Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2018

17.11.2018

Metabolic reprogramming of mitochondrial respiration in metastatic cancer

verfasst von: P. M. Herst, C. Grasso, Michael V. Berridge

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Tumor initiation, progression, and metastasis are tissue context-dependent processes. Cellular and non-cellular factors provide the selective microenvironment that determines the fate of the evolving tumor through mechanisms that include metabolic reprogramming. Genetic and epigenetic changes contribute to this reprogramming process, which is orchestrated through ongoing communication between the mitochondrial and nuclear genomes. Metabolic flexibility, in particular the ability to rapidly adjust the balance between glycolytic and mitochondrial energy production, is a hallmark of aggressive, invasive, and metastatic cancers. Tumor cells sustain damage to both nuclear and mitochondrial DNA during tumorigenesis and as a consequence of anticancer treatments. Nuclear and mitochondrial DNA mutations and polymorphisms are increasingly recognized as factors that influence metabolic reprogramming, tumorigenesis, and tumor progression. Severe mitochondrial DNA damage compromises mitochondrial respiration. When mitochondrial respiration drops below a cell-specific threshold, metabolic reprogramming and plasticity fail to compensate and tumor formation is compromised. In these scenarios, tumorigenesis can be restored by acquisition of respiring mitochondria from surrounding stromal cells. Thus, intercellular mitochondrial transfer has the potential to confer treatment resistance and to promote tumor progression and metastasis. Understanding the constraints of metabolic, and in particular bioenergetic reprogramming, and the role of intercellular mitochondrial transfer in tumorigenesis provides new insights into addressing tumor progression and treatment resistance in highly aggressive cancers.
Literatur
1.
Zurück zum Zitat Wu, F., & Minteer, S. (2015). Krebs cycle metabolon: Structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. Angewandte Chemie, International Edition, 54(6), 1851–1854.CrossRef Wu, F., & Minteer, S. (2015). Krebs cycle metabolon: Structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. Angewandte Chemie, International Edition, 54(6), 1851–1854.CrossRef
2.
Zurück zum Zitat Ahn, C., & Metallo, C. (2015). Mitochondria as biosynthetic factories for cancer proliferation. Cancer & Metabolism, 3(1), 1–10.CrossRef Ahn, C., & Metallo, C. (2015). Mitochondria as biosynthetic factories for cancer proliferation. Cancer & Metabolism, 3(1), 1–10.CrossRef
3.
Zurück zum Zitat Smolková, K., Plecitá-Hlavatá, L., Bellance, N., Benard, G., Rossignol, R., & Ježek, P. (2011). Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. The International Journal of Biochemistry & Cell Biology, 43(7), 950–968.CrossRef Smolková, K., Plecitá-Hlavatá, L., Bellance, N., Benard, G., Rossignol, R., & Ježek, P. (2011). Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. The International Journal of Biochemistry & Cell Biology, 43(7), 950–968.CrossRef
5.
6.
Zurück zum Zitat Coppotelli, G., & Ross, J. (2016). Mitochondria in Ageing and Diseases: The Super Trouper of the Cell. International Journal of Molecular Sciences, 17(5), 711 (1–5).PubMedCentralCrossRef Coppotelli, G., & Ross, J. (2016). Mitochondria in Ageing and Diseases: The Super Trouper of the Cell. International Journal of Molecular Sciences, 17(5), 711 (1–5).PubMedCentralCrossRef
7.
Zurück zum Zitat Deberardinis, R., & Chandel, N. (2016). Fundamentals of cancer metabolism. Oncology, 2(5), e1600200. Deberardinis, R., & Chandel, N. (2016). Fundamentals of cancer metabolism. Oncology, 2(5), e1600200.
8.
Zurück zum Zitat Halestrap, A., & Richardson, A. (2015). The mitochondrial permeability transition: A current perspective on its identity and role in ischaemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 78, 129–141.PubMedCrossRef Halestrap, A., & Richardson, A. (2015). The mitochondrial permeability transition: A current perspective on its identity and role in ischaemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 78, 129–141.PubMedCrossRef
9.
Zurück zum Zitat Simula, L., Nazio, F., & Campello, S. (2017). The mitochondrial dynamics in cancer and immune-surveillance. Seminars in Cancer Biology, 47(December 2016), 29–42.PubMedCrossRef Simula, L., Nazio, F., & Campello, S. (2017). The mitochondrial dynamics in cancer and immune-surveillance. Seminars in Cancer Biology, 47(December 2016), 29–42.PubMedCrossRef
10.
Zurück zum Zitat Giorgi, C., Missiroli, S., Patergnani, S., Duszynski, J., Wieckowski, M., & Pinton, P. (2015). Mitochondria-associated membranes: Composition, molecular mechanisms, and Physiopathological implications. Antioxidants & Redox Signaling, 22(12), 995–1019.CrossRef Giorgi, C., Missiroli, S., Patergnani, S., Duszynski, J., Wieckowski, M., & Pinton, P. (2015). Mitochondria-associated membranes: Composition, molecular mechanisms, and Physiopathological implications. Antioxidants & Redox Signaling, 22(12), 995–1019.CrossRef
11.
Zurück zum Zitat Missiroli, S., Patergnani, S., Caroccia, N., Pedriali, G., Perrone, M., Previati, M., et al. (2018). Mitochondria-associated membranes (MAMs) and inflammation. Cell Death & Disease, 9(3), 329.CrossRef Missiroli, S., Patergnani, S., Caroccia, N., Pedriali, G., Perrone, M., Previati, M., et al. (2018). Mitochondria-associated membranes (MAMs) and inflammation. Cell Death & Disease, 9(3), 329.CrossRef
12.
Zurück zum Zitat Wang, J., Liu, X., Qiu, Y., Shi, Y., Cai, J., Wang, B., Wei, X., Ke, Q., Sui, X., Wang, Y., Huang, Y., Li, H., Wang, T., Lin, R., Liu, Q., & Xiang, A. P. (2018). Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. Journal of Hematology & Oncology, 11(1), 1–13.CrossRef Wang, J., Liu, X., Qiu, Y., Shi, Y., Cai, J., Wang, B., Wei, X., Ke, Q., Sui, X., Wang, Y., Huang, Y., Li, H., Wang, T., Lin, R., Liu, Q., & Xiang, A. P. (2018). Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. Journal of Hematology & Oncology, 11(1), 1–13.CrossRef
13.
Zurück zum Zitat Gottlieb, R., & Stotland, A. (2015). MitoTimer: A novel protein for monitoring mitochondrial turnover in the heart. Journal of Molecular Medicine, 93(3), 271–278.PubMedCrossRef Gottlieb, R., & Stotland, A. (2015). MitoTimer: A novel protein for monitoring mitochondrial turnover in the heart. Journal of Molecular Medicine, 93(3), 271–278.PubMedCrossRef
15.
Zurück zum Zitat Taanman, J.-W. (1999). The mitochondrial genome: Structure, transcription, translation and replication. Biochimica et Biophysica Acta, Bioenergetics, 1410, 103–123.CrossRef Taanman, J.-W. (1999). The mitochondrial genome: Structure, transcription, translation and replication. Biochimica et Biophysica Acta, Bioenergetics, 1410, 103–123.CrossRef
16.
Zurück zum Zitat Hensen, F., Cansiz, S., Gerhold, J., & Spelbrink, J. (2014). To be or not to be a nucleoid protein: A comparison of mass-spectrometry based approaches in the identification of potential mtDNA-nucleoid associated proteins. Biochimie, 100(1), 219–226.PubMedCrossRef Hensen, F., Cansiz, S., Gerhold, J., & Spelbrink, J. (2014). To be or not to be a nucleoid protein: A comparison of mass-spectrometry based approaches in the identification of potential mtDNA-nucleoid associated proteins. Biochimie, 100(1), 219–226.PubMedCrossRef
17.
Zurück zum Zitat Arnould, T., Michel, S., & Renard, P. (2015). Mitochondria retrograde signaling and the UPR mt: Where are we in mammals? International Journal of Molecular Sciences, 16(8), 18224–18251.PubMedPubMedCentralCrossRef Arnould, T., Michel, S., & Renard, P. (2015). Mitochondria retrograde signaling and the UPR mt: Where are we in mammals? International Journal of Molecular Sciences, 16(8), 18224–18251.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Mookerjee, S. A., Gerencser, A. A., Nicholls, D. G., & Brand, M. D. (2017). Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. The Journal of Biological Chemistry, 292(17), 7189–7207.PubMedPubMedCentralCrossRef Mookerjee, S. A., Gerencser, A. A., Nicholls, D. G., & Brand, M. D. (2017). Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. The Journal of Biological Chemistry, 292(17), 7189–7207.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Herst, P. M., Tan, A. S., Scarlett, D.-J. G., & Berridge, M. V. (2004). Cell surface oxygen consumption by mitochondrial gene knockout cells. Biochimica et Biophysica Acta, 1656(2–3), 79–87.PubMedCrossRef Herst, P. M., Tan, A. S., Scarlett, D.-J. G., & Berridge, M. V. (2004). Cell surface oxygen consumption by mitochondrial gene knockout cells. Biochimica et Biophysica Acta, 1656(2–3), 79–87.PubMedCrossRef
20.
Zurück zum Zitat Herst, P., & Berridge, M. (2007). Cell surface oxygen consumption: A major contributor to cellular oxygen consumption in glycolytic cancer cell lines. Biochimica et Biophysica Acta, Bioenergetics, 1767(2), 170–177.CrossRef Herst, P., & Berridge, M. (2007). Cell surface oxygen consumption: A major contributor to cellular oxygen consumption in glycolytic cancer cell lines. Biochimica et Biophysica Acta, Bioenergetics, 1767(2), 170–177.CrossRef
21.
Zurück zum Zitat Herst, P., & Berridge, M. (2006). Plasma membrane electron transport: A new target for cancer drug development. Current Molecular Medicine, 6, 895–904.PubMedCrossRef Herst, P., & Berridge, M. (2006). Plasma membrane electron transport: A new target for cancer drug development. Current Molecular Medicine, 6, 895–904.PubMedCrossRef
22.
Zurück zum Zitat Scarlett, D., Herst, P., Tan, A., Prata, C., & Berridge, M. (2004). Mitochondrial gene-knockout (rho0) cells: A versatile model for exploring the secrets of trans-plasma membrane electron transport. BioFactors, 20(4), 199–206.PubMedCrossRef Scarlett, D., Herst, P., Tan, A., Prata, C., & Berridge, M. (2004). Mitochondrial gene-knockout (rho0) cells: A versatile model for exploring the secrets of trans-plasma membrane electron transport. BioFactors, 20(4), 199–206.PubMedCrossRef
23.
Zurück zum Zitat Courtnay, R., Ngo, D., Malik, N., Ververis, K., Tortorella, S., & Karagiannis, T. (2015). Cancer metabolism and the Warburg effect: The role of HIF-1 and PI3K. Molecular Biology Reports, 42(4), 841–851.PubMedCrossRef Courtnay, R., Ngo, D., Malik, N., Ververis, K., Tortorella, S., & Karagiannis, T. (2015). Cancer metabolism and the Warburg effect: The role of HIF-1 and PI3K. Molecular Biology Reports, 42(4), 841–851.PubMedCrossRef
24.
Zurück zum Zitat Guerra, F., Arbini, A., & Moro, L. (2017). Mitochondria and cancer chemoresistance. Biochimica et Biophysica Acta, Bioenergetics, 1858(8), 686–699.PubMedCrossRef Guerra, F., Arbini, A., & Moro, L. (2017). Mitochondria and cancer chemoresistance. Biochimica et Biophysica Acta, Bioenergetics, 1858(8), 686–699.PubMedCrossRef
25.
Zurück zum Zitat Quinlan, C., Perevoshchikova, I., Orr, A., & Brand, M. (2013). Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biology, 1(1), 304–312.PubMedPubMedCentralCrossRef Quinlan, C., Perevoshchikova, I., Orr, A., & Brand, M. (2013). Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biology, 1(1), 304–312.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Chen, Y., Zhang, H., Zhou, H., Ji, W., & Min, W. (2016). Mitochondrial redox signaling and tumor progression. Cancers (Basel)., 8(4), 1–15.CrossRef Chen, Y., Zhang, H., Zhou, H., Ji, W., & Min, W. (2016). Mitochondrial redox signaling and tumor progression. Cancers (Basel)., 8(4), 1–15.CrossRef
27.
Zurück zum Zitat Holzerová, E., & Prokisch, H. (2015). Mitochondria: Much ado about nothing? How dangerous is reactive oxygen species production? The International Journal of Biochemistry & Cell Biology, 63, 16–20.CrossRef Holzerová, E., & Prokisch, H. (2015). Mitochondria: Much ado about nothing? How dangerous is reactive oxygen species production? The International Journal of Biochemistry & Cell Biology, 63, 16–20.CrossRef
28.
Zurück zum Zitat Dikalov, S. (2011). Crosstalk between mitochondria and NADPH oxidases. Free Radical Biology & Medicine, 51(7), 1289–1301.CrossRef Dikalov, S. (2011). Crosstalk between mitochondria and NADPH oxidases. Free Radical Biology & Medicine, 51(7), 1289–1301.CrossRef
29.
Zurück zum Zitat Warburg, O. (1956). On the origin of cancer ells. Nature, 123(3191), 309–314. Warburg, O. (1956). On the origin of cancer ells. Nature, 123(3191), 309–314.
30.
Zurück zum Zitat Heiden Vander, M. G., Cantley, L., & Thompson, C. (2009). Understanding the Warburg Effect : Cell Proliferation. Science, 324(May), 1029.CrossRef Heiden Vander, M. G., Cantley, L., & Thompson, C. (2009). Understanding the Warburg Effect : Cell Proliferation. Science, 324(May), 1029.CrossRef
31.
Zurück zum Zitat Gatenby, R., & Gillies, R. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews Cancer, 4(11), 891–899.PubMedCrossRef Gatenby, R., & Gillies, R. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews Cancer, 4(11), 891–899.PubMedCrossRef
32.
Zurück zum Zitat Porporato, P., Payen, V., Pérez-Escuredo, J., De Saedeleer, C., Danhier, P., Copetti, T., et al. (2014). A mitochondrial switch promotes tumor metastasis. Cell Reports, 8(3), 754–766.PubMedCrossRef Porporato, P., Payen, V., Pérez-Escuredo, J., De Saedeleer, C., Danhier, P., Copetti, T., et al. (2014). A mitochondrial switch promotes tumor metastasis. Cell Reports, 8(3), 754–766.PubMedCrossRef
33.
Zurück zum Zitat Carelli, V., Maresca, A., Caporali, L., Trifunov, S., Zanna, C., & Rugolo, M. (2015). Mitochondria: Biogenesis and mitophagy balance in segregation and clonal expansion of mitochondrial DNA mutations. The International Journal of Biochemistry & Cell Biology, 63, 21–24.CrossRef Carelli, V., Maresca, A., Caporali, L., Trifunov, S., Zanna, C., & Rugolo, M. (2015). Mitochondria: Biogenesis and mitophagy balance in segregation and clonal expansion of mitochondrial DNA mutations. The International Journal of Biochemistry & Cell Biology, 63, 21–24.CrossRef
34.
Zurück zum Zitat Busch, K., Kowald, A., & Spelbrink, J. (2014). Quality matters: How does mitochondrial network dynamics and quality control impact on mtDNA integrity? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1646), 20130442.PubMedPubMedCentralCrossRef Busch, K., Kowald, A., & Spelbrink, J. (2014). Quality matters: How does mitochondrial network dynamics and quality control impact on mtDNA integrity? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1646), 20130442.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Gumeni, S., & Trougakos, I. (2016). Cross talk of Proteostasis and Mitostasis in cellular Homeodynamics, ageing, and disease. Oxidative Medicine and Cellular Longevity, 2016, 1–24.CrossRef Gumeni, S., & Trougakos, I. (2016). Cross talk of Proteostasis and Mitostasis in cellular Homeodynamics, ageing, and disease. Oxidative Medicine and Cellular Longevity, 2016, 1–24.CrossRef
36.
Zurück zum Zitat Sun, X., & St. John, J. C. (2016). The role of the mtDNA set point in differentiation, development and tumorigenesis. The Biochemical Journal, 473(19), 2955–2971.PubMedCrossRef Sun, X., & St. John, J. C. (2016). The role of the mtDNA set point in differentiation, development and tumorigenesis. The Biochemical Journal, 473(19), 2955–2971.PubMedCrossRef
37.
Zurück zum Zitat van Gisbergen, M. W., Voets, A. M., Starmans, M. H. W., de Coo, I. F. M., Yadak, R., Hoffmann, R. F., Boutros, P. C., Smeets, H. J. M., Dubois, L., & Lambin, P. (2015). How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. Mutation Research, Reviews in Mutation Research, 764, 16–30.PubMedCrossRef van Gisbergen, M. W., Voets, A. M., Starmans, M. H. W., de Coo, I. F. M., Yadak, R., Hoffmann, R. F., Boutros, P. C., Smeets, H. J. M., Dubois, L., & Lambin, P. (2015). How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. Mutation Research, Reviews in Mutation Research, 764, 16–30.PubMedCrossRef
39.
Zurück zum Zitat Singh, B., Modica-Napolitano, J., & Singh, K. (2017). Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Seminars in Cancer Biology, 47(April), 1–17.PubMedPubMedCentralCrossRef Singh, B., Modica-Napolitano, J., & Singh, K. (2017). Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Seminars in Cancer Biology, 47(April), 1–17.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Tuppen, H., Blakely, E., Turnbull, D., & Taylor, R. (2010). Mitochondrial DNA mutations and human disease. Biochimica et Biophysica Acta, 1797(2), 113–128.PubMedCrossRef Tuppen, H., Blakely, E., Turnbull, D., & Taylor, R. (2010). Mitochondrial DNA mutations and human disease. Biochimica et Biophysica Acta, 1797(2), 113–128.PubMedCrossRef
41.
Zurück zum Zitat Garrido, N., Griparic, L., Jokitalo, E., Wartiovaara, J., van der Bliek, A., & Spelbrink, J. N. (2003). Composition and dynamics of human mitochondrial nucleoids. Molecular Biology of the Cell, 14(4), 1583–1596.PubMedPubMedCentralCrossRef Garrido, N., Griparic, L., Jokitalo, E., Wartiovaara, J., van der Bliek, A., & Spelbrink, J. N. (2003). Composition and dynamics of human mitochondrial nucleoids. Molecular Biology of the Cell, 14(4), 1583–1596.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Guliaeva, N., Kuznetsova, E., & Gaziev, A. (2006). Proteins associated with mitochon- drial DNA protect it against the action of X-rays and hydrogen peroxide. Biofizika, 51(4), 692–697.PubMed Guliaeva, N., Kuznetsova, E., & Gaziev, A. (2006). Proteins associated with mitochon- drial DNA protect it against the action of X-rays and hydrogen peroxide. Biofizika, 51(4), 692–697.PubMed
43.
Zurück zum Zitat Twig, G., & Shirihai, O. G. (2011). The interplay between mitochondrial dynamics and mitophagy. Antioxidants & Redox Signaling, 14(10), 1939–1951.CrossRef Twig, G., & Shirihai, O. G. (2011). The interplay between mitochondrial dynamics and mitophagy. Antioxidants & Redox Signaling, 14(10), 1939–1951.CrossRef
44.
Zurück zum Zitat Iommarini, L., Kurelac, I., Capristo, M., Calvaruso, M., Giorgio, V., Bergamini, C., et al. (2014). Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment. Human Molecular Genetics, 23(6), 1453–1466.PubMedCrossRef Iommarini, L., Kurelac, I., Capristo, M., Calvaruso, M., Giorgio, V., Bergamini, C., et al. (2014). Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment. Human Molecular Genetics, 23(6), 1453–1466.PubMedCrossRef
46.
Zurück zum Zitat Kenney, M. C., Chwa, M., Atilano, S. R., Falatoonzadeh, P., Ramirez, C., Malik, D., Tarek, M., del Carpio, J. C., Nesburn, A. B., Boyer, D. S., Kuppermann, B. D., Vawter, M. P., Jazwinski, S. M., Miceli, M. V., Wallace, D. C., & Udar, N. (2014). Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: Implications for population susceptibility to diseases. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1842(2), 208–219.CrossRef Kenney, M. C., Chwa, M., Atilano, S. R., Falatoonzadeh, P., Ramirez, C., Malik, D., Tarek, M., del Carpio, J. C., Nesburn, A. B., Boyer, D. S., Kuppermann, B. D., Vawter, M. P., Jazwinski, S. M., Miceli, M. V., Wallace, D. C., & Udar, N. (2014). Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: Implications for population susceptibility to diseases. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1842(2), 208–219.CrossRef
47.
Zurück zum Zitat Ishikawa, K., Takenaga, K., Akimoto, M., Koshikawa, N., Yamaguchi, A., Imanishi, H., et al. (2008). ROS-Generating Mitochondrial DNA Mutations Can Regulate Tumor Cell Metastasis. Science, 320(5876), 661–664.PubMedCrossRef Ishikawa, K., Takenaga, K., Akimoto, M., Koshikawa, N., Yamaguchi, A., Imanishi, H., et al. (2008). ROS-Generating Mitochondrial DNA Mutations Can Regulate Tumor Cell Metastasis. Science, 320(5876), 661–664.PubMedCrossRef
48.
Zurück zum Zitat Tan, A., Baty, J., Dong, L., Bezawork-Geleta, A., Endaya, B., Goodwin, J., et al. (2015). Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metabolism, 21(1), 81–94.PubMedCrossRef Tan, A., Baty, J., Dong, L., Bezawork-Geleta, A., Endaya, B., Goodwin, J., et al. (2015). Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metabolism, 21(1), 81–94.PubMedCrossRef
49.
Zurück zum Zitat Bayona-Bafaluy, M., Acín-Pérez, R., Mullikin, J., Park, J., Moreno-Loshuertos, R., Hu, P., et al. (2003). Revisiting the mouse mitochondrial DNA sequence. Nucleic Acids Research, 31(18), 5349–5355.PubMedPubMedCentralCrossRef Bayona-Bafaluy, M., Acín-Pérez, R., Mullikin, J., Park, J., Moreno-Loshuertos, R., Hu, P., et al. (2003). Revisiting the mouse mitochondrial DNA sequence. Nucleic Acids Research, 31(18), 5349–5355.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Brinker, A., Vivian, C., Koestler, D., Tsue, T., Jensen, R., & Welch, D. (2017). Mitochondrial haplotype alters mammary cancer tumorigenicity and metastasis in an oncogenic driver–dependent manner. Cancer Research, 77(24), 6941–6949.PubMedPubMedCentralCrossRef Brinker, A., Vivian, C., Koestler, D., Tsue, T., Jensen, R., & Welch, D. (2017). Mitochondrial haplotype alters mammary cancer tumorigenicity and metastasis in an oncogenic driver–dependent manner. Cancer Research, 77(24), 6941–6949.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Hunter, K., Amin, R., Deasy, S., Ha, N., & Wakefield, L. (2018). Genetic insights into the morass of metastatic heterogeneity. Nature Reviews Cancer, 18(4), 211–223.PubMedPubMedCentralCrossRef Hunter, K., Amin, R., Deasy, S., Ha, N., & Wakefield, L. (2018). Genetic insights into the morass of metastatic heterogeneity. Nature Reviews Cancer, 18(4), 211–223.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Vivian, C., Brinker, A., Graw, S., Koestler, D., Legendre, C., Gooden, G., et al. (2017). Mitochondrial genomic backgrounds affect nuclear DNA methylation and gene expression. Cancer Research, 77(22), 6202–6214.PubMedPubMedCentralCrossRef Vivian, C., Brinker, A., Graw, S., Koestler, D., Legendre, C., Gooden, G., et al. (2017). Mitochondrial genomic backgrounds affect nuclear DNA methylation and gene expression. Cancer Research, 77(22), 6202–6214.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Sun, X., Johnson, J., & St John, J. (2018). Global DNA methylation synergistically regulates the nuclear and mitochondrial genomes in glioblastoma cells. Nucleic Acids Research, 46(12), 5977–5995.PubMedPubMedCentralCrossRef Sun, X., Johnson, J., & St John, J. (2018). Global DNA methylation synergistically regulates the nuclear and mitochondrial genomes in glioblastoma cells. Nucleic Acids Research, 46(12), 5977–5995.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Dong, L., Kovarova, J., Bajzikova, M., Bezawork-Geleta, A., Svec, D., Endaya, B., et al. (2017). Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife, 6. Dong, L., Kovarova, J., Bajzikova, M., Bezawork-Geleta, A., Svec, D., Endaya, B., et al. (2017). Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife, 6.
55.
Zurück zum Zitat Lee, W., Sun, X., Tsai, T.-S., Johnson, J., Gould, J., Garama, D., et al. (2017). Mitochondrial DNA haplotypes induce differential patterns of DNA methylation that result in differential chromosomal gene expression patterns. Cell Death & Disease, 3(August), 17062.CrossRef Lee, W., Sun, X., Tsai, T.-S., Johnson, J., Gould, J., Garama, D., et al. (2017). Mitochondrial DNA haplotypes induce differential patterns of DNA methylation that result in differential chromosomal gene expression patterns. Cell Death & Disease, 3(August), 17062.CrossRef
56.
Zurück zum Zitat Danhier, P., Bański, P., Payen, V., Grasso, D., Ippolito, L., Sonveaux, P., et al. (2017). Cancer metabolism in space and time: Beyond the Warburg effect. Biochimica et Biophysica Acta, Bioenergetics, 1858(8), 556–572.PubMedCrossRef Danhier, P., Bański, P., Payen, V., Grasso, D., Ippolito, L., Sonveaux, P., et al. (2017). Cancer metabolism in space and time: Beyond the Warburg effect. Biochimica et Biophysica Acta, Bioenergetics, 1858(8), 556–572.PubMedCrossRef
57.
Zurück zum Zitat Jose, C., Bellance, N., & Rossignol, R. (2011). Choosing between glycolysis and oxidative phosphorylation: A tumor’s dilemma? Biochimica et Biophysica Acta, Bioenergetics, 1807(6), 552–561.CrossRef Jose, C., Bellance, N., & Rossignol, R. (2011). Choosing between glycolysis and oxidative phosphorylation: A tumor’s dilemma? Biochimica et Biophysica Acta, Bioenergetics, 1807(6), 552–561.CrossRef
58.
Zurück zum Zitat Ventura-Clapier, R., Garnier, A., & Veksler, V. (2008). Transcriptional control of mitochondrial biogenesis: The central role of PGC-1alpha. Cardiovascular Research, 79(2), 208–217.PubMedCrossRef Ventura-Clapier, R., Garnier, A., & Veksler, V. (2008). Transcriptional control of mitochondrial biogenesis: The central role of PGC-1alpha. Cardiovascular Research, 79(2), 208–217.PubMedCrossRef
59.
Zurück zum Zitat Berridge, M., & Herst, P. (2015). Tumor cell complexity and metabolic flexibility in tumorigenesis and metastasis. In S. Mazurek & M. Shoshan (Eds.), Tumor cell metabolism (p. 23–43). Vienna: Springer. Berridge, M., & Herst, P. (2015). Tumor cell complexity and metabolic flexibility in tumorigenesis and metastasis. In S. Mazurek & M. Shoshan (Eds.), Tumor cell metabolism (p. 23–43). Vienna: Springer.
60.
Zurück zum Zitat Ralph, S., Rodríguez-Enríquez, S., Neuzil, J., & Moreno-Sánchez, R. (2010). Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Molecular Aspects of Medicine, 31(1), 29–59.PubMedCrossRef Ralph, S., Rodríguez-Enríquez, S., Neuzil, J., & Moreno-Sánchez, R. (2010). Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Molecular Aspects of Medicine, 31(1), 29–59.PubMedCrossRef
61.
Zurück zum Zitat Herst, P., Dawson, R., & Berridge, M. (2018). Intercellular Communication in Tumor Biology: A Role for Mitochondrial Transfer. Frontiers in Oncology, 8(August), 344.PubMedPubMedCentralCrossRef Herst, P., Dawson, R., & Berridge, M. (2018). Intercellular Communication in Tumor Biology: A Role for Mitochondrial Transfer. Frontiers in Oncology, 8(August), 344.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Spees, J., Lee, R., & Gregory, C. (2016). Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Research & Therapy, 7(1), 125.CrossRef Spees, J., Lee, R., & Gregory, C. (2016). Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Research & Therapy, 7(1), 125.CrossRef
63.
Zurück zum Zitat Su, S., Chen, J., Yao, H., Liu, J., Yu, S., Lao, L., et al. (2018). CD10+GPR77+Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell, 172(4), 841–856.e16.PubMedCrossRef Su, S., Chen, J., Yao, H., Liu, J., Yu, S., Lao, L., et al. (2018). CD10+GPR77+Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell, 172(4), 841–856.e16.PubMedCrossRef
64.
Zurück zum Zitat LeBleu, V., & Kalluri, R. (2018). A peek into cancer-associated fibroblasts: origins, functions and translational impact. Disease Models & Mechanisms, 11(4), dmm029447.CrossRef LeBleu, V., & Kalluri, R. (2018). A peek into cancer-associated fibroblasts: origins, functions and translational impact. Disease Models & Mechanisms, 11(4), dmm029447.CrossRef
65.
Zurück zum Zitat Kalluri, R. (2016). The biology and function of fibroblasts in cancer. Nature Reviews. Cancer, 16(9), 582–598.PubMedCrossRef Kalluri, R. (2016). The biology and function of fibroblasts in cancer. Nature Reviews. Cancer, 16(9), 582–598.PubMedCrossRef
66.
Zurück zum Zitat Costa, A., Kieffer, Y., Scholer-Dahirel, A., Pelon, F., Bourachot, B., Cardon, M., et al. (2018). Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell, 33(3), 463–479.e10.PubMedCrossRef Costa, A., Kieffer, Y., Scholer-Dahirel, A., Pelon, F., Bourachot, B., Cardon, M., et al. (2018). Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell, 33(3), 463–479.e10.PubMedCrossRef
67.
Zurück zum Zitat Liao, Z., Tan, Z., Zhu, P., & Tan, N. (2018). Cancer-associated fibroblasts in tumor microenvironment - accomplices in tumor malignancy. Cellular Immunology, (September 2017), 0–1. Liao, Z., Tan, Z., Zhu, P., & Tan, N. (2018). Cancer-associated fibroblasts in tumor microenvironment - accomplices in tumor malignancy. Cellular Immunology, (September 2017), 0–1.
68.
Zurück zum Zitat Barnes, T., & Amir, E. (2017). HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. British Journal of Cancer, 117(4), 451–460.PubMedPubMedCentralCrossRef Barnes, T., & Amir, E. (2017). HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. British Journal of Cancer, 117(4), 451–460.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat King, M. P., & Attardi, G. (1989). Human cells lacking mtDNA: Repopulation with exogenous mitochondria by complementation. Science, 246(4929), 500–503.PubMedCrossRef King, M. P., & Attardi, G. (1989). Human cells lacking mtDNA: Repopulation with exogenous mitochondria by complementation. Science, 246(4929), 500–503.PubMedCrossRef
70.
Zurück zum Zitat Larm, J. A., Vaillant, F., Linnane, A. W., & Lawen, A. (1994). Up-regulation of the plasma membrane oxidoreductase as a prerequisite for viability of human Nawala Ro cells. The Journal of Biological Chemistry, 269, 30097–30100.PubMed Larm, J. A., Vaillant, F., Linnane, A. W., & Lawen, A. (1994). Up-regulation of the plasma membrane oxidoreductase as a prerequisite for viability of human Nawala Ro cells. The Journal of Biological Chemistry, 269, 30097–30100.PubMed
71.
Zurück zum Zitat Spees, J., Olson, S., Whitney, M., & Prockop, D. (2006). Mitochondrial transfer between cells can rescue aerobic respiration. Proceedings of the National Academy of Sciences, 103(5), 1283–1288.CrossRef Spees, J., Olson, S., Whitney, M., & Prockop, D. (2006). Mitochondrial transfer between cells can rescue aerobic respiration. Proceedings of the National Academy of Sciences, 103(5), 1283–1288.CrossRef
72.
Zurück zum Zitat Berridge, M., Dong, L., & Neuzil, J. (2015). Mitochondrial DNA in tumor initiation, progression, and metastasis: Role of horizontal mtDNA transfer. Cancer Research, 75(16), 3203–3208.PubMedCrossRef Berridge, M., Dong, L., & Neuzil, J. (2015). Mitochondrial DNA in tumor initiation, progression, and metastasis: Role of horizontal mtDNA transfer. Cancer Research, 75(16), 3203–3208.PubMedCrossRef
73.
Zurück zum Zitat Rodriguez, A., Nakhle, J., Griessinger, E., & Vignais, M. (2018). Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle, 17(6), 712–721.PubMedPubMedCentralCrossRef Rodriguez, A., Nakhle, J., Griessinger, E., & Vignais, M. (2018). Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle, 17(6), 712–721.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Berridge, M. V., & Tan, A. S. (2010). Effects of mitochondrial gene deletion on tumorigenicity of metastatic melanoma: Reassessing the Warburg effect. Rejuvenation Research, 13(2–3), 139–141.PubMedCrossRef Berridge, M. V., & Tan, A. S. (2010). Effects of mitochondrial gene deletion on tumorigenicity of metastatic melanoma: Reassessing the Warburg effect. Rejuvenation Research, 13(2–3), 139–141.PubMedCrossRef
75.
Zurück zum Zitat Caicedo, A., Fritz, V., Brondello, J.-M., Ayala, M., Dennemont, I., Abdellaoui, N., de Fraipont, F., Moisan, A., Prouteau, C. A., Boukhaddaoui, H., Jorgensen, C., & Vignais, M. L. (2015). MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Scientific Reports, 5(1), 9073.PubMedPubMedCentralCrossRef Caicedo, A., Fritz, V., Brondello, J.-M., Ayala, M., Dennemont, I., Abdellaoui, N., de Fraipont, F., Moisan, A., Prouteau, C. A., Boukhaddaoui, H., Jorgensen, C., & Vignais, M. L. (2015). MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Scientific Reports, 5(1), 9073.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Davis, C., Kim, K.-Y., Bushong, E., Mills, E., Boassa, D., Shih, T., et al. (2014). Transcellular degradation of axonal mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 111(26), 9633–9638.PubMedPubMedCentralCrossRef Davis, C., Kim, K.-Y., Bushong, E., Mills, E., Boassa, D., Shih, T., et al. (2014). Transcellular degradation of axonal mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 111(26), 9633–9638.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Lee, W., Cain, J., Cuddihy, A., Johnson, J., Dickinson, A., Yeung, K.-Y., et al. (2016). Mitochondrial DNA plasticity is an essential inducer of tumorigenesis. Cell Death & Disease, 2(January), 16016.CrossRef Lee, W., Cain, J., Cuddihy, A., Johnson, J., Dickinson, A., Yeung, K.-Y., et al. (2016). Mitochondrial DNA plasticity is an essential inducer of tumorigenesis. Cell Death & Disease, 2(January), 16016.CrossRef
78.
Zurück zum Zitat Moschoi, R., Imbert, V., Nebout, M., Chiche, J., Mary, D., Prebet, T., Saland, E., Castellano, R., Pouyet, L., Collette, Y., Vey, N., Chabannon, C., Recher, C., Sarry, J. E., Alcor, D., Peyron, J. F., & Griessinger, E. (2016). Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood, 128, 253–264.PubMedCrossRef Moschoi, R., Imbert, V., Nebout, M., Chiche, J., Mary, D., Prebet, T., Saland, E., Castellano, R., Pouyet, L., Collette, Y., Vey, N., Chabannon, C., Recher, C., Sarry, J. E., Alcor, D., Peyron, J. F., & Griessinger, E. (2016). Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood, 128, 253–264.PubMedCrossRef
79.
Zurück zum Zitat Marlein, C., Zaitseva, L., Piddock, R., Robinson, S., Edwards, D., Shafat, M., et al. (2017). NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood, 130(14), 1649–1660.PubMed Marlein, C., Zaitseva, L., Piddock, R., Robinson, S., Edwards, D., Shafat, M., et al. (2017). NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood, 130(14), 1649–1660.PubMed
80.
Zurück zum Zitat Kulawiec, M., Safina, A., Desouki, M., Still, I., Matsui, S.-I., Bakin, A., et al. (2008). Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion. Cancer Biology & Therapy, 7(11), 1732–1743.CrossRef Kulawiec, M., Safina, A., Desouki, M., Still, I., Matsui, S.-I., Bakin, A., et al. (2008). Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion. Cancer Biology & Therapy, 7(11), 1732–1743.CrossRef
81.
Zurück zum Zitat Tran, Q., Lee, H., Park, J., Kim, S.-H., & Park, J. (2016). Targeting Cancer metabolism - revisiting the Warburg effects. Toxicology Research, 32(3), 177–193.CrossRef Tran, Q., Lee, H., Park, J., Kim, S.-H., & Park, J. (2016). Targeting Cancer metabolism - revisiting the Warburg effects. Toxicology Research, 32(3), 177–193.CrossRef
Metadaten
Titel
Metabolic reprogramming of mitochondrial respiration in metastatic cancer
verfasst von
P. M. Herst
C. Grasso
Michael V. Berridge
Publikationsdatum
17.11.2018
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2018
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-018-9769-2

Weitere Artikel der Ausgabe 4/2018

Cancer and Metastasis Reviews 4/2018 Zur Ausgabe

EditorialNotes

Preface

NON-THEMATIC REVIEW

Cancers of the eye

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.