leber's hereditary optic neuropathy in two Chinese families. Yi Chuan, 33(4), 322–328.CrossRefPubMed Ji, Y. C., Liu, X. L., Zhao, F. X., Zhang, J. J., Zhang, Y., Zhou, X. T., et al. (2011). The mitochondrial ND5 T12338C mutation may be associated with Leber's hereditary optic neuropathy in two Chinese families. Yi Chuan, 33(4), 322–328.CrossRefPubMed
73.
Zurück zum Zitat Kenny, T. C., Hart, P., Ragazzi, M., Sersinghe, M., Chipuk, J., Sagar, M. A. K., et al. (2017). Selected mitochondrial DNA landscapes activate the SIRT3 axis of the UPR(mt) to promote metastasis. Oncogene, 36(31), 4393–4404.CrossRefPubMedPubMedCentral Kenny, T. C., Hart, P., Ragazzi, M., Sersinghe, M., Chipuk, J., Sagar, M. A. K., et al. (2017). Selected mitochondrial DNA landscapes activate the SIRT3 axis of the UPR(mt) to promote metastasis. Oncogene, 36(31), 4393–4404.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat LeBleu, V. S., O'Connell, J. T., Gonzalez Herrera, K. N., Wikman, H., Pantel, K., Haigis, M. C., et al. (2014). PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature Cell Biology, 16(10), 992–1003 1001-1015.CrossRefPubMedPubMedCentral LeBleu, V. S., O'Connell, J. T., Gonzalez Herrera, K. N., Wikman, H., Pantel, K., Haigis, M. C., et al. (2014). PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature Cell Biology, 16(10), 992–1003 1001-1015.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Liu, W., Beck, B. H., Vaidya, K. S., Nash, K. T., Feeley, K. P., Ballinger, S. W., et al. (2013). Metastasis suppressor KISS1 appears to reverse the Warburg effect by enhancing mitochondrial biogenesis. Cancer Research, 74(3), 954–963.CrossRefPubMedPubMedCentral Liu, W., Beck, B. H., Vaidya, K. S., Nash, K. T., Feeley, K. P., Ballinger, S. W., et al. (2013). Metastasis suppressor KISS1 appears to reverse the Warburg effect by enhancing mitochondrial biogenesis. Cancer Research, 74(3), 954–963.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Goh, J., Enns, L., Fatemie, S., Hopkins, H., Morton, J., Pettan-Brewer, C., et al. (2011). Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer, 11, 191.CrossRefPubMedPubMedCentral Goh, J., Enns, L., Fatemie, S., Hopkins, H., Morton, J., Pettan-Brewer, C., et al. (2011). Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer, 11, 191.CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Fatemie, S., Goh, J., Pettan-Brewer, C., & Ladiges, W. (2012). Breast tumors in PyMT transgenic mice expressing mitochondrial catalase have decreased labeling for macrophages and endothelial cells. Pathobiology of Aging and Age Related Diseases, 2. https://doi.org/10.3402/pba.v2i0.17391. Fatemie, S., Goh, J., Pettan-Brewer, C., & Ladiges, W. (2012). Breast tumors in PyMT transgenic mice expressing mitochondrial catalase have decreased labeling for macrophages and endothelial cells. Pathobiology of Aging and Age Related Diseases, 2. https://​doi.​org/​10.​3402/​pba.​v2i0.​17391.
78.
Zurück zum Zitat Blein, S., Barjhoux, L., Investigators G, Damiola, F., Dondon, M. G., Eon-Marchais, S., et al. (2015). Targeted sequencing of the mitochondrial genome of women at high risk of breast cancer without detectable mutations in BRCA1/2. PLoS One, 10(9), e0136192.CrossRefPubMedPubMedCentral Blein, S., Barjhoux, L., Investigators G, Damiola, F., Dondon, M. G., Eon-Marchais, S., et al. (2015). Targeted sequencing of the mitochondrial genome of women at high risk of breast cancer without detectable mutations in BRCA1/2. PLoS One, 10(9), e0136192.CrossRefPubMedPubMedCentral
79.
Zurück zum Zitat Boroughs, L. K., & DeBerardinis, R. J. (2015). Metabolic pathways promoting cancer cell survival and growth. Nature Cell Biology, 17(4), 351–359.CrossRefPubMedPubMedCentral Boroughs, L. K., & DeBerardinis, R. J. (2015). Metabolic pathways promoting cancer cell survival and growth. Nature Cell Biology, 17(4), 351–359.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Cantley, L. C., Auger, K. R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R., et al. (1991). Oncogenes and signal transduction. Cell, 64(2), 281–302.CrossRefPubMed Cantley, L. C., Auger, K. R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R., et al. (1991). Oncogenes and signal transduction. Cell, 64(2), 281–302.CrossRefPubMed
82.
Zurück zum Zitat Ju, Y. S., Tubio, J. M., Mifsud, W., Fu, B., Davies, H. R., Ramakrishna, M., et al. (2015). Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Research, 25(6), 814–824.CrossRefPubMedPubMedCentral Ju, Y. S., Tubio, J. M., Mifsud, W., Fu, B., Davies, H. R., Ramakrishna, M., et al. (2015). Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Research, 25(6), 814–824.CrossRefPubMedPubMedCentral
83.
Zurück zum Zitat McGeehan, R. E., Cockram, L. A., Littlewood, D. T. J., Keatley, K., Eccles, D. M., & An, Q. (2017). Deep sequencing reveals the mitochondrial DNA variation landscapes of breast-to-brain metastasis blood samples. Mitochondrial DNA Part A - DNA Mapping Sequencing and Analysis, 29, 1–11. McGeehan, R. E., Cockram, L. A., Littlewood, D. T. J., Keatley, K., Eccles, D. M., & An, Q. (2017). Deep sequencing reveals the mitochondrial DNA variation landscapes of breast-to-brain metastasis blood samples. Mitochondrial DNA Part A - DNA Mapping Sequencing and Analysis, 29, 1–11.
84.
Zurück zum Zitat Torralba, D., Baixauli, F., & Sanchez-Madrid, F. (2016). Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Frontiers in Cell and Development Biology, 4, 107.CrossRef Torralba, D., Baixauli, F., & Sanchez-Madrid, F. (2016). Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Frontiers in Cell and Development Biology, 4, 107.CrossRef
85.
Zurück zum Zitat Berridge, M. V., Crasso, C., & Neuzil, J. (2018). Mitochondrial genome transfer to tumor cells breaks the rules and establishes a new precedent in cancer biology. Mol Cell Oncol, 5(5), e1023929.CrossRefPubMedPubMedCentral Berridge, M. V., Crasso, C., & Neuzil, J. (2018). Mitochondrial genome transfer to tumor cells breaks the rules and establishes a new precedent in cancer biology. Mol Cell Oncol, 5(5), e1023929.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Berridge, M. V., & Neuzil, J. (2017). The mobility of mitochondria: intercellular trafficking in health and disease. Clinical and Experimental Pharmacology and Physiology, 44(Suppl 1), 15–20.CrossRefPubMed Berridge, M. V., & Neuzil, J. (2017). The mobility of mitochondria: intercellular trafficking in health and disease. Clinical and Experimental Pharmacology and Physiology, 44(Suppl 1), 15–20.CrossRefPubMed
87.
Zurück zum Zitat Dong, L. F., Kovarova, J., Bajzikova, M., Bezawork-Geleta, A., Svec, D., Endaya, B., et al. (2017). Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife, 6, e22187. Dong, L. F., Kovarova, J., Bajzikova, M., Bezawork-Geleta, A., Svec, D., Endaya, B., et al. (2017). Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife, 6, e22187.
88.
Zurück zum Zitat Berridge, M. V., Schneider, R. T., & McConnell, M. J. (2016). Mitochondrial transfer from astrocytes to neurons following ischemic insult: guilt by association? Cell Metabolism, 24(3), 376–378.CrossRefPubMed Berridge, M. V., Schneider, R. T., & McConnell, M. J. (2016). Mitochondrial transfer from astrocytes to neurons following ischemic insult: guilt by association? Cell Metabolism, 24(3), 376–378.CrossRefPubMed
89.
Zurück zum Zitat Berridge, M. V., Dong, L., & Neuzil, J. (2015). Mitochondrial DNA in tumor initiation, progression, and metastasis: role of horizontal mtDNA transfer. Cancer Research, 75(16), 3203–3208.CrossRefPubMed Berridge, M. V., Dong, L., & Neuzil, J. (2015). Mitochondrial DNA in tumor initiation, progression, and metastasis: role of horizontal mtDNA transfer. Cancer Research, 75(16), 3203–3208.CrossRefPubMed
90.
Zurück zum Zitat Tan, A. S., Baty, J. W., Dong, L. F., Bezawork-Geleta, A., Endaya, B., Goodwin, J., et al. (2015). Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metabolism, 21(1), 81–94.CrossRefPubMed Tan, A. S., Baty, J. W., Dong, L. F., Bezawork-Geleta, A., Endaya, B., Goodwin, J., et al. (2015). Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metabolism, 21(1), 81–94.CrossRefPubMed
91.
Zurück zum Zitat Arnold, R. S., Fedewa, S. A., Goodman, M., Osunkoya, A. O., Kissick, H. T., Morrissey, C., et al. (2015). Bone metastasis in prostate cancer: recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone, 78, 81–86.CrossRefPubMedPubMedCentral Arnold, R. S., Fedewa, S. A., Goodman, M., Osunkoya, A. O., Kissick, H. T., Morrissey, C., et al. (2015). Bone metastasis in prostate cancer: recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone, 78, 81–86.CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Hopkins, J. F., Denroche, R. E., Aguiar, J. A., Notta, F., Connor, A. A., Wilson, J. M., et al. (2018). Mutations in mitochondrial DNA from pancreatic ductal adenocarcinomas associate with survival times of patients and accumulate as tumors progress. Gastroenterology, 154(6), 1620–1624 e1625.CrossRefPubMed Hopkins, J. F., Denroche, R. E., Aguiar, J. A., Notta, F., Connor, A. A., Wilson, J. M., et al. (2018). Mutations in mitochondrial DNA from pancreatic ductal adenocarcinomas associate with survival times of patients and accumulate as tumors progress. Gastroenterology, 154(6), 1620–1624 e1625.CrossRefPubMed
93.
Zurück zum Zitat Van Trappen, P. O., Cullup, T., Troke, R., Swann, D., Shepherd, J. H., Jacobs, I. J., et al. (2007). Somatic mitochondrial DNA mutations in primary and metastatic ovarian cancer. Gynecologic Oncology, 104(1), 129–133.CrossRefPubMed Van Trappen, P. O., Cullup, T., Troke, R., Swann, D., Shepherd, J. H., Jacobs, I. J., et al. (2007). Somatic mitochondrial DNA mutations in primary and metastatic ovarian cancer. Gynecologic Oncology, 104(1), 129–133.CrossRefPubMed
94.
Zurück zum Zitat Ebner, S., Lang, R., Mueller, E. E., Eder, W., Oeller, M., Moser, A., et al. (2011). Mitochondrial haplogroups, control region polymorphisms and malignant melanoma: a study in middle European Caucasians. PLoS One, 6(12), e27192.CrossRefPubMedPubMedCentral Ebner, S., Lang, R., Mueller, E. E., Eder, W., Oeller, M., Moser, A., et al. (2011). Mitochondrial haplogroups, control region polymorphisms and malignant melanoma: a study in middle European Caucasians. PLoS One, 6(12), e27192.CrossRefPubMedPubMedCentral
95.
Zurück zum Zitat Vendramin, R., Marine, J. C., & Leucci, E. (2017). Non-coding RNAs: the dark side of nuclear-mitochondrial communication. EMBO Journal, 36(9), 1123–1133.CrossRefPubMed Vendramin, R., Marine, J. C., & Leucci, E. (2017). Non-coding RNAs: the dark side of nuclear-mitochondrial communication. EMBO Journal, 36(9), 1123–1133.CrossRefPubMed
96.
Zurück zum Zitat Meseguer, S., Panadero, J., Navarro-Gonzalez, C., Villarroya, M., Boutoual, R., Comi, G. P., et al. (2018). The MELAS mutation m.3243A>G promotes reactivation of fetal cardiac genes and an epithelial-mesenchymal transition-like program via dysregulation of miRNAs. Biochimica et Biophysica Acta, 1864(9 Pt B), 3022–3037.CrossRefPubMed Meseguer, S., Panadero, J., Navarro-Gonzalez, C., Villarroya, M., Boutoual, R., Comi, G. P., et al. (2018). The MELAS mutation m.3243A>G promotes reactivation of fetal cardiac genes and an epithelial-mesenchymal transition-like program via dysregulation of miRNAs. Biochimica et Biophysica Acta, 1864(9 Pt B), 3022–3037.CrossRefPubMed
97.
Zurück zum Zitat Bussard, K. M., & Siracusa, L. D. (2017). Understanding mitochondrial polymorphisms in cancer. Cancer Research, 77(22), 6051–6059.CrossRefPubMed Bussard, K. M., & Siracusa, L. D. (2017). Understanding mitochondrial polymorphisms in cancer. Cancer Research, 77(22), 6051–6059.CrossRefPubMed
98.
Zurück zum Zitat Li, Y., Beckman, K. B., Caberto, C., Kazma, R., Lum-Jones, A., Haiman, C. A., et al. (2015). Association of genes, pathways, and haplogroups of the mitochondrial genome with the risk of colorectal cancer: the multiethnic cohort. PLoS One, 10(9), e0136796.CrossRefPubMedPubMedCentral Li, Y., Beckman, K. B., Caberto, C., Kazma, R., Lum-Jones, A., Haiman, C. A., et al. (2015). Association of genes, pathways, and haplogroups of the mitochondrial genome with the risk of colorectal cancer: the multiethnic cohort. PLoS One, 10(9), e0136796.CrossRefPubMedPubMedCentral
99.
Zurück zum Zitat Canter, J. A., Kallianpur, A. R., Parl, F. F., & Millikan, R. C. (2005). Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women. Cancer Research, 65(17), 8028–8033.CrossRefPubMed Canter, J. A., Kallianpur, A. R., Parl, F. F., & Millikan, R. C. (2005). Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women. Cancer Research, 65(17), 8028–8033.CrossRefPubMed
100.
Zurück zum Zitat Kulawiec, M., Owens, K. M., & Singh, K. K. (2009). mtDNA G10398A variant in African-American women with breast cancer provides resistance to apoptosis and promotes metastasis in mice. Journal of Human Genetics, 54(11), 647–654.CrossRefPubMedPubMedCentral Kulawiec, M., Owens, K. M., & Singh, K. K. (2009). mtDNA G10398A variant in African-American women with breast cancer provides resistance to apoptosis and promotes metastasis in mice. Journal of Human Genetics, 54(11), 647–654.CrossRefPubMedPubMedCentral
101.
Zurück zum Zitat Czarnecka, A. M., Krawczyk, T., Zdrozny, M., Lubinski, J., Arnold, R. S., Kukwa, W., et al. (2010). Mitochondrial NADH-dehydrogenase subunit 3 (ND3) polymorphism (A10398G) and sporadic breast cancer in Poland. Breast Cancer Research and Treatment, 121(2), 511–518.CrossRefPubMed Czarnecka, A. M., Krawczyk, T., Zdrozny, M., Lubinski, J., Arnold, R. S., Kukwa, W., et al. (2010). Mitochondrial NADH-dehydrogenase subunit 3 (ND3) polymorphism (A10398G) and sporadic breast cancer in Poland. Breast Cancer Research and Treatment, 121(2), 511–518.CrossRefPubMed
102.
Zurück zum Zitat Tengku Baharudin, N., Jaafar, H., & Zainuddin, Z. (2012). Association of mitochondrial DNA 10398 polymorphism in invasive breast cancer in malay population of peninsular Malaysia. Malaysian Journal of Medical Sciences, 19(1), 36–42.PubMed Tengku Baharudin, N., Jaafar, H., & Zainuddin, Z. (2012). Association of mitochondrial DNA 10398 polymorphism in invasive breast cancer in malay population of peninsular Malaysia. Malaysian Journal of Medical Sciences, 19(1), 36–42.PubMed
103.
Zurück zum Zitat Petros, J. A., Baumann, A. K., Ruiz-Pesini, E., Amin, M. B., Sun, C. Q., Hall, J., et al. (2005). mtDNA mutations increase tumorigenicity in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 719–724.CrossRefPubMedPubMedCentral Petros, J. A., Baumann, A. K., Ruiz-Pesini, E., Amin, M. B., Sun, C. Q., Hall, J., et al. (2005). mtDNA mutations increase tumorigenicity in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 719–724.CrossRefPubMedPubMedCentral
104.
Zurück zum Zitat Holt, I. J., Harding, A. E., Petty, R. K., & Morgan-Hughes, J. A. (1990). A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. American Journal of Human Genetics, 46(3), 428–433.PubMedPubMedCentral Holt, I. J., Harding, A. E., Petty, R. K., & Morgan-Hughes, J. A. (1990). A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. American Journal of Human Genetics, 46(3), 428–433.PubMedPubMedCentral
105.
Zurück zum Zitat Trounce, I., Neill, S., & Wallace, D. C. (1994). Cytoplasmic transfer of the mtDNA nt 8993 T-->G (ATP6) point mutation associated with Leigh syndrome into mtDNA-less cells demonstrates cosegregation with a decrease in state III respiration and ADP/O ratio. Proceedings of the National Academy of Sciences of the United States of America, 91(18), 8334–8338.CrossRefPubMedPubMedCentral Trounce, I., Neill, S., & Wallace, D. C. (1994). Cytoplasmic transfer of the mtDNA nt 8993 T-->G (ATP6) point mutation associated with Leigh syndrome into mtDNA-less cells demonstrates cosegregation with a decrease in state III respiration and ADP/O ratio. Proceedings of the National Academy of Sciences of the United States of America, 91(18), 8334–8338.CrossRefPubMedPubMedCentral
106.
Zurück zum Zitat Mattiazzi, M., Vijayvergiya, C., Gajewski, C. D., DeVivo, D. C., Lenaz, G., Wiedmann, M., et al. (2004). The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Human Molecular Genetics, 13(8), 869–879.CrossRefPubMed Mattiazzi, M., Vijayvergiya, C., Gajewski, C. D., DeVivo, D. C., Lenaz, G., Wiedmann, M., et al. (2004). The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Human Molecular Genetics, 13(8), 869–879.CrossRefPubMed
107.
Zurück zum Zitat Felhi, R., Mkaouar-Rebai, E., Sfaihi-Ben Mansour, L., Alila-Fersi, O., Tabebi, M., Ben Rhouma, B., et al. (2016). Mutational analysis in patients with neuromuscular disorders: Detection of mitochondrial deletion and double mutations in the MT-ATP6 gene. Biochemical and Biophysical Research Communications, 473(1), 61–66.CrossRefPubMed Felhi, R., Mkaouar-Rebai, E., Sfaihi-Ben Mansour, L., Alila-Fersi, O., Tabebi, M., Ben Rhouma, B., et al. (2016). Mutational analysis in patients with neuromuscular disorders: Detection of mitochondrial deletion and double mutations in the MT-ATP6 gene. Biochemical and Biophysical Research Communications, 473(1), 61–66.CrossRefPubMed
108.
Zurück zum Zitat Arnold, R. S., Sun, C. Q., Richards, J. C., Grigoriev, G., Coleman, I. M., Nelson, P. S., et al. (2009). Mitochondrial DNA mutation stimulates prostate cancer growth in bone stromal environment. Prostate, 69(1), 1–11.CrossRefPubMedPubMedCentral Arnold, R. S., Sun, C. Q., Richards, J. C., Grigoriev, G., Coleman, I. M., Nelson, P. S., et al. (2009). Mitochondrial DNA mutation stimulates prostate cancer growth in bone stromal environment. Prostate, 69(1), 1–11.CrossRefPubMedPubMedCentral
109.
Zurück zum Zitat Abu-Amero, K. K., & Bosley, T. M. (2006). Mitochondrial abnormalities in patients with LHON-like optic neuropathies. Investigative Ophthalmology and Visual Science, 47(10), 4211–4220.CrossRefPubMed Abu-Amero, K. K., & Bosley, T. M. (2006). Mitochondrial abnormalities in patients with LHON-like optic neuropathies. Investigative Ophthalmology and Visual Science, 47(10), 4211–4220.CrossRefPubMed
110.
Zurück zum Zitat Collins, D. W., Gudiseva, H. V., Trachtman, B., Bowman, A. S., Sagaser, A., Sankar, P., et al. (2016). Association of primary open-angle glaucoma with mitochondrial variants and haplogroups common in African Americans. Molecular Vision, 22, 454–471.PubMedPubMedCentral Collins, D. W., Gudiseva, H. V., Trachtman, B., Bowman, A. S., Sagaser, A., Sankar, P., et al. (2016). Association of primary open-angle glaucoma with mitochondrial variants and haplogroups common in African Americans. Molecular Vision, 22, 454–471.PubMedPubMedCentral
111.
Zurück zum Zitat Kenwood, B. M., Weaver, J. L., Bajwa, A., Poon, I. K., Byrne, F. L., Murrow, B. A., et al. (2014). Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Molecular Metabolism, 3(2), 114–123.CrossRefPubMed Kenwood, B. M., Weaver, J. L., Bajwa, A., Poon, I. K., Byrne, F. L., Murrow, B. A., et al. (2014). Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Molecular Metabolism, 3(2), 114–123.CrossRefPubMed
112.
Zurück zum Zitat Lodeiro, M. F., Uchida, A. U., Arnold, J. J., Reynolds, S. L., Moustafa, I. M., & Cameron, C. E. (2010). Identification of multiple rate-limiting steps during the human mitochondrial transcription cycle in vitro. Journal of Biological Chemistry, 285(21), 16387–16402.CrossRefPubMed Lodeiro, M. F., Uchida, A. U., Arnold, J. J., Reynolds, S. L., Moustafa, I. M., & Cameron, C. E. (2010). Identification of multiple rate-limiting steps during the human mitochondrial transcription cycle in vitro. Journal of Biological Chemistry, 285(21), 16387–16402.CrossRefPubMed
113.
Zurück zum Zitat Ye, C., Gao, Y. T., Wen, W., Breyer, J. P., Shu, X. O., Smith, J. R., et al. (2008). Association of mitochondrial DNA displacement loop (CA)n dinucleotide repeat polymorphism with breast cancer risk and survival among Chinese women. Cancer Epidemiology, Biomarkers and Prevention, 17(8), 2117–2122. Ye, C., Gao, Y. T., Wen, W., Breyer, J. P., Shu, X. O., Smith, J. R., et al. (2008). Association of mitochondrial DNA displacement loop (CA)n dinucleotide repeat polymorphism with breast cancer risk and survival among Chinese women. Cancer Epidemiology, Biomarkers and Prevention, 17(8), 2117–2122.
114.
Zurück zum Zitat Riekkinen, P., Jr., Koivisto, E., Sirvio, J., & Riekkinen, P. (1991). Joint modulation of neocortical electrical activity by nicotinic and muscarinic receptors. Brain Research Bulletin, 27(1), 137–139.CrossRefPubMed Riekkinen, P., Jr., Koivisto, E., Sirvio, J., & Riekkinen, P. (1991). Joint modulation of neocortical electrical activity by nicotinic and muscarinic receptors. Brain Research Bulletin, 27(1), 137–139.CrossRefPubMed
115.
Zurück zum Zitat Liu, V. W., Wang, Y., Yang, H. J., Tsang, P. C., Ng, T. Y., Wong, L. C., et al. (2003). Mitochondrial DNA variant 16189T>C is associated with susceptibility to endometrial cancer. Human Mutation, 22(2), 173–174.CrossRefPubMed Liu, V. W., Wang, Y., Yang, H. J., Tsang, P. C., Ng, T. Y., Wong, L. C., et al. (2003). Mitochondrial DNA variant 16189T>C is associated with susceptibility to endometrial cancer. Human Mutation, 22(2), 173–174.CrossRefPubMed
116.
Zurück zum Zitat Kumar, B., Bhat, Z. I., Bansal, S., Saini, S., Naseem, A., Wahabi, K., et al. (2017). Association of mitochondrial copy number variation and T16189C polymorphism with colorectal cancer in North Indian population. Tumour Biology, 39(11), 1010428317740296.CrossRefPubMed Kumar, B., Bhat, Z. I., Bansal, S., Saini, S., Naseem, A., Wahabi, K., et al. (2017). Association of mitochondrial copy number variation and T16189C polymorphism with colorectal cancer in North Indian population. Tumour Biology, 39(11), 1010428317740296.CrossRefPubMed
117.
Zurück zum Zitat Chen, J. Z., Gokden, N., Greene, G. F., Mukunyadzi, P., & Kadlubar, F. F. (2002). Extensive somatic mitochondrial mutations in primary prostate cancer using laser capture microdissection. Cancer Research, 62(22), 6470–6474.PubMed Chen, J. Z., Gokden, N., Greene, G. F., Mukunyadzi, P., & Kadlubar, F. F. (2002). Extensive somatic mitochondrial mutations in primary prostate cancer using laser capture microdissection. Cancer Research, 62(22), 6470–6474.PubMed
118.
Zurück zum Zitat Jeronimo, C., Nomoto, S., Caballero, O. L., Usadel, H., Henrique, R., Varzim, G., et al. (2001). Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene, 20(37), 5195–5198.CrossRefPubMed Jeronimo, C., Nomoto, S., Caballero, O. L., Usadel, H., Henrique, R., Varzim, G., et al. (2001). Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene, 20(37), 5195–5198.CrossRefPubMed
119.
Zurück zum Zitat Palmieri, V. O., De Rasmo, D., Signorile, A., Sardanelli, A. M., Grattagliano, I., Minerva, F., et al. (2011). T16189C mitochondrial DNA variant is associated with metabolic syndrome in Caucasian subjects. Nutrition, 27(7–8), 773–777.CrossRefPubMed Palmieri, V. O., De Rasmo, D., Signorile, A., Sardanelli, A. M., Grattagliano, I., Minerva, F., et al. (2011). T16189C mitochondrial DNA variant is associated with metabolic syndrome in Caucasian subjects. Nutrition, 27(7–8), 773–777.CrossRefPubMed
120.
Zurück zum Zitat Kumari, T., Vachher, M., Bansal, S., Bamezai, R. N. K., & Kumar, B. (2018). Meta-analysis of mitochondrial T16189C polymorphism for cancer and type 2 diabetes risk. Clinica Chimica Acta, 482, 136–143.CrossRef Kumari, T., Vachher, M., Bansal, S., Bamezai, R. N. K., & Kumar, B. (2018). Meta-analysis of mitochondrial T16189C polymorphism for cancer and type 2 diabetes risk. Clinica Chimica Acta, 482, 136–143.CrossRef
121.
Zurück zum Zitat Zhai, K., Chang, L., Zhang, Q., Liu, B., & Wu, Y. (2011). Mitochondrial C150T polymorphism increases the risk of cervical cancer and HPV infection. Mitochondrion, 11(4), 559–563.CrossRefPubMed Zhai, K., Chang, L., Zhang, Q., Liu, B., & Wu, Y. (2011). Mitochondrial C150T polymorphism increases the risk of cervical cancer and HPV infection. Mitochondrion, 11(4), 559–563.CrossRefPubMed
122.
Zurück zum Zitat Coskun, P. E., Ruiz-Pesini, E., & Wallace, D. C. (2003). Control region mtDNA variants: longevity, climatic adaptation, and a forensic conundrum. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2174–2176.CrossRefPubMedPubMedCentral Coskun, P. E., Ruiz-Pesini, E., & Wallace, D. C. (2003). Control region mtDNA variants: longevity, climatic adaptation, and a forensic conundrum. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2174–2176.CrossRefPubMedPubMedCentral
123.
Zurück zum Zitat Zhou, R., Yazdi, A. S., Menu, P., & Tschopp, J. (2011). A role for mitochondria in NLRP3 inflammasome activation. Nature, 469(7329), 221–225.CrossRef Zhou, R., Yazdi, A. S., Menu, P., & Tschopp, J. (2011). A role for mitochondria in NLRP3 inflammasome activation. Nature, 469(7329), 221–225.CrossRef
124.
Zurück zum Zitat Bufe, B., Schumann, T., Kappl, R., Bogeski, I., Kummerow, C., Podgorska, M., et al. (2015). Recognition of bacterial signal peptides by mammalian formyl peptide receptors: a new mechanism for sensing pathogens. Journal of Biological Chemistry, 290(12), 7369–7387.CrossRefPubMed Bufe, B., Schumann, T., Kappl, R., Bogeski, I., Kummerow, C., Podgorska, M., et al. (2015). Recognition of bacterial signal peptides by mammalian formyl peptide receptors: a new mechanism for sensing pathogens. Journal of Biological Chemistry, 290(12), 7369–7387.CrossRefPubMed
125.
Zurück zum Zitat Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A. K., Frank, P. G., et al. (2009). The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 8(23), 3984–4001.CrossRefPubMed Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A. K., Frank, P. G., et al. (2009). The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 8(23), 3984–4001.CrossRefPubMed
126.
Zurück zum Zitat Pavlides, S., Vera, I., Gandara, R., Sneddon, S., Pestell, R. G., Mercier, I., et al. (2012). Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxidants and Redox Signaling, 16(11), 1264–1284.CrossRefPubMed Pavlides, S., Vera, I., Gandara, R., Sneddon, S., Pestell, R. G., Mercier, I., et al. (2012). Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxidants and Redox Signaling, 16(11), 1264–1284.CrossRefPubMed
127.
Zurück zum Zitat Martinez-Outschoorn, U. E., Balliet, R. M., Rivadeneira, D. B., Chiavarina, B., Pavlides, S., Wang, C., et al. (2010). Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle, 9(16), 3256–3276.CrossRefPubMedPubMedCentral Martinez-Outschoorn, U. E., Balliet, R. M., Rivadeneira, D. B., Chiavarina, B., Pavlides, S., Wang, C., et al. (2010). Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle, 9(16), 3256–3276.CrossRefPubMedPubMedCentral
128.
Zurück zum Zitat Pavlides, S., Tsirigos, A., Vera, I., Flomenberg, N., Frank, P. G., Casimiro, M. C., et al. (2010). Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect” a transcriptional informatics analysis with validation. Cell Cycle, 9(11), 2201–2219.CrossRefPubMed Pavlides, S., Tsirigos, A., Vera, I., Flomenberg, N., Frank, P. G., Casimiro, M. C., et al. (2010). Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect” a transcriptional informatics analysis with validation. Cell Cycle, 9(11), 2201–2219.CrossRefPubMed
129.
Zurück zum Zitat Bonuccelli, G., Whitaker-Menezes, D., Castello-Cros, R., Pavlides, S., Pestell, R. G., Fatatis, A., et al. (2010). The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle, 9(10), 1960–1971.CrossRefPubMed Bonuccelli, G., Whitaker-Menezes, D., Castello-Cros, R., Pavlides, S., Pestell, R. G., Fatatis, A., et al. (2010). The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle, 9(10), 1960–1971.CrossRefPubMed
130.
131.
Zurück zum Zitat Buck, M. D., O'Sullivan, D., Klein Geltink, R. I., Curtis, J. D., Chang, C. H., Sanin, D. E., et al. (2016). Mitochondrial dynamics controls T cell fate through metabolic programming. Cell, 166(1), 63–76.CrossRefPubMedPubMedCentral Buck, M. D., O'Sullivan, D., Klein Geltink, R. I., Curtis, J. D., Chang, C. H., Sanin, D. E., et al. (2016). Mitochondrial dynamics controls T cell fate through metabolic programming. Cell, 166(1), 63–76.CrossRefPubMedPubMedCentral
132.
Zurück zum Zitat Tarasenko, T. N., Pacheco, S. E., Koenig, M. K., Gomez-Rodriguez, J., Kapnick, S. M., Diaz, F., et al. (2017). Cytochrome c oxidase activity is a metabolic checkpoint that regulates cell fate decisions during T cell activation and differentiation. Cell Metabolism, 25(6), 1254–1268 s.CrossRefPubMedPubMedCentral Tarasenko, T. N., Pacheco, S. E., Koenig, M. K., Gomez-Rodriguez, J., Kapnick, S. M., Diaz, F., et al. (2017). Cytochrome c oxidase activity is a metabolic checkpoint that regulates cell fate decisions during T cell activation and differentiation. Cell Metabolism, 25(6), 1254–1268 s.CrossRefPubMedPubMedCentral
133.
Zurück zum Zitat Ma, J., Coarfa, C., Qin, X., Bonnen, P. E., Milosavljevic, A., Versalovic, J., et al. (2014). mtDNA haplogroup and single nucleotide polymorphisms structure human microbiome communities. BMC Genomics, 15, 257.CrossRefPubMedPubMedCentral Ma, J., Coarfa, C., Qin, X., Bonnen, P. E., Milosavljevic, A., Versalovic, J., et al. (2014). mtDNA haplogroup and single nucleotide polymorphisms structure human microbiome communities. BMC Genomics, 15, 257.CrossRefPubMedPubMedCentral
134.
Zurück zum Zitat Human Microbiome Project, C. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214.CrossRef Human Microbiome Project, C. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214.CrossRef
135.
136.
Zurück zum Zitat Gopalakrishnan, V., Spencer, C. N., Nezi, L., Reuben, A., Andrews, M. C., Karpinets, T. V., et al. (2018). Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science, 359(6371), 97–103.CrossRefPubMed Gopalakrishnan, V., Spencer, C. N., Nezi, L., Reuben, A., Andrews, M. C., Karpinets, T. V., et al. (2018). Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science, 359(6371), 97–103.CrossRefPubMed
137.
Zurück zum Zitat Routy, B., Le Chatelier, E., Derosa, L., Duong, C. P. M., Alou, M. T., Daillere, R., et al. (2018). Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 359(6371), 91–97.CrossRefPubMed Routy, B., Le Chatelier, E., Derosa, L., Duong, C. P. M., Alou, M. T., Daillere, R., et al. (2018). Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 359(6371), 91–97.CrossRefPubMed
138.
Zurück zum Zitat Roy, S., & Trinchieri, G. (2017). Microbiota: a key orchestrator of cancer therapy. Nature Reviews: Cancer, 17(5), 271–285.PubMed Roy, S., & Trinchieri, G. (2017). Microbiota: a key orchestrator of cancer therapy. Nature Reviews: Cancer, 17(5), 271–285.PubMed
139.
Zurück zum Zitat Thomas, S., Izard, J., Walsh, E., Batich, K., Chongsathidkiet, P., Clarke, G., et al. (2017). The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Research, 77(8), 1783–1812.CrossRefPubMedPubMedCentral Thomas, S., Izard, J., Walsh, E., Batich, K., Chongsathidkiet, P., Clarke, G., et al. (2017). The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Research, 77(8), 1783–1812.CrossRefPubMedPubMedCentral
140.
Zurück zum Zitat Majmundar, A. J., Wong, W. J., & Simon, M. C. (2010). Hypoxia-inducible factors and the response to hypoxic stress. Molecular Cell, 40(2), 294–309.CrossRefPubMedPubMedCentral Majmundar, A. J., Wong, W. J., & Simon, M. C. (2010). Hypoxia-inducible factors and the response to hypoxic stress. Molecular Cell, 40(2), 294–309.CrossRefPubMedPubMedCentral
141.
Zurück zum Zitat Chandel, N. S., McClintock, D. S., Feliciano, C. E., Wood, T. M., Melendez, J. A., Rodriguez, A. M., et al. (2000). Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. Journal of Biological Chemistry, 275(33), 25130–25138.CrossRefPubMed Chandel, N. S., McClintock, D. S., Feliciano, C. E., Wood, T. M., Melendez, J. A., Rodriguez, A. M., et al. (2000). Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. Journal of Biological Chemistry, 275(33), 25130–25138.CrossRefPubMed
142.
Zurück zum Zitat Chandel, N. S. (2015). Evolution of mitochondria as signaling organelles. Cell Metabolism, 22(2), 204–206.CrossRefPubMed Chandel, N. S. (2015). Evolution of mitochondria as signaling organelles. Cell Metabolism, 22(2), 204–206.CrossRefPubMed
143.
Zurück zum Zitat Ballinger, S. W. (2013). Beyond retrograde and anterograde signalling: mitochondrial-nuclear interactions as a means for evolutionary adaptation and contemporary disease susceptibility. Biochemical Society Transactions, 41(1), 111–117.CrossRefPubMedPubMedCentral Ballinger, S. W. (2013). Beyond retrograde and anterograde signalling: mitochondrial-nuclear interactions as a means for evolutionary adaptation and contemporary disease susceptibility. Biochemical Society Transactions, 41(1), 111–117.CrossRefPubMedPubMedCentral
144.
Zurück zum Zitat Ishikawa, K., Koshikawa, N., Takenaga, K., Nakada, K., & Hayashi, J. (2008). Reversible regulation of metastasis by ROS-generating mtDNA mutations. Mitochondrion, 8(4), 339–344.CrossRefPubMed Ishikawa, K., Koshikawa, N., Takenaga, K., Nakada, K., & Hayashi, J. (2008). Reversible regulation of metastasis by ROS-generating mtDNA mutations. Mitochondrion, 8(4), 339–344.CrossRefPubMed
145.
Zurück zum Zitat Giampazolias, E., & Tait, S. W. (2016). Mitochondria and the hallmarks of cancer. FEBS Journal, 283(5), 803–814.CrossRefPubMed Giampazolias, E., & Tait, S. W. (2016). Mitochondria and the hallmarks of cancer. FEBS Journal, 283(5), 803–814.CrossRefPubMed
146.
Zurück zum Zitat Porporato, P. E., Payen, V. L., Baselet, B., & Sonveaux, P. (2016). Metabolic changes associated with tumor metastasis, part 2: mitochondria, lipid and amino acid metabolism. Cellular and Molecular Life Sciences, 73(7), 1349–1363.CrossRefPubMed Porporato, P. E., Payen, V. L., Baselet, B., & Sonveaux, P. (2016). Metabolic changes associated with tumor metastasis, part 2: mitochondria, lipid and amino acid metabolism. Cellular and Molecular Life Sciences, 73(7), 1349–1363.CrossRefPubMed
147.
Zurück zum Zitat Miele, M. E., & Welch, D. R. (1995). Transfection of SOD2 into a highly metastatic human melanoma cell line C8161 does not alter tumorigenicity or metastatic ability. Proceedings of the National Academy of Sciences of the United States of America, 36, 455. Miele, M. E., & Welch, D. R. (1995). Transfection of SOD2 into a highly metastatic human melanoma cell line C8161 does not alter tumorigenicity or metastatic ability. Proceedings of the National Academy of Sciences of the United States of America, 36, 455.
148.
Zurück zum Zitat Miele, M. E., McGary, C. T., & Welch, D. R. (1995). SOD2 (MnSOD) does not suppress tumorigenicity or metastasis of human melanoma C8161 cells. Anticancer Research, 15(5b), 2065–2070.PubMed Miele, M. E., McGary, C. T., & Welch, D. R. (1995). SOD2 (MnSOD) does not suppress tumorigenicity or metastasis of human melanoma C8161 cells. Anticancer Research, 15(5b), 2065–2070.PubMed
149.
Zurück zum Zitat Welch, D. R. (1997). Technical considerations for studying cancer metastasis in vivo. Clinical and Experimental Metastasis, 15(3), 272–306.CrossRefPubMed Welch, D. R. (1997). Technical considerations for studying cancer metastasis in vivo. Clinical and Experimental Metastasis, 15(3), 272–306.CrossRefPubMed
150.
Zurück zum Zitat Wallace, D. C., Bunn, C. L., & Eisenstadt, J. M. (1975). Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells. Journal of Cell Biology, 67(1), 174–188.CrossRefPubMed Wallace, D. C., Bunn, C. L., & Eisenstadt, J. M. (1975). Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells. Journal of Cell Biology, 67(1), 174–188.CrossRefPubMed
151.
Zurück zum Zitat Wilkins, H. M., Carl, S. M., & Swerdlow, R. H. (2014). Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biology, 2, 619–631.CrossRefPubMedPubMedCentral Wilkins, H. M., Carl, S. M., & Swerdlow, R. H. (2014). Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biology, 2, 619–631.CrossRefPubMedPubMedCentral
152.
Zurück zum Zitat Desjardins, P., Frost, E., & Morais, R. (1985). Ethidium bromide-induced loss of mitochondrial DNA from primary chicken embryo fibroblasts. Molecular and Cellular Biology, 5(5), 1163–1169.CrossRefPubMedPubMedCentral Desjardins, P., Frost, E., & Morais, R. (1985). Ethidium bromide-induced loss of mitochondrial DNA from primary chicken embryo fibroblasts. Molecular and Cellular Biology, 5(5), 1163–1169.CrossRefPubMedPubMedCentral
153.
Zurück zum Zitat Gregoire, M., Morais, R., Quilliam, M. A., & Gravel, D. (1984). On auxotrophy for pyrimidines of respiration-deficient chick embryo cells. European Journal of Biochemistry, 142(1), 49–55.CrossRefPubMed Gregoire, M., Morais, R., Quilliam, M. A., & Gravel, D. (1984). On auxotrophy for pyrimidines of respiration-deficient chick embryo cells. European Journal of Biochemistry, 142(1), 49–55.CrossRefPubMed
154.
Zurück zum Zitat Swerdlow, R. H., Parks, J. K., Miller, S. W., Tuttle, J. B., Trimmer, P. A., Sheehan, J. P., et al. (1996). Origin and functional consequences of the complex I defect in Parkinson’s disease. Annals of Neurology, 40(4), 663–671.CrossRefPubMed Swerdlow, R. H., Parks, J. K., Miller, S. W., Tuttle, J. B., Trimmer, P. A., Sheehan, J. P., et al. (1996). Origin and functional consequences of the complex I defect in Parkinson’s disease. Annals of Neurology, 40(4), 663–671.CrossRefPubMed
155.
Zurück zum Zitat King, M. P., & Attardi, G. (1996). Isolation of human cell lines lacking mitochondrial DNA. Methods in Enzymology, 264, 304–313.CrossRefPubMed King, M. P., & Attardi, G. (1996). Isolation of human cell lines lacking mitochondrial DNA. Methods in Enzymology, 264, 304–313.CrossRefPubMed
156.
Zurück zum Zitat Tripathi, A. K., & Kumar, H. D. (1986). Mutagenesis by ethidium bromide, proflavine and mitomycin C in the cyanobacterium Nostoc sp. Mutation Research, 174(3), 175–178.PubMed Tripathi, A. K., & Kumar, H. D. (1986). Mutagenesis by ethidium bromide, proflavine and mitomycin C in the cyanobacterium Nostoc sp. Mutation Research, 174(3), 175–178.PubMed
157.
Zurück zum Zitat Lakdawalla, A. A., & Netrawali, M. S. (1988). Mutagenicity, comutagenicity, and antimutagenicity of erythrosine (FD and C red 3), a food dye, in the Ames/Salmonella assay. Mutation Research, 204(2), 131–139.CrossRefPubMed Lakdawalla, A. A., & Netrawali, M. S. (1988). Mutagenicity, comutagenicity, and antimutagenicity of erythrosine (FD and C red 3), a food dye, in the Ames/Salmonella assay. Mutation Research, 204(2), 131–139.CrossRefPubMed
158.
Zurück zum Zitat Ohta, T., Tokishita, S., & Yamagata, H. (2001). Ethidium bromide and SYBR green I enhance the genotoxicity of UV-irradiation and chemical mutagens in E. coli. Mutation Research, 492(1–2), 91–97.CrossRefPubMed Ohta, T., Tokishita, S., & Yamagata, H. (2001). Ethidium bromide and SYBR green I enhance the genotoxicity of UV-irradiation and chemical mutagens in E. coli. Mutation Research, 492(1–2), 91–97.CrossRefPubMed
159.
Zurück zum Zitat Jazayeri, M., Andreyev, A., Will, Y., Ward, M., Anderson, C. M., & Clevenger, W. (2003). Inducible expression of a dominant negative DNA polymerase-gamma depletes mitochondrial DNA and produces a rho0 phenotype. Journal of Biological Chemistry, 278(11), 9823–9830.CrossRefPubMed Jazayeri, M., Andreyev, A., Will, Y., Ward, M., Anderson, C. M., & Clevenger, W. (2003). Inducible expression of a dominant negative DNA polymerase-gamma depletes mitochondrial DNA and produces a rho0 phenotype. Journal of Biological Chemistry, 278(11), 9823–9830.CrossRefPubMed
160.
Zurück zum Zitat Nelson, I., Hanna, M. G., Wood, N. W., & Harding, A. E. (1997). Depletion of mitochondrial DNA by ddC in untransformed human cell lines. Somatic Cell and Molecular Genetics, 23(4), 287–290.CrossRefPubMed Nelson, I., Hanna, M. G., Wood, N. W., & Harding, A. E. (1997). Depletion of mitochondrial DNA by ddC in untransformed human cell lines. Somatic Cell and Molecular Genetics, 23(4), 287–290.CrossRefPubMed
161.
Zurück zum Zitat Wong, A., Cavelier, L., Collins-Schramm, H. E., Seldin, M. F., McGrogan, M., Savontaus, M. L., et al. (2002). Differentiation-specific effects of LHON mutations introduced into neuronal NT2 cells. Human Molecular Genetics, 11(4), 431–438.CrossRefPubMed Wong, A., Cavelier, L., Collins-Schramm, H. E., Seldin, M. F., McGrogan, M., Savontaus, M. L., et al. (2002). Differentiation-specific effects of LHON mutations introduced into neuronal NT2 cells. Human Molecular Genetics, 11(4), 431–438.CrossRefPubMed
162.
Zurück zum Zitat Williams, A. J., Murrell, M., Brammah, S., Minchenko, J., & Christodoulou, J. (1999). A novel system for assigning the mode of inheritance in mitochondrial disorders using cybrids and rhodamine 6G. Human Molecular Genetics, 8(9), 1691–1697.CrossRefPubMed Williams, A. J., Murrell, M., Brammah, S., Minchenko, J., & Christodoulou, J. (1999). A novel system for assigning the mode of inheritance in mitochondrial disorders using cybrids and rhodamine 6G. Human Molecular Genetics, 8(9), 1691–1697.CrossRefPubMed
163.
Zurück zum Zitat Gear, A. R. (1974). Rhodamine 6G. A potent inhibitor of mitochondrial oxidative phosphorylation. Journal of Biological Chemistry, 249(11), 3628–3637.PubMed Gear, A. R. (1974). Rhodamine 6G. A potent inhibitor of mitochondrial oxidative phosphorylation. Journal of Biological Chemistry, 249(11), 3628–3637.PubMed
164.
Zurück zum Zitat Ashley, N., Harris, D., & Poulton, J. (2005). Detection of mitochondrial DNA depletion in living human cells using PicoGreen staining. Experimental Cell Research, 303(2), 432–446.CrossRefPubMed Ashley, N., Harris, D., & Poulton, J. (2005). Detection of mitochondrial DNA depletion in living human cells using PicoGreen staining. Experimental Cell Research, 303(2), 432–446.CrossRefPubMed
165.
Zurück zum Zitat Kukat, A., Kukat, C., Brocher, J., Schafer, I., Krohne, G., Trounce, I. A., et al. (2008). Generation of rho0 cells utilizing a mitochondrially targeted restriction endonuclease and comparative analyses. Nucleic Acids Research, 36(7), e44.CrossRefPubMedPubMedCentral Kukat, A., Kukat, C., Brocher, J., Schafer, I., Krohne, G., Trounce, I. A., et al. (2008). Generation of rho0 cells utilizing a mitochondrially targeted restriction endonuclease and comparative analyses. Nucleic Acids Research, 36(7), e44.CrossRefPubMedPubMedCentral
166.
Zurück zum Zitat Heller, S., Schubert, S., Krehan, M., Schafer, I., Seibel, M., Latorre, D., et al. (2013). Efficient repopulation of genetically derived rho zero cells with exogenous mitochondria. PLoS One, 8(9), e73207.CrossRefPubMedPubMedCentral Heller, S., Schubert, S., Krehan, M., Schafer, I., Seibel, M., Latorre, D., et al. (2013). Efficient repopulation of genetically derived rho zero cells with exogenous mitochondria. PLoS One, 8(9), e73207.CrossRefPubMedPubMedCentral
167.
Zurück zum Zitat Nakada, K., Inoue, K., & Hayashi, J. I. (2001). Mito-mice: animal models for mitochondrial DNA-based diseases. Seminars in Cell and Developmental Biology, 12(6), 459–465.CrossRefPubMed Nakada, K., Inoue, K., & Hayashi, J. I. (2001). Mito-mice: animal models for mitochondrial DNA-based diseases. Seminars in Cell and Developmental Biology, 12(6), 459–465.CrossRefPubMed
168.
Zurück zum Zitat Inoue, S., Ishikawa, K., Nakada, K., Sato, A., Miyoshi, H., & Hayashi, J. (2006). Suppression of disease phenotypes of adult mito-mice carrying pathogenic mtDNA by bone marrow transplantation. Human Molecular Genetics, 15(11), 1801–1807.CrossRefPubMed Inoue, S., Ishikawa, K., Nakada, K., Sato, A., Miyoshi, H., & Hayashi, J. (2006). Suppression of disease phenotypes of adult mito-mice carrying pathogenic mtDNA by bone marrow transplantation. Human Molecular Genetics, 15(11), 1801–1807.CrossRefPubMed
169.
Zurück zum Zitat Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., et al. (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature, 429(6990), 417–423.CrossRefPubMed Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., et al. (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature, 429(6990), 417–423.CrossRefPubMed
170.
Zurück zum Zitat Mito, T., Kikkawa, Y., Shimizu, A., Hashizume, O., Katada, S., Imanishi, H., et al. (2013). Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development. PLoS One, 8(2), e55789.CrossRefPubMedPubMedCentral Mito, T., Kikkawa, Y., Shimizu, A., Hashizume, O., Katada, S., Imanishi, H., et al. (2013). Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development. PLoS One, 8(2), e55789.CrossRefPubMedPubMedCentral
171.
Zurück zum Zitat Kauppila, J. H. K., Baines, H. L., Bratic, A., Simard, M. L., Freyer, C., Mourier, A., et al. (2016). A phenotype-driven approach to generate mouse models with pathogenic mtDNA mutations causing mitochondrial disease. Cell Reports, 16(11), 2980–2990.CrossRefPubMedPubMedCentral Kauppila, J. H. K., Baines, H. L., Bratic, A., Simard, M. L., Freyer, C., Mourier, A., et al. (2016). A phenotype-driven approach to generate mouse models with pathogenic mtDNA mutations causing mitochondrial disease. Cell Reports, 16(11), 2980–2990.CrossRefPubMedPubMedCentral
172.
Zurück zum Zitat Yu, X., Gimsa, U., Wester-Rosenlof, L., Kanitz, E., Otten, W., Kunz, M., et al. (2009). Dissecting the effects of mtDNA variations on complex traits using mouse conplastic strains. Genome Research, 19(1), 159–165.CrossRefPubMedPubMedCentral Yu, X., Gimsa, U., Wester-Rosenlof, L., Kanitz, E., Otten, W., Kunz, M., et al. (2009). Dissecting the effects of mtDNA variations on complex traits using mouse conplastic strains. Genome Research, 19(1), 159–165.CrossRefPubMedPubMedCentral
173.
174.
Zurück zum Zitat Bacman, S. R., Williams, S. L., Pinto, M., Peralta, S., & Moraes, C. T. (2013). Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nature Medicine, 19(9), 1111–1113.CrossRefPubMedPubMedCentral Bacman, S. R., Williams, S. L., Pinto, M., Peralta, S., & Moraes, C. T. (2013). Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nature Medicine, 19(9), 1111–1113.CrossRefPubMedPubMedCentral
175.
Zurück zum Zitat Moretton, A., Morel, F., Macao, B., Lachaume, P., Ishak, L., Lefebvre, M., et al. (2017). Selective mitochondrial DNA degradation following double-strand breaks. PLoS One, 12(4), e0176795.CrossRefPubMedPubMedCentral Moretton, A., Morel, F., Macao, B., Lachaume, P., Ishak, L., Lefebvre, M., et al. (2017). Selective mitochondrial DNA degradation following double-strand breaks. PLoS One, 12(4), e0176795.CrossRefPubMedPubMedCentral
176.
Zurück zum Zitat Pereira, C. V., Bacman, S. R., Arguello, T., Zekonyte, U., Williams, S. L., Edgell, D. R., et al. (2018). mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels. EMBO Molecular Medicine 10, e8084. https://doi.org/10.15252/emmm.201708084. Pereira, C. V., Bacman, S. R., Arguello, T., Zekonyte, U., Williams, S. L., Edgell, D. R., et al. (2018). mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels. EMBO Molecular Medicine 10, e8084. https://​doi.​org/​10.​15252/​emmm.​201708084.
Metadaten
Titel
Roles of the mitochondrial genetics in cancer metastasis: not to be ignored any longer
verfasst von
Thomas C. Beadnell
Adam D. Scheid
Carolyn J. Vivian
Danny R. Welch
Publikationsdatum
12.12.2018
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2018
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-018-9772-7

Weitere Artikel der Ausgabe 4/2018

Cancer and Metastasis Reviews 4/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.