Skip to main content
Erschienen in: Journal of Cardiothoracic Surgery 1/2020

Open Access 01.12.2020 | Review

Short-term outcomes of on- vs off-pump coronary artery bypass grafting in patients with left ventricular dysfunction: a systematic review and meta-analysis

verfasst von: Zhiyuan Guan, Xiaoqing Guan, Kaiyun Gu, Xuanqi Lin, Jin Lin, Wenjun Zhou, Ming Xu, Fen Wan, Zhe Zhang, Chunli Song

Erschienen in: Journal of Cardiothoracic Surgery | Ausgabe 1/2020

Abstract

Objectives

Does the manipulation of the off-pump CABG (OPCAB) in patient with depressed left ventricular function is better than on-pump CABG (ONCAB) approach in in-hospital mortality and morbidities? Here we undertook a meta-analysis of the best evidence available on the comparison of primary and second clinical outcomes of the off-pump and on-pump CABG.

Design

Systematic literature reviewer and meta-analysis.

Data sources

PubMed, EMBASE, Web of science and Cochrane Center Registry of Controlled Trials were searched the studies which comparing the use of the off-pump CABG(OPCAB) and on-pump CABG (ONCAB) for patients with LVD during January 1990.1 to January 2018.

Eligibility criteria

All observation studies and randomized controlled trials comparing on-pump and off-pump as main technique for multi-vessel coronary artery disease (defined as severe stenosis (>70%) in at least 2 major diseased coronary arteries) with left ventricular dysfunction(defined as ejection fraction (EF) 40% or less) were included.

Data extraction and synthesis

Authors will screen and select the studies extract the following data, first author, year of publication, trial characters, study design, inclusion and exclusion criteria, graft type, clinical outcome, assess the risk of bias and heterogeneity. Study-specific estimates will pool through the modification of the Newcastle-Ottawa scale for the quality of study and while leave-one-out analysis will be used to detect the impact of individual studies on the robustness of outcomes.

Results

Among the 987 screened articles, a total of 16 studies (32,354 patients) were included. A significant relationship between patient risk profile and benefits from OPCAB was found in terms of the 30-day mortality (odds ratio [OR], 0.84; 95% confidence interval [CI], 0.73–0.97; P = 0.02), stroke (OR, 0.69; 95% CI, 0.55–0.86; P = 0.00), myocardial infarction (MI) (OR, 0.71; 95% CI, 0.53–0.96; P = 0.02), renal failure (OR, 0.71; 95% CI, 0.55–0.93; P = 0.01), pulmonary complication (OR, 0.68; 95% CI, 0.52–0.90; P = 0.01), infection (OR, 0.67; 95% CI, 0.49–0.91; P = 0.00),postoperative transfusion (OR, 0.25; 95% CI, 0.08–0.84; P = 0.02) and reoperation for bleeding (OR, 0.56; 95% CI, 0.41–0.75; P = 0.00). There was no significant difference in atrial fibrillation (AF) (OR, 0.96;95%; CI, 0.78–1.41; P = 0.56) and neurological dysfunction (OR, 0.88; 95% CI, 0.49–1.57; P = 0.65).

Conclusions

Compared with the on-pump CABG with LVD, using the off-pump CABG is a better choice for patients with lower mortality, stroke, MI, RF, pulmonary complication, infection, postoperative transfusion and reoperation for bleeding. Further randomized studies are warranted to corroborate these observational data.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13019-020-01115-0.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
LVD
Left ventricular dysfunction
CABG
Coronary artery bypass grafting
CNS
Central nervous system complications
ICU LOS
The length of stay of an intensive care unit
CPB
Cardiopulmonary bypass
MED
Medical therapy
AKI
Acute kidney disease
CKD
Chronic kidney disease

Introduction

The impresses left ventricular function is important risk factors to effect the clinical outcome of coronary artery bypass surgery. Several meta-analysis has been performed that investigated the short-term and long-term clinical prognosis of on-pump versus off-pump CABG [1, 2]. Topkara et.al found that in-hospital mortality and morbidities were significantly higher in patients underwent CABG with depressed LV function than normal LV function [3]. For patient with lower left ventricular function, comparing medical therapy with CABG for patients with symptomatic coronary artery disease and ejection fraction (EF) as low as 30% have shown a long-term survival benefit for those receiving CABG [4].
The CABG focus on long term benefits compared with medical treatment of coronary artery disease in patients with lower left ventricular function [5] and up to 15% of patients present with severely depressed left ventricular function [6] .Due to the improved technique and LVAD/ECMO led to progressively improved CABG clinical outcome in recent years. on the other hand, it has been suggested that off-pump CABG may be beneficial in patients with severely depressed LV function by avoiding prolonged ischemic times. In the 2011, Jarrel OA et.al [7] has been aggregated meta-analysis which has focused on the comparison of clinical results of the CABG, especially in patients with LVD show that off-pump CABG may be associated with lower incidence of early mortality in patient with LVD. Therefore, the advantages of off-pump compared with conventional on-pump CABG in patients with LVD remain a source of controversy. On this background, the aim of this systematic review was to synthesize the results from all studies reporting the short-term clinical outcome that investigated on- versus off-pump CABG in patients with LVD.

Methods

This systematic review and meta-analysis follow the preferred reporting items for systematic reviews and meta-analysis statement.

Search strategy and definition

A medical librarian developed searches to identify studies that compared the clinical outcome between on-pump and off-pump CABG. PubMed, EMBASE, Web of science and Cochrane Center Registry of Controlled Trials were searched during January 1990.1 to January 2018. Searches used subject headings and keywords for the following terms: ‘coronary artery bypass, off-pump, on-pump, left ventricular dysfunction, cardiopulmonary bypass, CABG.’(Supplement 1 search strategy).
To be eligible for inclusion in our meta-analysis, trials had to conform to the following criteria: the observation studies comparing on-pump and off-pump as main technique for multivessel coronary artery disease (defined as severe stenosis (>70%) in at least 2 major diseased coronary arteries) with left ventricular dysfunction(defined as ejection fraction 40% or less). Animal studies, review papers were excluded. Studies that did not have any of the desired outcome measures or participants who were treated by other modalities such as percutaneous coronary intervention and emergency or salvage conditions were excluded. Incomplete data were excluded. Studies that included interventions other than off-pump versus on-pump CABG were excluded.

Data extractions and quality assessment

Three reviewers (Guan; Gu; Lin) independently extracted the following data from each study, first author, year of publication, trial characteristics, study design, inclusion and exclusion criteria, graft type, clinical outcome (Fig. 1). The following variables were included: study demographics (sample size, publication year, design, and country), patient demographics and comorbidities (age, sex, diabetes, ejection fraction, chronic obstructive pulmonary disease). In the first screening phase, we have excluded 101 papers due to they were irrelevant. The modification of the Newcastle-Ottawa scale is carried out in our meta-analysis with a quality assessment score. The modified Newcastle-Ottawa scale checklist has been summarized in Table 1, and we also define the studies scores higher than 6 as the high-quality study. The quality of all studies has been evaluated by two independent researchers (Zhou; Lin).
Table 1
Quality assessment of included studies using Newcastle-Ottawa scale
First author
Year
Selcetion
Comparability
Outcome
Total
S1
S2
S3
S4
C1
C2
O1
O2
O3
 
Arom, K.V.
2000
1
1
0
1
1
0
1
1
1
7
Yokoyama, T.
2000
1
1
0
1
1
0
1
1
1
7
Shennib, H.
2002
1
1
0
1
1
0
1
1
1
7
Al-Ruzzeh, S.
2003
1
1
0
1
1
0
1
1
1
7
Ascione, R.
2003
1
1
0
1
1
1
1
1
1
8
Goldstein, D.J.
2003
1
1
0
1
1
1
1
1
1
7
Darwazah, A.K.
2006
1
1
0
1
1
1
1
1
1
8
Sharoni, E.
2006
1
1
0
1
1
0
1
1
1
7
Filsoufi, F.
2007
1
1
1
1
1
0
1
1
1
8
Youn, Y.N.
2007
1
1
0
1
1
0
1
1
1
7
Qiu, Z.B.
2008
1
1
0
1
1
0
1
1
1
8
Attaran, S.
2010
1
1
0
1
1
0
1
1
1
7
Caputti, G.M.
2011
1
1
0
1
1
0
1
1
1
7
Emmert, M.Y.,
2012
1
1
0
1
1
0
1
1
1
7
Keeling, W.B.
2013
1
1
0
1
1
0
1
1
1
7
Ueki, C.
2016
1
1
0
1
1
0
1
1
1
7
S1: Representativeness of the exposed cohort; S2: Selection of the non-exposed cohort, S3: Ascertainment of exposure, S4: Demonstration that outcome of interest was not present at start of study; C1&2: Comparability of cohorts on the basis of the design or analysis; O1: Assessment of outcome, O2: Was follow-up long enough for outcomes to occur, O3: Adequacy of follow-up of cohorts

Outcomes

The primary clinical endpoint was 30-days mortality. The secondly clinical endpoint was stroke, myocardial infarction and renal failure, atrial fibrillation, renal failure, pulmonary complications, postoperative transfusion, neurological dysfunction and infection. Pulmonary complications were include respiratory failure (pulmonary insufficiency requiring intubation and ventilation for a period of 72 h or more at any time during the postoperative stay) and postoperative pneumonia (positive sputum cultures with subsequent antibiotic treatment, or an infiltrate on postoperative chest x-ray diagnosed as pneumonia or pneumonitis). The period of secondly clinical outcome were defined as 30 days after surgery.

Statistical analysis

The relationship between on-pump and off-pump CABG and clinical outcome was compared directly by pooling data from the included studies using “meta” and “metaphor” packages in R (version 3.5.3, R Project; R Foundation for Statistical Computing, Vienna, Austria) [8]. We pooled the clinical outcome using OR with 95% CI. OR were used as the common measure for dichotomous data follow by the previous study [7] and Cochrane Handbook for Systematic Reviews of Intervention [9]. The random-effects model because variation among studies due to patients undergoing operations in different centers have varying risk profiles and selection criteria for each surgical technique. We evaluated the heterogeneity by focusing on patients with LVD and a quality score greater than 7 and Heterogeneity was reported as low (I2 = 0–25%), moderate (I2 = 26–50%), high (I2 > 50%), consistent with guidelines. Publication bias was assessed visually by funnel plot and quantitatively by the Egger test [10]. We calculated pooled ORs using the Mantel-Haenszel method. A leave-one-out analysis was performed to examine the impact of individual studies on the robustness of the primary and secondary outcomes. Statistical significance was assumed for P < 0.05.

Results

Among the 987 screened articles, article excluded due to screened the title(29 studies),abstract(60 studies),key word(12 studies) at first time and full text(25 studies) at second time. a total of 16 studies(32,354 patients; 24,295 case of on-pump CABG and 8269 cases of off-pump CABG)were included (Table 2).
Table 2
Study characteristics and patient demographics of included studies
Author
Year
Arm
Total patients
Age,
mean (SD)
Gender,
female
Smoker
COPD
Hypertension
Diabetes
Dyslipidemia
Renal dysfunction
MI
CVA
TDV
LVEF
Arom, K.V.
2000
off-pump
45
70.20 (11.80)
16
10
6
30
15
NR
NR
NR
4
NR
24.80 ± 5%
 
on-pump
132
66 (11.60)
27
24
17
71
45
NR
NR
NR
11
NR
26.40 ± 4%
Yokoyama, T.
2000
off-pump
242
67
NR
NR
34
NR
83
NR
27
NR
NR
NR
≤25.00%
 
on-pump
483
68
NR
NR
44
NR
140
NR
46
NR
NR
NR
≤25.00%
Shennib, H.
2002
off-pump
31
64.6 0(9)
4
9
1
13
13
17
3
25
2
NR
28.80 ± 6.10%
 
on-pump
46
64.50 (9.90)
7
20
7
24
13
20
4
45
4
NR
28.40 ± 5.80%
Al-Ruzzeh, S.
2003
off-pump
106
NR
24
78
7
65
32
73
2
56
15
NR
21.60 ± 1.80%
 
on-pump
199
NR
67
153
19
97
61
106
13
127
24
 
21.80 ± 1.20%
Ascione, R.
2003
off-pump
74
66
10
61
NR
51
23
54
NR
61
7
50
≤30.00%
 
on-pump
176
65
14
132
NR
94
41
130
NR
139
27
141
≤30.00%
Darwazah, A.K.
2006
off-pump
66
56.10 (10.80)
14
43
15
34
30
29
10
44
NR
NR
27.50 ± 5.50%
 
on-pump
84
58.70 (9.40)
25
44
8
38
44
36
8
42
NR
NR
30.10 ± 4.2%
Sharoni, E.
2006
off-pump
144
63 (10.60)
40
55
58
109
67
NR
19
106
NR
107
28 ± 7%
 
on-pump
209
61.90 (10.90)
36
73
48
143
80
NR
26
162
NR
155
28 ± 6%
Filsoufi, F.
2007
off-pump
71
69 (11)
27
NR
8
54
36
NR
9
47
9
48
≤30.00%
 
on-pump
424
65 (11)
117
NR
40
327
193
NR
33
339
32
329
≤30.00%
Youn, Y.N.
2007
off-pump
100
62.90 (8.80)
27
50
3
NR
56
46
14
59
12
85
≤35.00%
 
on-pump
53
62.00 (9.20)
15
20
3
NR
26
22
7
27
4
46
≤35.00%
Qiu, Z.B.
2008
off-pump
84
NR
20
62
16
54
27
59
5
45
8
NR
30.91 ± 1.24%
 
on-pump
102
NR
37
79
23
53
35
56
10
65
6
NR
30.62 ± 1.58%
Attaran, S.
2010
off-pump
406
67
60
79
172
251
132
375
51
69
45
336
≤30.00%
 
on-pump
528
66.10
70
107
222
286
143
458
51
75
54
475
≤30.00%
Caputti, G.M.
2011
off-pump
105
71 (3)
27
26
14
70
31
40
12
42
4
NR
≤20.00%
 
on-pump
112
67 (2)
23
29
13
59
38
48
10
40
8
NR
≤20.00%
Emmert, M.Y.,
2012
off-pump
256
64 (10)
49
157
13
149
91
167
11
176
6
206
≤35.00%
 
on-pump
222
63 (9)
34
133
24
112
50
159
10
203
0
54
≤35.00%
Keeling, W.B.
2013
off-pump
5158
65(11.10)
1161
NR
NR
4393
2560
NR
277
3419
882
NR
23% (20–25%)
 
on-pump
20,509
64
4138
NR
NR
17,245
10,716
NR
923
13,644
3287
NR
23% (20–25%)
Ueki, C.
2016
off-pump
1053
67.40(10.10)
150
701
NR
758
633
571
128
615
182
840
27.20 ± 7.90%
 
on-pump
1134
65.70(10.20)
156
742
NR
835
731
669
160
693
150
955
26.60 ± 10.40%
COPD chronic obstructive pulmonary disease, CVA Cerebrovascular accident, TDV Three diseased vessel, NR not reported
Six of the studies were multicenter. Five studies formed the USA, three from UK and two from Israel, and one each from Canada, Korea, Brazil, China, Switzerland and Japan. All observational studies included were of high quality and low risk of bias. The number of patients in the individual studies ranged from 26 to 20,509 patients in the on-pump CABG group and from 31 to 5158 in the off-pump CABG group. The overall mean age ranged from 65.62 years in the on-pump CABG group and 64.23 in the off-pump CABG group. In the off pump group, the overall percentage of female varied from 12.9–38%, whilst in the on pump group the percentage of female ranged from 8 to 36.3%. All patients had low-normal ejection fraction (range from ≤20% to ≤35%).
For short-term outcomes, mortality was reported in 15 studies (31,668 patients) [1121] and pulmonary complication in 9 studies (3987patients) [11, 12, 15, 16, 19, 20, 22, 23], renal failure in 15 studies (31,801 patients) [5, 1118, 2022, 24], infection in 8 studies (5037 studies) [5, 11, 12, 14, 15, 20, 25], AF in 12 studies (30,789 patients) [12, 1420, 2225], postoperative transfusion in 4 studies (2565 patients) [20, 21, 24, 25], reoperation for bleeding in 11studies(5418 patients) [5, 11, 13, 14, 16, 20, 21, 23, 24], MI in 13 studies (31,686 patients) [5, 1120, 22, 23, 25] and neurological dysfunction in 7 studies (1536 patients) [12, 1420, 22, 23, 25].

Primary outcomes

30-day mortality was 3.34% in off-pump group versus 3.53% in on-pump group (OR, 0.84; 95%CI, 0.73–0.97; P = 0.02) and Leave-one-out analysis supported the robustness of this finding(Figure 2). Funnel plot showed no publication bias (Egger test intercept was − 1.53-0.12, P = 0.12,Supplementary Figure 1a). However, when excluding the study of Ueki, C. et.al, the off-pump was no longer associated with a significantly lower risk of 30-day mortality. (Supplementary Figure 1b).

Secondary outcomes

Off-pump was associated with less stroke (OR, 0.69; 95% CI, 0.55–0.86; P = 0.00), MI (OR, 0.71;95% CI, 0.53–0.96; P = 0.02), renal failure (OR, 0.71; 95% CI, 0.55–0.93; P = 0.01), the pulmonary complication (OR, 0.68; 95% CI, 0.52–0.90; P = 0.01), infection (OR, 0.67; 95% CI, 0.49–0.91;P = 0.00), postoperative transfusion (OR, 0.25; 95% CI, 0.08–0.84; P = 0.02), reoperation for bleeding(OR, 0.56; 95% CI, 0.41–0.75; P = 0.00) respectively. However, there was no significant difference in terms of AF (OR, 0.95; 95% CI, 0.78–1.41; P = 0.56) and neurological dysfunction (OR, 0.84; 95% CI, 0.49–1.57; P = 0.65) (Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11).

Discussions

This study showed that off-pump CABG can be performed with better operative mortality than on-pump CABG among patients with severe LVD in our meta-analysis of contemporary observational clinical studies involving a large cohort of patients. OPCAB were also demonstrated that the rate of stroke, myocardial infarction, renal failure, pulmonary complication, infection, postoperative transfusion and reoperation for bleeding have better advantage than ONCAB.
The results of the present study are consistent with large individual studies included in the current meta-analysis. Kunadian et.al found that CABG can be performed with acceptable operative mortality and 5-year actuarial survival in patients with severe LV dysfunction in the meta-analysis [26]. The Japan Adult Cardiovascular Surgery Database registry of 918 patients with low EF (less than 0.30) reported an operative mortality of 3.30% with off-pump CABG than on-pump CABG (6.10%) [20]. Keeling et al. in the series of 25,667 patients demonstrated that off-pump CABG compared with on-pump CABG was associated with superior predicted mortality risk (2.30% vs 2.10%, P = 0.0001) and Major adverse cardiac events (MACE) (4.40% vs 5.30%, P = 0.01) including stroke, MI and atrial fibrillation [17]. Likewise, in a series of 217 patients with EF ≤ 20%, Capptti et al. demonstrated the operative mortality of 12.50% in the cardiopulmonary bypass group and 3.80% in the off-pump group [27].
The less release of inflammatory mediators, cardioplegia, hypothermia, well blood supply for the sub-endocardium and minimally invasive procedure without cross-clamping, cardiologic arrest and improve flow in IMA grafts make the off-pump CABG an almost-ideal technique for surgery [2832]. Compared with off-pump CABG, on-pump CABG also has the additional advantage of complete revascularization, hemodynamic deterioration and repeated surgical interventions [30]. Off-pump CABG was also associated with a significantly lower incidence of renal failure, stroke, myocardial infarction, pulmonary complications, postoperative transfusion, infection in this high-risk cohort. A recent large-scale clinical trial study by Garg demonstrated that off-pump reduced the risk of acute postoperative kidney than on-pump CABG, but no evidence shows better-preserved kidney function at 1 year follow Avoidance of transfusion and eliminate extracorporeal circulation is thought to be the main reasons for the lower incidence of renal failure [28, 33, 34]. Numerous studies have reported the association of off-pump CABG with the reduced requirement of transfusion in patients with left ventricular dysfunction [35]. However, No improvement in neurocognitive outcomes after off-pump versus on-pump coronary revascularization [36].
The off-pump CABG involves less hypercoagulable state and thromboembolic events, thus reducing micro emboli, activation of the coagulation and inflammatory cascades [37]. Yeatman et al. reported that the patients undergoing either off-pump CABG or on-pump CABG for LVD show that off-pump CABG displayed lower requirements for inotropes, less transfusion requirement, and a slightly shorter hospital stay, but at the price of less complete revascularization [38]. Sawada et al. found that coronary revascularization improves long-term survival and a wide range of viability in 274 patients with ischemic left ventricular dysfunction [39]. Jarral et al. found that the preoperative LVEF had adverse effect on long-term survival of patients with LVD and the long-term survival of patients with severe LVD was significantly lower than those with mild to moderate LVD [40]. But Reid et al. demonstrated that the clinical outcome is improved by surgical revascularization can reduce organ dysfunction which also can improve survival [41].
Many preoperative factors were found to be associated with mortality in CABG with LVD including female sex, increasing older age, diabetes, and peripheral vascular disease as predictors [42, 43]. Margo et al. found that the age (>70 years) and female influences on the needs, concerns, and strategies of CABG caregivers. The effect of CABG on all-cause mortality tended to diminish with increasing age through a more significant burden of comorbidities, which in turn lead to a higher risk of postoperative complications and non-cardiovascular deaths [43]. Both short-and long-term cardiac outcomes of odd-pump CABG are not influenced by age at the operation which prevents the potential complications that can occur in patients undergoing CABG with CPB [44]. The surgeon experience also the essential factors for the clinical outcome of CABG which improved by surgical technique, surgeon volume, and hospital volume, changed surgical training [4548].

Limitations

There are many limitations should be acknowledged. Firstly, the number of patients, the inclusion and the exclusion criteria, the type of surgery, the indication for CABG, methods for the assessment of LV function and the definition of the severe LVD varied across the studies, and the EF has represented a systolic function which cannot be demonstrated left ventricular dimension and diastolic function. Secondly, the surgeon’s volume index and institutional volume index also were not significantly associated with the clinical outcome because the learning curve of off-pump CABG is longer than on-pump CABG. Finally, the present study remains subject to the inherent caveats of a meta-analysis including publication bias, however, in-depth statistical analysis was performed to account for these limitations. In future, the more RCT studies need to studies the clinical outcome of OPCAB and ONCAB.

Conclusions

The published evidence on the clinical effect of the use the off-pump CABG for LVD is mainly derived single-center observational studies from the institutions. The key finding is that the use of off-pump CABG is associated with a reduction in mortality and this finding also provide better implications for clinicians and policymakers .

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13019-020-01115-0.

Acknowledgements

Not applicable.

Patient and public involvement

This is no patient and public Involvement.
As a meta-analysis, no patients involved in the recruitment to and conduct of the study and there also no results be disseminated to study participants. The inclusion criteria and exclusion criteria were used to screen inclusion studies, and leave-out tests were used to analyze the impact of each study on the overall structure.
Not applicable.

Competing interests

There is no found and interest in the papers.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Kowalewski M, et al. Off-pump coronary artery bypass grafting improves short-term outcomes in high-risk patients compared with on-pump coronary artery bypass grafting: Meta-analysis. J Thorac Cardiovasc Surg. 2016;151(1):60–77 e1–58.PubMedCrossRef Kowalewski M, et al. Off-pump coronary artery bypass grafting improves short-term outcomes in high-risk patients compared with on-pump coronary artery bypass grafting: Meta-analysis. J Thorac Cardiovasc Surg. 2016;151(1):60–77 e1–58.PubMedCrossRef
2.
Zurück zum Zitat Smart NA, Dieberg G, King N. Long-term outcomes of on-versus off-pump coronary artery bypass grafting. J Am Coll Cardiol. 2018;71(9):983–91.PubMedCrossRef Smart NA, Dieberg G, King N. Long-term outcomes of on-versus off-pump coronary artery bypass grafting. J Am Coll Cardiol. 2018;71(9):983–91.PubMedCrossRef
3.
Zurück zum Zitat Topkara VK, et al. Coronary artery bypass grafting in patients with low ejection fraction. Circulation. 2005;112(9 Suppl):I344–50.PubMed Topkara VK, et al. Coronary artery bypass grafting in patients with low ejection fraction. Circulation. 2005;112(9 Suppl):I344–50.PubMed
4.
Zurück zum Zitat Luchi RJ, Scott SM, Deupree RH. Comparison of medical and surgical treatment for unstable angina pectoris. Results of a veterans administration cooperative study. N Engl J Med. 1987;316(16):977–84.PubMedCrossRef Luchi RJ, Scott SM, Deupree RH. Comparison of medical and surgical treatment for unstable angina pectoris. Results of a veterans administration cooperative study. N Engl J Med. 1987;316(16):977–84.PubMedCrossRef
5.
Zurück zum Zitat Filsoufi F, et al. Results and predictors of early and late outcome of coronary artery bypass grafting in patients with severely depressed left ventricular function. Ann Thorac Surg. 2007;84(3):808–16.PubMedCrossRef Filsoufi F, et al. Results and predictors of early and late outcome of coronary artery bypass grafting in patients with severely depressed left ventricular function. Ann Thorac Surg. 2007;84(3):808–16.PubMedCrossRef
6.
Zurück zum Zitat Ferguson TB Jr, et al. A decade of change--risk profiles and outcomes for isolated coronary artery bypass grafting procedures, 1990-1999: a report from the STS National Database Committee and the Duke Clinical Research Institute. Society of Thoracic Surgeons. Ann Thorac Surg. 2002;73(2):480–9 discussion 489-90.PubMedCrossRef Ferguson TB Jr, et al. A decade of change--risk profiles and outcomes for isolated coronary artery bypass grafting procedures, 1990-1999: a report from the STS National Database Committee and the Duke Clinical Research Institute. Society of Thoracic Surgeons. Ann Thorac Surg. 2002;73(2):480–9 discussion 489-90.PubMedCrossRef
7.
Zurück zum Zitat Jarral OA, Saso S, Athanasiou T. Off-pump coronary artery bypass in patients with left ventricular dysfunction: a meta-analysis. Ann Thorac Surg. 2011;92(5):1686–94.PubMedCrossRef Jarral OA, Saso S, Athanasiou T. Off-pump coronary artery bypass in patients with left ventricular dysfunction: a meta-analysis. Ann Thorac Surg. 2011;92(5):1686–94.PubMedCrossRef
8.
Zurück zum Zitat Viechtbauer W. Conducting Meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):1–48.CrossRef Viechtbauer W. Conducting Meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):1–48.CrossRef
9.
Zurück zum Zitat Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions: Cochrane book series; 2008.CrossRef Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions: Cochrane book series; 2008.CrossRef
11.
Zurück zum Zitat Al-Ruzzeh S, et al. Is the use of cardiopulmonary bypass for multivessel coronary artery bypass surgery an independent predictor of operative mortality in patients with ischemic left ventricular dysfunction? Ann Thorac Surg. 2003;76(2):444–51 discussion 451-2.PubMedCrossRef Al-Ruzzeh S, et al. Is the use of cardiopulmonary bypass for multivessel coronary artery bypass surgery an independent predictor of operative mortality in patients with ischemic left ventricular dysfunction? Ann Thorac Surg. 2003;76(2):444–51 discussion 451-2.PubMedCrossRef
12.
Zurück zum Zitat Arom KV, et al. Is low ejection fraction safe for off-pump coronary bypass operation? Ann Thorac Surg. 2000;70(3):1021–5.PubMedCrossRef Arom KV, et al. Is low ejection fraction safe for off-pump coronary bypass operation? Ann Thorac Surg. 2000;70(3):1021–5.PubMedCrossRef
13.
Zurück zum Zitat Ascione R, et al. Early and midterm clinical outcome in patients with severe left ventricular dysfunction undergoing coronary artery surgery. Ann Thorac Surg. 2003;76(3):793–9.PubMedCrossRef Ascione R, et al. Early and midterm clinical outcome in patients with severe left ventricular dysfunction undergoing coronary artery surgery. Ann Thorac Surg. 2003;76(3):793–9.PubMedCrossRef
14.
Zurück zum Zitat Attaran S, et al. Does off-pump coronary artery revascularization improve the long-term survival in patients with ventricular dysfunction? Interact Cardiovasc Thorac Surg. 2010;11(4):442–6.PubMedCrossRef Attaran S, et al. Does off-pump coronary artery revascularization improve the long-term survival in patients with ventricular dysfunction? Interact Cardiovasc Thorac Surg. 2010;11(4):442–6.PubMedCrossRef
15.
Zurück zum Zitat Darwazah AK, et al. Myocardial revascularization in patients with low ejection fraction < or =35%: effect of pump technique on early morbidity and mortality. J Card Surg. 2006;21(1):22–7.PubMedCrossRef Darwazah AK, et al. Myocardial revascularization in patients with low ejection fraction < or =35%: effect of pump technique on early morbidity and mortality. J Card Surg. 2006;21(1):22–7.PubMedCrossRef
16.
Zurück zum Zitat Emmert MY, et al. Off-pump surgery is not a contraindication for patients with a severely decreased ejection fraction. Heart Surgery Forum. 2011;14(5):302–6.CrossRef Emmert MY, et al. Off-pump surgery is not a contraindication for patients with a severely decreased ejection fraction. Heart Surgery Forum. 2011;14(5):302–6.CrossRef
17.
Zurück zum Zitat Keeling WB, et al. Off-pump and on-pump coronary revascularization in patients with low ejection fraction: a report from the Society of Thoracic Surgeons National Database. Ann Thorac Surg. 2013;96(1):83–8.PubMedCrossRef Keeling WB, et al. Off-pump and on-pump coronary revascularization in patients with low ejection fraction: a report from the Society of Thoracic Surgeons National Database. Ann Thorac Surg. 2013;96(1):83–8.PubMedCrossRef
18.
Zurück zum Zitat Sharoni E, et al. Off pump coronary artery bypass surgery for significant left ventricular dysfunction: safety, feasibility, and trends in methodology over time--an early experience. Heart. 2006;92(4):499–502.PubMedCrossRef Sharoni E, et al. Off pump coronary artery bypass surgery for significant left ventricular dysfunction: safety, feasibility, and trends in methodology over time--an early experience. Heart. 2006;92(4):499–502.PubMedCrossRef
19.
Zurück zum Zitat Shennib H, et al. Surgical revascularization in patients with poor left ventricular function: on- or off-pump? Ann Thorac Surg. 2002;74(4):S1344–7.PubMedCrossRef Shennib H, et al. Surgical revascularization in patients with poor left ventricular function: on- or off-pump? Ann Thorac Surg. 2002;74(4):S1344–7.PubMedCrossRef
20.
Zurück zum Zitat Ueki C, et al. Off-pump versus on-pump coronary artery bypass grafting in patients with left ventricular dysfunction. J Thorac Cardiovasc Surg. 2016;151(4):1092–8.PubMedCrossRef Ueki C, et al. Off-pump versus on-pump coronary artery bypass grafting in patients with left ventricular dysfunction. J Thorac Cardiovasc Surg. 2016;151(4):1092–8.PubMedCrossRef
21.
Zurück zum Zitat Yokoyama T, et al. Off-pump versus on-pump coronary bypass in high-risk subgroups. Ann Thorac Surg. 2000;70(5):1546–50.PubMedCrossRef Yokoyama T, et al. Off-pump versus on-pump coronary bypass in high-risk subgroups. Ann Thorac Surg. 2000;70(5):1546–50.PubMedCrossRef
22.
Zurück zum Zitat Caputti GM, et al. Off-pump coronary artery bypass surgery in selected patients is superior to the conventional approach for patients with severely depressed left ventricular function. Clinics (Sao Paulo). 2011;66(12):2049–53.CrossRef Caputti GM, et al. Off-pump coronary artery bypass surgery in selected patients is superior to the conventional approach for patients with severely depressed left ventricular function. Clinics (Sao Paulo). 2011;66(12):2049–53.CrossRef
23.
Zurück zum Zitat Goldstein DJ, et al. Multivessel off-pump revascularization in patients with severe left ventricular dysfunction. Eur J Cardiothorac Surg. 2003;24(1):72–80.PubMedCrossRef Goldstein DJ, et al. Multivessel off-pump revascularization in patients with severe left ventricular dysfunction. Eur J Cardiothorac Surg. 2003;24(1):72–80.PubMedCrossRef
24.
Zurück zum Zitat Youn YN, et al. Early and mid-term impacts of cardiopulmonary bypass on coronary artery bypass grafting in patients with poor left ventricular dysfunction: a propensity score analysis. Circ J. 2007;71(9):1387–94.PubMedCrossRef Youn YN, et al. Early and mid-term impacts of cardiopulmonary bypass on coronary artery bypass grafting in patients with poor left ventricular dysfunction: a propensity score analysis. Circ J. 2007;71(9):1387–94.PubMedCrossRef
25.
Zurück zum Zitat Qiu ZB, et al. Is the use of cardiopulmonary bypass for isolated coronary artery bypass an independent predictor of mortality and morbidity in patients with severe left ventricular dysfunction? Chin Med J. 2008;121(23):2397–402.PubMedCrossRef Qiu ZB, et al. Is the use of cardiopulmonary bypass for isolated coronary artery bypass an independent predictor of mortality and morbidity in patients with severe left ventricular dysfunction? Chin Med J. 2008;121(23):2397–402.PubMedCrossRef
26.
Zurück zum Zitat Kunadian V, Zaman A, Qiu W. Revascularization among patients with severe left ventricular dysfunction: a meta-analysis of observational studies. Eur J Heart Fail. 2011;13(7):773–84.PubMedPubMedCentralCrossRef Kunadian V, Zaman A, Qiu W. Revascularization among patients with severe left ventricular dysfunction: a meta-analysis of observational studies. Eur J Heart Fail. 2011;13(7):773–84.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Guido Marco C, et al. Off-pump coronary artery bypass surgery in selected patients is superior to the conventional approach for patients with severely depressed left ventricular function. Clinics. 2011;66(12):2049–53.CrossRef Guido Marco C, et al. Off-pump coronary artery bypass surgery in selected patients is superior to the conventional approach for patients with severely depressed left ventricular function. Clinics. 2011;66(12):2049–53.CrossRef
28.
Zurück zum Zitat Ardawan Julian R, et al. On-pump beating heart versus off-pump coronary artery bypass surgery-evidence of pump-induced myocardial injury. Eur J Cardiothorac Surg. 2005;27(6):1057.CrossRef Ardawan Julian R, et al. On-pump beating heart versus off-pump coronary artery bypass surgery-evidence of pump-induced myocardial injury. Eur J Cardiothorac Surg. 2005;27(6):1057.CrossRef
29.
Zurück zum Zitat Oner G, et al. On-pump/beating-heart myocardial protection for isolated or combined coronary artery bypass grafting in patients with severe left ventricle dysfunction: assessment of myocardial function and clinical outcome. Heart Surg Forum. 2005;8(3):E178.CrossRef Oner G, et al. On-pump/beating-heart myocardial protection for isolated or combined coronary artery bypass grafting in patients with severe left ventricle dysfunction: assessment of myocardial function and clinical outcome. Heart Surg Forum. 2005;8(3):E178.CrossRef
30.
Zurück zum Zitat Santiago G, et al. Outcomes after complete versus incomplete revascularization of patients with multivessel coronary artery disease: a meta-analysis of 89,883 patients enrolled in randomized clinical trials and observational studies. J Am Coll Cardiol. 2013;62(16):1421–31.CrossRef Santiago G, et al. Outcomes after complete versus incomplete revascularization of patients with multivessel coronary artery disease: a meta-analysis of 89,883 patients enrolled in randomized clinical trials and observational studies. J Am Coll Cardiol. 2013;62(16):1421–31.CrossRef
31.
Zurück zum Zitat Busheng Z, et al. Comparison of graft patency between off-pump and on-pump coronary artery bypass grafting: an updated meta-analysis. Ann Thorac Surg. 2014;97(4):1335–41.CrossRef Busheng Z, et al. Comparison of graft patency between off-pump and on-pump coronary artery bypass grafting: an updated meta-analysis. Ann Thorac Surg. 2014;97(4):1335–41.CrossRef
32.
Zurück zum Zitat Benedetto U, et al. Off-pump versus on-pump coronary artery bypass grafting: insights from the arterial revascularization trial. J Thorac Cardiovasc Surg. 2018;155(4):1545–53 e7.PubMedCrossRef Benedetto U, et al. Off-pump versus on-pump coronary artery bypass grafting: insights from the arterial revascularization trial. J Thorac Cardiovasc Surg. 2018;155(4):1545–53 e7.PubMedCrossRef
33.
Zurück zum Zitat Holzmann MJ, et al. Renal dysfunction and long-term risk of ischemic and hemorrhagic stroke following coronary artery bypass grafting. Int J Cardiol. 2013;168(2):1137–42.PubMedCrossRef Holzmann MJ, et al. Renal dysfunction and long-term risk of ischemic and hemorrhagic stroke following coronary artery bypass grafting. Int J Cardiol. 2013;168(2):1137–42.PubMedCrossRef
34.
Zurück zum Zitat Seung Seok H, et al. Effects of acute kidney injury and chronic kidney disease on long-term mortality after coronary artery bypass grafting. Am Heart J. 2015;169(3):419–25.CrossRef Seung Seok H, et al. Effects of acute kidney injury and chronic kidney disease on long-term mortality after coronary artery bypass grafting. Am Heart J. 2015;169(3):419–25.CrossRef
35.
Zurück zum Zitat Gaetano P, et al. Preoperative predicted risk does not fully explain the association between red blood cell transfusion and mortality in coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2012;143(1):178–85.CrossRef Gaetano P, et al. Preoperative predicted risk does not fully explain the association between red blood cell transfusion and mortality in coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2012;143(1):178–85.CrossRef
36.
Zurück zum Zitat Marasco SF, Sharwood LN, Abrarnson MJ. No improvement in neurocognitive outcomes after off-pump versus on-pump coronary revascularisation: a meta-analysis. Eur J Cardiothorac Surg. 2008;33(6):961–70.PubMedCrossRef Marasco SF, Sharwood LN, Abrarnson MJ. No improvement in neurocognitive outcomes after off-pump versus on-pump coronary revascularisation: a meta-analysis. Eur J Cardiothorac Surg. 2008;33(6):961–70.PubMedCrossRef
37.
Zurück zum Zitat Stamou SC, et al. Stroke after coronary artery bypass: incidence, predictors, and clinical outcome. Stroke. 2001;32(7):1508–13.PubMedCrossRef Stamou SC, et al. Stroke after coronary artery bypass: incidence, predictors, and clinical outcome. Stroke. 2001;32(7):1508–13.PubMedCrossRef
38.
Zurück zum Zitat Yeatman M, et al. Off-pump coronary artery bypass surgery for critical left main stem disease: safety, efficacy and outcome. Eur J Cardiothorac Surg. 2001;19(3):239–44.PubMedCrossRef Yeatman M, et al. Off-pump coronary artery bypass surgery for critical left main stem disease: safety, efficacy and outcome. Eur J Cardiothorac Surg. 2001;19(3):239–44.PubMedCrossRef
39.
Zurück zum Zitat Sawada SG, et al. Effect of revascularization on long-term survival in patients with ischemic left ventricular dysfunction and a wide range of viability. Am J Cardiol. 2010;106(2):187–92.PubMedCrossRef Sawada SG, et al. Effect of revascularization on long-term survival in patients with ischemic left ventricular dysfunction and a wide range of viability. Am J Cardiol. 2010;106(2):187–92.PubMedCrossRef
40.
Zurück zum Zitat Jarral OA, Saso S, Athanasiou T. Does off-pump coronary artery bypass surgery have a beneficial effect on mortality in patients with left ventricular dysfunction? Interact Cardiovasc Thorac Surg. 2012;14(6):856–64.PubMedPubMedCentralCrossRef Jarral OA, Saso S, Athanasiou T. Does off-pump coronary artery bypass surgery have a beneficial effect on mortality in patients with left ventricular dysfunction? Interact Cardiovasc Thorac Surg. 2012;14(6):856–64.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Reid C, et al. Clinical characteristics and mortality of patients with multivessel coronary disease undergoing coronary artery bypass grafting compared with percutaneous coronary intervention: a comparison between 2 multi-Centre registries. Heart Lung Circ. 2010;19(8):503.CrossRef Reid C, et al. Clinical characteristics and mortality of patients with multivessel coronary disease undergoing coronary artery bypass grafting compared with percutaneous coronary intervention: a comparison between 2 multi-Centre registries. Heart Lung Circ. 2010;19(8):503.CrossRef
42.
Zurück zum Zitat Vasim F, et al. Response to letter regarding article, “quantification of incomplete revascularization and its association with five-year mortality in the synergy between percutaneous coronary intervention with Taxus and cardiac surgery (SYNTAX) trial: validation of the re”. Circ Cardiovasc Imaging. 2013;128(2):141–51. Vasim F, et al. Response to letter regarding article, “quantification of incomplete revascularization and its association with five-year mortality in the synergy between percutaneous coronary intervention with Taxus and cardiac surgery (SYNTAX) trial: validation of the re”. Circ Cardiovasc Imaging. 2013;128(2):141–51.
43.
Zurück zum Zitat Kang SH, et al. Comparison of outcomes of coronary artery bypass grafting versus drug-eluting stent implantation in patients with severe left ventricular dysfunction. Am J Cardiol. 2017;120(1):69–74.PubMedCrossRef Kang SH, et al. Comparison of outcomes of coronary artery bypass grafting versus drug-eluting stent implantation in patients with severe left ventricular dysfunction. Am J Cardiol. 2017;120(1):69–74.PubMedCrossRef
44.
Zurück zum Zitat Ohira S, et al. Does age at operation influence the short- and long-term outcomes of off-pump coronary artery bypass grafting? Circ J. 2015;79(10):2177–85.PubMedCrossRef Ohira S, et al. Does age at operation influence the short- and long-term outcomes of off-pump coronary artery bypass grafting? Circ J. 2015;79(10):2177–85.PubMedCrossRef
45.
Zurück zum Zitat Birkmeyer JD, et al. Surgeon volume and operative mortality in the United States. N Engl J Med. 2003;349(22):2117–27.PubMedCrossRef Birkmeyer JD, et al. Surgeon volume and operative mortality in the United States. N Engl J Med. 2003;349(22):2117–27.PubMedCrossRef
46.
Zurück zum Zitat Bakaeen FG, et al. Does the level of experience of residents affect outcomes of coronary artery bypass surgery? Ann Thorac Surg. 2009;87(4):1127–34.PubMedCrossRef Bakaeen FG, et al. Does the level of experience of residents affect outcomes of coronary artery bypass surgery? Ann Thorac Surg. 2009;87(4):1127–34.PubMedCrossRef
47.
Zurück zum Zitat Chowdhury MM, Dagash H, Pierro A. A systematic review of the impact of volume of surgery and specialization on patient outcome. Br J Surg. 2007;94(2):145–61.PubMedCrossRef Chowdhury MM, Dagash H, Pierro A. A systematic review of the impact of volume of surgery and specialization on patient outcome. Br J Surg. 2007;94(2):145–61.PubMedCrossRef
48.
Zurück zum Zitat Mahiben M, et al. Surgical learning curves and operative efficiency: a cross-specialty observational study. BMJ Open. 2015;5(3):e006679.CrossRef Mahiben M, et al. Surgical learning curves and operative efficiency: a cross-specialty observational study. BMJ Open. 2015;5(3):e006679.CrossRef
Metadaten
Titel
Short-term outcomes of on- vs off-pump coronary artery bypass grafting in patients with left ventricular dysfunction: a systematic review and meta-analysis
verfasst von
Zhiyuan Guan
Xiaoqing Guan
Kaiyun Gu
Xuanqi Lin
Jin Lin
Wenjun Zhou
Ming Xu
Fen Wan
Zhe Zhang
Chunli Song
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Cardiothoracic Surgery / Ausgabe 1/2020
Elektronische ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-020-01115-0

Weitere Artikel der Ausgabe 1/2020

Journal of Cardiothoracic Surgery 1/2020 Zur Ausgabe

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.