Skip to main content
Erschienen in: Immunologic Research 1-3/2009

01.07.2009

Shortening the immunodeficient period after hematopoietic stem cell transplantation

verfasst von: Isabelle André-Schmutz, Emmanuelle Six, Delphine Bonhomme, Julien Rouiller, Liliane Dal Cortivo, Alain Fischer, Marina Cavazzana-Calvo

Erschienen in: Immunologic Research | Ausgabe 1-3/2009

Einloggen, um Zugang zu erhalten

Abstract

The delayed reconstitution of the T-lymphoid compartment represents a major clinical challenge after HLA-mismatched hematopoietic stem cell transplantation. The generation of new T lymphocytes deriving from transplanted hematopoietic stem cells requires several months, a period associated with an increased risk of opportunistic infections and relapses. Recently, the early steps of human lymphopoiesis and the nature of the thymus-seeding progenitors were described. Moreover several scientific groups succeeded to generate T-cell precursors from murine and human hematopoietic stem cells in vitro by transitory exposition to Notch-ligands. Here we summarize and discuss these results and their possible usage in the development of new cell therapies to shorten the immunodeficient period following hematopoietic stem cell transplantation.
Literatur
1.
Zurück zum Zitat Antoine C, Muller S, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet. 2003;361(9357):553–60.PubMedCrossRef Antoine C, Muller S, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet. 2003;361(9357):553–60.PubMedCrossRef
2.
Zurück zum Zitat Aversa F, Martelli MM, et al. Use of stem cells from mismatched related donors. Curr Opin Hematol. 1997;4(6):419–22.PubMedCrossRef Aversa F, Martelli MM, et al. Use of stem cells from mismatched related donors. Curr Opin Hematol. 1997;4(6):419–22.PubMedCrossRef
3.
Zurück zum Zitat Yoshimi A, Bader P, et al. Donor leukocyte infusion after hematopoietic stem cell transplantation in patients with juvenile myelomonocytic leukemia. Leukemia. 2005;19(6):971–7.PubMedCrossRef Yoshimi A, Bader P, et al. Donor leukocyte infusion after hematopoietic stem cell transplantation in patients with juvenile myelomonocytic leukemia. Leukemia. 2005;19(6):971–7.PubMedCrossRef
4.
Zurück zum Zitat Cobbold M, Khan N, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med. 2005;202(3):379–86.PubMedCrossRef Cobbold M, Khan N, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med. 2005;202(3):379–86.PubMedCrossRef
5.
Zurück zum Zitat Feuchtinger T, Matthes-Martin S, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134(1):64–76.PubMedCrossRef Feuchtinger T, Matthes-Martin S, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134(1):64–76.PubMedCrossRef
6.
Zurück zum Zitat Hamel Y, Blake N, et al. Adenovirally transduced dendritic cells induce bispecific cytotoxic T lymphocyte responses against adenovirus and cytomegalovirus pp65 or against adenovirus and Epstein-Barr virus EBNA3C protein: a novel approach for immunotherapy. Hum Gene Ther. 2002;13(7):855–66.PubMedCrossRef Hamel Y, Blake N, et al. Adenovirally transduced dendritic cells induce bispecific cytotoxic T lymphocyte responses against adenovirus and cytomegalovirus pp65 or against adenovirus and Epstein-Barr virus EBNA3C protein: a novel approach for immunotherapy. Hum Gene Ther. 2002;13(7):855–66.PubMedCrossRef
7.
Zurück zum Zitat Keenan RD, Ainsworth J, et al. Purification of cytomegalovirus-specific CD8 T cells from peripheral blood using HLA-peptide tetramers. Br J Haematol. 2001;115(2):428–34.PubMedCrossRef Keenan RD, Ainsworth J, et al. Purification of cytomegalovirus-specific CD8 T cells from peripheral blood using HLA-peptide tetramers. Br J Haematol. 2001;115(2):428–34.PubMedCrossRef
8.
Zurück zum Zitat Amrolia PJ, Muccioli-Casadei G, et al. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood. 2006;108(6):1797–808.PubMedCrossRef Amrolia PJ, Muccioli-Casadei G, et al. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood. 2006;108(6):1797–808.PubMedCrossRef
9.
Zurück zum Zitat Andre-Schmutz I, Le Deist F, et al. Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet. 2002;360(9327):130–7.PubMedCrossRef Andre-Schmutz I, Le Deist F, et al. Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet. 2002;360(9327):130–7.PubMedCrossRef
10.
Zurück zum Zitat Solomon SR, Mielke S, et al. Selective depletion of alloreactive donor lymphocytes: a novel method to reduce the severity of graft-versus-host disease in older patients undergoing matched sibling donor stem cell transplantation. Blood. 2005;106(3):1123–9.PubMedCrossRef Solomon SR, Mielke S, et al. Selective depletion of alloreactive donor lymphocytes: a novel method to reduce the severity of graft-versus-host disease in older patients undergoing matched sibling donor stem cell transplantation. Blood. 2005;106(3):1123–9.PubMedCrossRef
11.
Zurück zum Zitat Chen BJ, Cui X, et al. Prevention of graft-versus-host disease while preserving graft-versus-leukemia effect after selective depletion of host-reactive T cells by photodynamic cell purging process. Blood. 2002;99(9):3083–8.PubMedCrossRef Chen BJ, Cui X, et al. Prevention of graft-versus-host disease while preserving graft-versus-leukemia effect after selective depletion of host-reactive T cells by photodynamic cell purging process. Blood. 2002;99(9):3083–8.PubMedCrossRef
12.
Zurück zum Zitat Guimond M, Balassy A, et al. P-glycoprotein targeting: a unique strategy to selectively eliminate immunoreactive T cells. Blood. 2002;100(2):375–82.PubMedCrossRef Guimond M, Balassy A, et al. P-glycoprotein targeting: a unique strategy to selectively eliminate immunoreactive T cells. Blood. 2002;100(2):375–82.PubMedCrossRef
13.
Zurück zum Zitat Alpdogan O, Eng JM, et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood. 2005;105(2):865–73.PubMedCrossRef Alpdogan O, Eng JM, et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood. 2005;105(2):865–73.PubMedCrossRef
14.
Zurück zum Zitat Alpdogan O, Muriglan SJ, et al. IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation. J Clin Invest. 2003;112(7):1095–107.PubMed Alpdogan O, Muriglan SJ, et al. IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation. J Clin Invest. 2003;112(7):1095–107.PubMed
15.
Zurück zum Zitat Andre-Schmutz I, Bonhomme D, et al. IL-7 effect on immunological reconstitution after HSCT depends on MHC incompatibility. Br J Haematol. 2004;126(6):844–51.PubMedCrossRef Andre-Schmutz I, Bonhomme D, et al. IL-7 effect on immunological reconstitution after HSCT depends on MHC incompatibility. Br J Haematol. 2004;126(6):844–51.PubMedCrossRef
16.
Zurück zum Zitat Rossi S, Blazar BR, et al. Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood. 2002;100(2):682–91.PubMedCrossRef Rossi S, Blazar BR, et al. Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood. 2002;100(2):682–91.PubMedCrossRef
17.
Zurück zum Zitat Kondo M, Weissman IL, et al. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997;91(5):661–72.PubMedCrossRef Kondo M, Weissman IL, et al. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997;91(5):661–72.PubMedCrossRef
18.
Zurück zum Zitat Bhandoola A, Sambandam A. From stem cell to T cell: one route or many? Nat Rev Immunol. 2006;6(2):117–26.PubMedCrossRef Bhandoola A, Sambandam A. From stem cell to T cell: one route or many? Nat Rev Immunol. 2006;6(2):117–26.PubMedCrossRef
19.
Zurück zum Zitat Bell JJ, Bhandoola A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature. 2008;452(7188):764–7.PubMedCrossRef Bell JJ, Bhandoola A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature. 2008;452(7188):764–7.PubMedCrossRef
20.
Zurück zum Zitat Haddad R, Guardiola P, et al. Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood. 2004;104(13):3918–26.PubMedCrossRef Haddad R, Guardiola P, et al. Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood. 2004;104(13):3918–26.PubMedCrossRef
21.
Zurück zum Zitat Hao QL, Zhu J, et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood. 2001;97(12):3683–90.PubMedCrossRef Hao QL, Zhu J, et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood. 2001;97(12):3683–90.PubMedCrossRef
22.
Zurück zum Zitat Hokland P, Hokland M, et al. Identification and cloning of a prethymic precursor T lymphocyte from a population of common acute lymphoblastic leukemia antigen (CALLA)-positive fetal bone marrow cells. J Exp Med. 1987;165(6):1749–54.PubMedCrossRef Hokland P, Hokland M, et al. Identification and cloning of a prethymic precursor T lymphocyte from a population of common acute lymphoblastic leukemia antigen (CALLA)-positive fetal bone marrow cells. J Exp Med. 1987;165(6):1749–54.PubMedCrossRef
23.
Zurück zum Zitat Galy A, Travis M, et al. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity. 1995;3(4):459–73.PubMedCrossRef Galy A, Travis M, et al. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity. 1995;3(4):459–73.PubMedCrossRef
24.
Zurück zum Zitat Davi F, Faili A, et al. Early onset of immunoglobulin heavy chain gene rearrangements in normal human bone marrow CD34+ cells. Blood. 1997;90(10):4014–21.PubMed Davi F, Faili A, et al. Early onset of immunoglobulin heavy chain gene rearrangements in normal human bone marrow CD34+ cells. Blood. 1997;90(10):4014–21.PubMed
25.
Zurück zum Zitat Dworzak MN, Fritsch G, et al. Four-color flow cytometric investigation of terminal deoxynucleotidyl transferase-positive lymphoid precursors in pediatric bone marrow: CD79a expression precedes CD19 in early B-cell ontogeny. Blood. 1998;92(9):3203–9.PubMed Dworzak MN, Fritsch G, et al. Four-color flow cytometric investigation of terminal deoxynucleotidyl transferase-positive lymphoid precursors in pediatric bone marrow: CD79a expression precedes CD19 in early B-cell ontogeny. Blood. 1998;92(9):3203–9.PubMed
26.
Zurück zum Zitat Rossi MI, Yokota T, et al. B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood. 2003;101(2):576–84.PubMedCrossRef Rossi MI, Yokota T, et al. B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood. 2003;101(2):576–84.PubMedCrossRef
27.
Zurück zum Zitat Hoffmann-Fezer G, Knapp W, et al. Anatomical distribution of call antigen expressing cells in normal lymphatic tissue and in lymphomas. Leuk Res. 1982;6(6):761–7.PubMedCrossRef Hoffmann-Fezer G, Knapp W, et al. Anatomical distribution of call antigen expressing cells in normal lymphatic tissue and in lymphomas. Leuk Res. 1982;6(6):761–7.PubMedCrossRef
28.
Zurück zum Zitat Neudorf SM, LeBien TW, et al. Characterization of thymocytes expressing the common acute lymphoblastic leukemia antigen. Leuk Res. 1984;8(2):173–9.PubMedCrossRef Neudorf SM, LeBien TW, et al. Characterization of thymocytes expressing the common acute lymphoblastic leukemia antigen. Leuk Res. 1984;8(2):173–9.PubMedCrossRef
29.
30.
Zurück zum Zitat Dik WA, Pike-Overzet K, et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med. 2005;201(11):1715–23.PubMedCrossRef Dik WA, Pike-Overzet K, et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med. 2005;201(11):1715–23.PubMedCrossRef
31.
Zurück zum Zitat Weerkamp F, Baert MR, et al. Human thymus contains multipotent progenitors with T/B lymphoid, myeloid, and erythroid lineage potential. Blood. 2006;107(8):3131–7.PubMedCrossRef Weerkamp F, Baert MR, et al. Human thymus contains multipotent progenitors with T/B lymphoid, myeloid, and erythroid lineage potential. Blood. 2006;107(8):3131–7.PubMedCrossRef
32.
Zurück zum Zitat de Pooter R, Zuniga-Pflucker JC. T-cell potential and development in vitro: the OP9-DL1 approach. Curr Opin Immunol. 2007;19(2):163–8.PubMedCrossRef de Pooter R, Zuniga-Pflucker JC. T-cell potential and development in vitro: the OP9-DL1 approach. Curr Opin Immunol. 2007;19(2):163–8.PubMedCrossRef
33.
Zurück zum Zitat Six EM, Bonhomme D, et al. A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. J Exp Med. 2007;204(13):3085–93.PubMedCrossRef Six EM, Bonhomme D, et al. A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. J Exp Med. 2007;204(13):3085–93.PubMedCrossRef
34.
Zurück zum Zitat Res P, Martinez-Caceres E, et al. CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood. 1996;87(12):5196–206.PubMed Res P, Martinez-Caceres E, et al. CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood. 1996;87(12):5196–206.PubMed
35.
Zurück zum Zitat Sambandam A, Maillard I, et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol. 2005;6(7):663–70.PubMedCrossRef Sambandam A, Maillard I, et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol. 2005;6(7):663–70.PubMedCrossRef
36.
Zurück zum Zitat Tan JB, Visan I, et al. Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nat Immunol. 2005;6(7):671–9.PubMedCrossRef Tan JB, Visan I, et al. Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nat Immunol. 2005;6(7):671–9.PubMedCrossRef
37.
Zurück zum Zitat Lefort N, Lelièvre LD, et al. Short exposure to Notch ligands is sufficient to induce T and NK cell programs and to increase the T cell potential of primary human CD34+ cells. Exp Hematol. 2006;34(12):1720–9.PubMedCrossRef Lefort N, Lelièvre LD, et al. Short exposure to Notch ligands is sufficient to induce T and NK cell programs and to increase the T cell potential of primary human CD34+ cells. Exp Hematol. 2006;34(12):1720–9.PubMedCrossRef
38.
Zurück zum Zitat Zakrzewski JL, Kochman AA, et al. Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Nat Med. 2006;12(9):1039–47.PubMedCrossRef Zakrzewski JL, Kochman AA, et al. Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Nat Med. 2006;12(9):1039–47.PubMedCrossRef
39.
Zurück zum Zitat Zakrzewski JL, Suh D, et al. Tumor immunotherapy across MHC barriers using allogeneic T-cell precursors. Nat Biotechnol. 2008;26(4):453–61.PubMedCrossRef Zakrzewski JL, Suh D, et al. Tumor immunotherapy across MHC barriers using allogeneic T-cell precursors. Nat Biotechnol. 2008;26(4):453–61.PubMedCrossRef
Metadaten
Titel
Shortening the immunodeficient period after hematopoietic stem cell transplantation
verfasst von
Isabelle André-Schmutz
Emmanuelle Six
Delphine Bonhomme
Julien Rouiller
Liliane Dal Cortivo
Alain Fischer
Marina Cavazzana-Calvo
Publikationsdatum
01.07.2009
Verlag
Humana Press Inc
Erschienen in
Immunologic Research / Ausgabe 1-3/2009
Print ISSN: 0257-277X
Elektronische ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-008-8080-7

Weitere Artikel der Ausgabe 1-3/2009

Immunologic Research 1-3/2009 Zur Ausgabe

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

HNO-Op. auch mit über 90?

16.04.2024 HNO-Chirurgie Nachrichten

Mit Blick auf das Risiko für Komplikationen nach elektiven Eingriffen im HNO-Bereich scheint das Alter der Patienten kein ausschlaggebender Faktor zu sein. Entscheidend ist offenbar, wie fit die Betroffenen tatsächlich sind.

Intrakapsuläre Tonsillektomie gewinnt an Boden

16.04.2024 Tonsillektomie Nachrichten

Gegenüber der vollständigen Entfernung der Gaumenmandeln hat die intrakapsuläre Tonsillektomie einige Vorteile, wie HNO-Fachleute aus den USA hervorheben. Sie haben die aktuelle Literatur zu dem Verfahren gesichtet.

Bilateraler Hörsturz hat eine schlechte Prognose

15.04.2024 Hörsturz Nachrichten

Die Mehrzahl der Menschen mit Hörsturz ist einseitig betroffen, doch auch ein beidseitiger Hörsturz ist möglich. Wie häufig solche Fälle sind und wie sich ihr Verlauf darstellt, hat eine HNO-Expertenrunde aus den USA untersucht.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.