Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2023

Open Access 01.12.2023 | Research

Single-port three-dimensional (3D) endoscopic-assisted breast surgery—preliminary results and patient-reported satisfaction in 145 breast cancer and gynecomastia cases

verfasst von: Clement Luck Khng Chia, Chayanee Sae-lim, Hung-Wen Lai, Korawan Chandrachamnong, Hsin-I. Huang, Dar-Ren Chen, Shou-Tung Chen

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2023

Abstract

Background

Minimal-accessed (robotic and endoscopic) breast cancer surgery is increasingly performed due to better cosmetic results and acceptable oncological outcomes. This study aims to demonstrate the clinical safety and patient-reported cosmetic satisfaction of single-port three-dimensional endoscopic-assisted breast surgery (S-P 3D EABS), which is our new endoscopic surgical innovation, in both malignant and benign breast conditions.

Methods

Patients who underwent S-P 3D EABS from 1 August 2018 to 31 July 2022 in a single institution were enrolled. Clinical outcomes of this procedure were retrospectively reviewed, and the patient-reported cosmetic satisfaction was evaluated by a questionnaire and reported herein.

Results

During the study period, 145 patients underwent 164 procedures of S-P 3D EABS. One hundred fifty (91.5%) procedures were endoscopic-assisted nipple-sparing mastectomy (S-P 3D E-NSM; 117 therapeutic procedures for breast cancer, 13 prophylactic mastectomies, 20 procedures for gynecomastia). Fourteen (8.5%) procedures of endoscopic-assisted breast-conserving surgery (S-P 3D E-BCS) were performed (12 S-P 3D E-BCS, 2 S-P 3D E-BCS with 3D videoscope-assisted partial breast reconstruction, which was 1 case of latissimus dorsi flap and 1 case of omental flap). The mean operative time was 245 ± 110 min in S-P 3D E-NSM and 260 ± 142 min in S-P 3D E-BCS. The mean intraoperative blood loss was 49.7 ± 46.9 ml in S-P 3D E-NSM and 32.8 ± 17.5 ml in S-P 3D E-BCS. Subnipple biopsy showed positive malignancy in 3 (2.6%) S-P 3D E-NSM patients. None of the S-P 3D E-BCS patients found margin involvement; however, 3 (2.6%) reported margin involvement in S-P 3D E-NSM patients. Thirty-two complications were found (24.6%): 7 (5.3%) transient nipple-areolar complex (NAC) ischemia, 7 (5.3%) partial NAC necrosis, 1 (0.7%) total NAC necrosis, and 1 (0.7%) implant loss. During the mean follow-up time of 34 months, there were 2 (1.5%) patients with locoregional recurrence, 9 (6.9%) distant metastasis, and 2 (1.5%) mortality. 78.6% (77/98) of patients answering the cosmetic-evaluated questionnaire reported good and excellent overall satisfaction.

Conclusions

S-P 3D EABS is a novel surgical innovation, which is able to perform safely in either malignant or benign breast conditions and offer promising cosmetic results.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12957-023-03191-7.
Clement Luck Khng Chia and Chayanee Sae-lim contributed equally as the first authors.
Synopsis: Single-port three-dimensional (3D) endoscopic-assisted breast surgery (EABS) is a novel surgical innovation, which is able to perform safely in either malignant or benign breast conditions and offers promising cosmetic results.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
S-P 3D EABS
Single-port 3-dimensional endoscopic-assisted breast surgery
S-P 3D E-NSM
Single-port 3-dimensional endoscopic-assisted nipple-sparing mastectomy
S-P 3D E-BCS
Single-port 3-dimensional endoscopic-assisted breast-conserving surgery
BMI
Body mass index
ALN
Axillary lymph node
SLNB
Sentinel lymph node biopsy
ALND
Axillary lymph node dissection
TRAM flap
Transverse rectus abdominis myocutaneous flap
LD flap
Latissimus dorsi myocutaneous flap

Background

Currently, the trend towards minimal-accessed breast surgery, endoscopic-assisted breast surgery (EABS), and robotic-assisted breast surgery (RABS) is rising in breast cancer treatment owing to its superior cosmetic results while maintaining oncological outcomes [19].
We developed the single-port three dimensional (3D) endoscopic-assisted breast surgery (S-P 3D EABS) from our experiences in the dual-incision 2D endoscopic surgery with retractors, which we have done before. First of all, we attempted to perform an endoscopic resection via a single incision in an inconspicuous axillary area, not only to achieve excellent cosmetic outcomes but also to preserve blood supply to the nipple areolar complex (NAC) and skin flap [3]. Therefore, to get an adequate exposure from an incision located distantly from the resected area, an air-insufflation system was utilized instead of a manual retraction. As a result, it could reduce the burdensome of surgical assistance and minimize the risk of skin flap or NAC ischemia/necrosis [3]. Furthermore, we utilized the benefits of the 3D imaging magnification system to enhance surgical precision [3, 1013](Fig. 1a–c). Lastly, compared with RABS, S-P 3D EABS offers advantages such as reduced cost, fewer instruments required, and the ability to incorporate various oncoplastic techniques [4, 1418]; therefore, we adapted this technique for both benign and malignant breast surgeries.
This study reports our 4-year experience with S-P 3D EABS, aiming to demonstrate the technique and highlight its clinical safety and patient-report satisfaction in breast cancer and benign breast conditions, including gynecomastia.

Methods

Patients

This retrospective study aimed to demonstrate the clinical outcomes and patient-reported satisfaction of our S-P 3D EABS. Patients who underwent S-P 3D EABS from 1 August 2018 to 31 July 2022, in Changhua Christian Hospital (CCH), a tertiary medical center in central Taiwan, were included. The clinicopathologic characteristics collected from the breast cancer database at CCH included age, BMI, tumor location, tumor size, staging, neoadjuvant treatment, types of surgery and reconstruction, histology, molecular subtypes, and adjuvant treatments. All data was collected by specially trained nurses through chart review and confirmed by the principal investigator (HWL) subsequently.
Ethical approval for the study was obtained from the Institutional Review Board of the CCH (CCH IRB No. 141224 and 211228). The current study included photos of several patients who agreed and signed the consent for the publication of their pictures at the outpatient clinic during the follow-up time when we started conducting this study.

Outcome measures

The main outcomes in our study included perioperative parameters and short-term oncological safety. Perioperative parameters included operative time (separated into time for breast surgery and reconstruction and summarized into total operative time), intraoperative blood loss, length of hospital stay, an incidence of margin and subnipple involvement by malignancy, and complications.
Intra-operative blood loss was measured during the whole operation including breast, axillary surgery, and immediate reconstruction if it was performed. Perioperative hospital stay and breast specimen weight were recorded. Margin involvement by invasive and non-invasive cancer was evaluated in all patients. In all patients who received single-port 3D endoscopic-assisted nipple-sparing mastectomy (S-P 3D E-NSM), subnipple tissue biopsy was performed and sent for intraoperative frozen section and pathological examination. If subnipple biopsy was positive for malignancy, the nipple was excised to perform skin-sparing mastectomy.
Additionally, postoperative complications occurring within 3 months after the surgery were recorded, including delayed wound healing, skin blisters from temporary thermal injury to the skin flap, hematoma and seroma formation, infection, the NAC and skin flap ischemia/necrosis, and implant loss. NAC and skin flap ischemia were evaluated during 2 weeks to 3 months postoperatively. The eventual survival of NAC and skin flap was confirmed at 3 months of follow-up visit. The viability of NAC was graded into transient ischemia (recovering without loss of nipple volume), partial necrosis (recovering with partial loss of nipple volume), and total necrosis (leading to total loss of nipple volume) [3]. The severity of skin flap necrosis was graded as temporal color change (cyanosis or erythema), partial thickness skin necrosis (resulting in at least epidermal sloughing), and full-thickness skin flap necrosis [19, 20]. Additionally, we evaluated the extent of the involved surface area by eyeball assessment in the outpatient clinic and categorized it into 1–10%, 11–30%, and > 30% of the entire breast area [19, 20]. Implant loss was defined as an explantation due to surgery-related complications within 3 months of reconstruction [21]. Complication severity was assessed and reported as the Clavien-Dindo (CD) classification [22].
Furthermore, oncologic safety was evaluated through the incidence of locoregional and distant recurrence and breast cancer-specific mortality after S-P 3D EABS. Locoregional recurrence was defined as cancer reappearance at the operative site [23], and distant recurrence was defined as any recurrence in distal organs [23]. Incidence of recurrence and mortality due to breast cancer was ascertained at the most recent follow-up, which ended on 31 August 2023.

Evaluation of postoperative aesthetic outcomes

Patient-reported cosmetic results were evaluated in an outpatient clinic 3 months after the operations using a questionnaire, which we developed to survey aesthetic outcomes following minimal-accessed breast surgery in our center [35, 7, 24, 25]. A questionnaire consisted of 10 questions, regarding the satisfaction with the scar (appearance, length, and position), overall cosmetic results with clothing, satisfaction in size and symmetry compared with the other side, satisfaction with NAC position, and willingness to choose S-P 3D E-NSM again if they have a second chance to do so. In each question, patients scored 1 (poor), 2 (fair), 3 (good), and 4 (excellent). An overall satisfaction was defined as a summary of scores from questions 2 to 9, which was categorized into excellent (total scores of 28–32), good (total scores of 20–27), fair (total scores of 12–19), and poor (total scores of 8–11). Patients with aesthetic results of “excellent” or “good” are defined as satisfied with the cosmetic outcome. The contents of our questionnaire are demonstrated in Table 4.

Indications of single-port 3D endoscopic-assisted breast surgery (S-P 3D EABS)

Patients were evaluated an eligibility for S-P 3D EABS using preoperative breast sonography, mammography, and/or breast magnetic resonance imaging (MRI). Additionally, liver sonography, chest X-ray, and whole-body bone scan were used to exclude the possibility of distant metastasis. The indications of S-P 3D E-NSM [3, 11] included early-stage breast cancer (ductal carcinoma in situ (DCIS), stage I, II, or IIIA), a tumor size ≤ 5 cm, no apparent multiple lymph node metastases, and no evidence of nipple, skin, or chest wall invasion [3, 23, 25]. S-P 3D E-NSM was contraindicated in any patients with apparent NAC involvement, inflammatory breast cancer, breast cancer with chest wall or skin invasion, locally advanced breast cancer, breast cancer with extensive axillary lymph node metastasis (stage IIIB or later) [3, 23, 25].
Indications for single-port 3D endoscopic-assisted breast-conserving surgery (S-P 3D E-BCS) [7] included early-stage breast cancer (ductal carcinoma in situ (DCIS), stage I or II cancer), tumor size < 3 cm, no evidence of multiple lymph nodes metastasis, and no evidence of skin or chest wall invasion. Patients for whom S-P 3D E-BCS were contraindicated included those with inflammatory breast cancer, multicentric disease, diffuse suspicious or malignant microcalcifications, breast cancer with chest wall or skin invasion, locally advanced breast cancer, breast cancer with extensive axillary lymph nodes metastasis (stage IIIB and above), and contraindicated to radiotherapy [26]. Multifocal disease was not contraindicated when all the lesions could be removed en bloc in a single excision.
In addition, patients with severe comorbidity, such as heart disease, renal failure, liver dysfunction, and poor performance status as assessed by the primary physicians, were not suitable as good candidates for S-P 3D EABS [3, 23, 25].

Surgical procedures

The surgical techniques of S-P 3D E-NSM for breast cancer [3, 11] and S-P 3D E-subcutaneous mastectomy for gynecomastia [27] have been previously described. Preoperative marking was performed in the standing position. After anesthesia induction, the patient was aligned in a supine position with the ipsilateral arm abducted at 90°. The ipsilateral shoulder was then elevated to 30° to facilitate access to an axilla [11]. The location and length of the skin incision varied depending on the specific indication (Figs. 1, 2, 3, and 4). In S-P 3D E-NSM (Figs. 1 and 2) or S-P 3D E-BCS (Fig. 3), the incision could be made in the axilla area to facilitate axillary lymph node surgery, either sentinel lymph node biopsy (SLNB) or axillary lymph node dissection (ALND). In gynecomastia (Fig. 4), the incision was placed at the anterior axillary line at the level of NAC. The length of the skin incision ranged from 2.5 to 5 cm depending on the size of the specimen and the disease nature. In cases with large breasts, the incision size could be extended up to 6 cm to facilitate specimen removal.
In breast cancer cases, conventional SLNB was performed via an axillary incision with the standard dual tracers, using indocyanine green and colloidal human serum albumin labeled with technetium-99 m (Tc-99 m) before the 3D EABS. After sentinel nodes were retrieved, we sent them for frozen section analysis. If macrometastasis was found in the frozen section meeting the criteria for ALND, a conventional ALND was continued in the same operation via the same incision or extending the axillary incision for 1–2 cm if it is necessary to obtain better exposure under a lighted retractor.
For S-P 3D E-NSM, methylene blue mixed with xylocaine jelly was injected from the skin to the retroglandular fat to mark the boundary of the breast for guidance during endoscopic dissection [11, 15, 24, 25]. Hydro-dissection was performed by injecting a tumescent solution containing lactated Ringer’s solution, 0.05% lidocaine, and epinephrine 1:1,000,000 into subcutaneous tissue from the NAC to the peripheral boundary of the breast. A subcutaneous skin flap is first dissected under direct vision for 2–3 cm from an axillary incision to create a working space for the placement of the single port (Glove Port; Nelis, Gyeonggi-do, Korea (Fig. 1d, f) or a glove-made single port (Fig. 1e, g, i). After port placement, carbon dioxide insufflation at a pressure of 8–10 mmHg was then performed to create space [3, 11]. A 30° 10-mm diameter camera TIPCAM 1 S 3D VIDEO Endoscope (KARL STORZ, Germany) was inserted via a 12-mm trocar (Fig. 1d, e, k). For an optimal 3D visualization, a 30° upward angle with reverse 180° imaging was used during the dissection of the outer part of the breast, then turn to a 30° downward angle while dissection of the inner part of the breast.
The dissection was carried out using laparoscopic diathermy curved Metzenbaum scissors (KARL STORZ, Germany) and counteracted by laparoscopic grasping forceps, which were connected to Nelaton suction tubes no.12 to evacuate the smoke created during the surgery (Fig. 1j). To utilize the lifting benefit of an air inflation system, posterior (retroglandular) dissection was performed first, followed by the anterior (subcutaneous) dissection by creating subcutaneous tunnels using Metzenbaum scissors to facilitate and guide the direction of the endoscopic subcutaneous dissection.
To avoid thermal burns to the NAC, laparoscopic hook scissors (Snowden Pencer; BD, USA, Fig. 1k) were used to sharply cut the dense ductal tissue under the NAC. Subnipple tissue was sent for the frozen section analysis in all breast cancer patients who underwent S-P 3D E-NSM by taking two separate specimens (the inner part from coring out the nipple and the outer part from the breast specimen). If a malignant invasion was found in the subnipple area, the entire NAC was removed to perform skin-sparing mastectomy (SSM).
After mastectomy, immediate breast reconstruction was performed if indicated. An option for breast reconstruction, including implant-based or autologous flap procedures, is based on shared decision-making between the patient and surgeon. We performed immediate subpectoral gel implant-based breast reconstruction (IGBR) (Fig. 2(2.1, 2.3)), by lifting the pectoralis major muscle using laparoscopic grasping forceps and dissecting the plane with laparoscopic Metzenbaum scissors or spatula tip suction coagulator. Then, cohesive gel implant was inserted via the axillary incision into a subpectoral muscular pocket formed by pectoralis major, serratus anterior, and fascia of the external oblique muscle [3, 11, 28]. The autologous flaps, such as the pedicle transverse rectus abdominis myocutaneous (TRAM) flap [14] (Fig. 2(2.2)), were placed in the pre-pectoral plane. Before wound closure with absorbable sutures (Vicryl 3–0 and Monocryl 4–0), 2 closed suction drains were placed, which were one in the subpectoral pocket and another above the pectoralis muscle. As for the patients receiving S-P 3D E-NSM “without” reconstruction, the skin was retracted gradually after the removal of the breast tissue leaving a small single incision and an overall breast-like appearance without any skin reduction procedure (Fig. 2(2.4, 2.5)).
In S-P 3D E-BCS, intraoperative ultrasonography with a linear probe 50 mm, 12 MHz (Fig. 1h), was used to locate the tumor site, and the resection margin was marked using methylene blue mixed with xylocaine gel at 1.5 cm beyond the tumor border. Xylocaine gel helped contain the blue dye in place; as a result, it could prevent an over-resection. [7, 29]. Contrary to S-P 3D E-NSM, the endoscopic dissection in S-P 3D E-BCS began with an anterior (subcutaneous) dissection from an axillary incision to access the tumor resection margin, followed by the parenchymal transection to expose the pectoral fascia using the same instruments as in S-P 3D E-NSM (laparoscopic metzenbaum scissors and monopolar Endo hook). Then, the posterior dissection (retroglandular) dissection was continued, and circumferential parenchymal transection was then carried out to access all the blue-marked resection margin. The entire breast specimen was removed through an axillary incision.
After specimen removal, intraoperative margin assessments were performed with intraoperative specimen ultrasound and mammography. Oncoplastic level I repair with volume displacement technique was performed by laparoscopic suturing of the glandular tissue to minimize postoperative defects (Fig. 3(3.1)). No close-suctioned drain was required in S-P 3D E-BCS without reconstruction. For larger defects, volume replacement using 3D videoscope-assisted partial breast reconstruction techniques was considered [1618], for example, latissimus dorsi myocutaneous (LD) flap (Fig. 3(3.2)) or omental flap (Fig. 3(3.3)). Then, a close-suctioned drain was placed before the wound closure.

Statistical analyses

Differences in continuous variables were tested by the independent t-test and reported as means ± standard deviations. The chi-square test was used for categorical comparisons of data when appropriate. A P-value lower than 0.05 indicates statistical significance. All tests were two-tailed, and all statistical analyses were performed with the statistical package SPSS (version 22.0, SPSS, Chicago, IL, USA).

Results

Patient characteristics

A total of 145 patients with 164 breast operations of 3D EABS were recruited at CCH. 117 (71.3%) procedures of single-port 3D for E-NSM, and 14 (8.5%) procedures of S-P 3D E-BCS were performed for breast cancer treatment. There were 13 (7.9%) procedures of S-P 3D E-prophylaxis mastectomy (9 contralateral risk reduction performed in the same operation with therapeutic S-P 3D E-NSM in breast cancer patients, 4 bilateral prophylactic mastectomies in 2 high-risk patients). After this technique was developed in breast cancer treatment, we applied the concept of S-P 3D EABS to S-P 3D E-subcutaneous mastectomy for patients with gynecomastia (10 patients with bilateral subcutaneous mastectomies (20 procedures, 12.2%) (Fig. 4).
Among 117 breast cancer patients who underwent S-P 3D E-NSM, the mean age of the patients was 52 ± 10.8 years. 28.2% (35/117) of patients received neoadjuvant chemotherapy. Breast reconstructions were performed in 66.7% (78/117) of procedures (71 gel implant reconstruction, 7 TRAM flap). S-P 3D E-NSM without reconstruction was performed in 33.3% (39/117) of them (Fig. 2). The mean pathologic tumor size was 2.9 ± 2.5 cm. Lymph node metastasis was presented in 39.9% (35/117) of them. 87.2% of the therapeutic S-P 3D E-NSM patients had pathologic stages 0–II (30.8% stage 0/pCR, 17.9% stage I, 38.5% stage II).
From 14 cases receiving S-P 3D E-BCS, the mean age of patients was 55.8 ± 9.9 years. 14.3% (2/14) of them received neoadjuvant chemotherapy. The mean pathologic tumor size was 2.1 ± 1.1, cm and lymph node metastasis was found in 14.3% (2/14). All patients who undergone S-P 3D E-BCS had pathological stages 0–II. 3D videoscope-assisted partial breast reconstructions were performed in 2 cases (1 case of LD flap and 1 case of omental flap reconstruction) (Fig. 3). Characteristics of breast cancer patients who underwent S-P 3D EABS were summarized in Table 1.
Table 1
Characteristics of cancer patients who received therapeutic single-port 3-dimensional endoscopic-assisted breast surgery (S-P 3D EABS)
 
ALL (N = 131)
S-P 3D E-NSM (N = 117)
S-P 3D E-BCS
(N = 14)
Age, years, N (%)
 < 40
13 (9.9)
13 (11.1)
0
≧ 40, < 60
81 (61.8)
72 (61.5)
9 (64.3)
≧ 60
37 (28.2)
32 (27.3)
5 (35.7)
Mean ± SD
53.2 ± 10.7
52 ± 10.8
55.8 ± 9.9
BMI (kg/m2), N (%)
 < 18
2 (1.6)
2 (1.7)
0
18–24
70 (53.4)
62 (53)
8 (57.1)
 > 24
59 (45)
53 (45.3)
6 (42.9)
Location, N (%)
Right
74 (56.5)
66 (56.4)
8 (57.1)
Left
57 (43.5)
51 (43.6)
6 (42.9)
Sonographic tumor size, cm, mean ± SD
2.5 ± 1.2
2.6 ± 1.2
2.2 ± 1
Neoadjuvant, N (%)
Yes
35 (26.7)
33 (28.2)
2 (14.3)
No
96 (73.3)
84 (71.8)
12 (85.7)
Axillary surgery, N (%) (NA = 4)
SLNB
100 (78.7)
87 (77)
13 (92.9)
SLNB + ALND
25 (19.7)
24 (21.2)
1 (7.1)
ALND
2 (1.6)
2 (1.8)
0
Reconstruction, N (%)
No reconstruction
51 (38.9)
39 (33.3)
12 (85.8)
Gel implant
71 (54.2)
71 (60.7)
0
TRAM flap
7 (5.3)
7 (6)
0
LD flap
1 (0.8)
0
1 (7.1)
Omental flap
1 (0.8)
0
1 (7.1)
Pathologic tumor size, cm, mean ± SD
2.7 ± 2.4
2.9 ± 2.5
2.1 ± 1.1
Histology, N (%)
DCIS
33 (25.2)
32 (27.4)
1 (7.1)
IDC
79 (60.3)
68 (58.1)
11 (78.6)
ILC
8 (6.1)
7 (6)
1 (7.1)
Othersa
11 (8.4)
10 (8.5)
1 (7.1)
Pathological N status, N (%)
N0
94 (71.8)
82 (70.1)
12 (85.7)
N1
27 (20.6)
25 (21.4)
2 (14.3)
N2
7 (5.3)
7 (6)
0
N3
3 (2.3)
3 (2.5)
0
Pathological staging, N (%)
0/pCR
38 (29)
36 (30.8)
2 (14.3)
I
28 (21.4)
21 (17.9)
7 (50)
II
50 (38.2)
45 (38.5)
5 (35.7)
III
15 (11.4)
15 (12.8)
0
ER, N (%) (NA = 12)
Positive
95 (79.8)
84 (79.2)
11 (84.6)
Negative
24 (20.2)
22 (20.8)
2 (15.4)
PR, N (%) (NA = 14)
Positive
75 (64.1)
67 (64.4)
8 (61.5)
Negative
42 (35.9)
37 (35.6)
5 (38.5)
HER-2, N (%) (NA = 30)
Positive
18 (17.8)
16 (18.2)
2 (15.4)
Negative
83 (82.2)
72 (81.8)
11 (84.5)
Ki-67, N (%) (NA = 40)
≦ 14
41 (45)
35 (44.9)
6 (46.2)
 > 14
50 (55)
43 (55.1)
7 (53.8)
Endocrine therapy, N (%) (yes)
86 (65.7)
76 (65)
10 (71.4)
Chemotherapy, N (%) (yes)
63 (48.1)
58 (49.6)
5 (35.7)
Radiotherapy, N (%) (yes)
50 (38.2)
38 (32.5)
12 (85.7)
S-P 3D E-NSM single-port 3-dimensional endoscopic-assisted nipple-sparing mastectomy, S-P 3D E-BCS single-port 3-dimensional endoscopic-assisted breast-conserving surgery, BMI body mass index, ALN axillary lymph node, SLNB sentinel lymph node biopsy, ALND axillary lymph node dissection, TRAM flap transverse rectus abdominis myocutaneous flap, LD flap latissimus dorsi myocutaneous flap, SD standard deviation
aOther pathologies included solid papillary carcinoma, mucinous carcinoma, neuroendocrine tumor, and no residual tumor in pathological complete response (pCR)

Perioperative outcomes

Among 117 S-P 3D E-NSM procedures for breast cancer patients, the mean total operative time was 245 ± 110 min (187 ± 83 min for S-P 3D E-NSM without reconstruction, 242 ± 84 min for S-P 3D E-NSM with gel implant reconstruction, 545 ± 100 min for S-P 3D E-NSM with TRAM flap). The mean blood loss was 49.7 ± 46.9 ml. Intraoperative subnipple biopsy was performed in all patients, with 2.6% (3/117) of the biopsies yielding positive results and requiring conversion to skin-sparing mastectomy. The mean hospital stay was 6 ± 3 days. Margin involvement was found in 3 (2.6%, 3/117) patients who received S-P 3D E-NSM. Partial NAC ischemia occurred in 7 patients (6%, 7/117), and total NAC necrosis was found in 1 patient (0.8%, 1/117). Temporal color change from decreased blood flow on 1–10% of skin flap area was observed in 4 patients (3.4%, 4/117). None of them suffered from full- or partial-thickness skin flap necrosis. In addition, 95% (18/19) of all skin and NAC ischemic events have been successfully treated with local wound care with neomycin ointment (CD I) [22], except for 1 patient with total NAC necrosis was treated with local debridement at the outpatient clinic (CD IIIa) [22]. Implant loss was reported in 1 patient who experienced an implant infection (0.8%, 1/117).
For the 14 cases of S-P 3D E-BCS, the mean blood loss was 32.8 ± 17.5 ml, and the mean operative time was 260 ± 142 min (233 ± 92 min for S-P 3D E-BCS without reconstruction). The mean specimen weight was 76.9 ± 41.4 g. The length of hospital stay was 3.9 ± 0.8 days. No resection margin involvement or major complications were reported. Only one patient in this group reported seroma, categorized in CD classification I.
Regarding oncological safety, during the mean follow-up duration of 34.5 ± 15.6 (10–60) months, local recurrences were observed in 1.5% (2/131) of cases, distant metastasis in 6.9% (9/131) of cases, and two mortality (1.5%) was reported from the disease progression in patients who initially diagnosed as locally advance breast cancers. Perioperative and oncological outcomes of therapeutic S-P 3D EABS in breast cancer patients were demonstrated in Table 2.
Table 2
Perioperative parameters in cancer patients who undergone therapeutic single-port 3-dimensional endoscopic-assisted breast surgery (S-P 3D EABS)
 
ALL
(N = 131)
S-P 3D E-NSM (n = 117)
S-P 3D E-BCS (n = 14)
Operative time, min, mean ± SD (median, range)
Total time
247 ± 113
(212, 85–720)
245 ± 110
(210, 92–720)
260 ± 142
(227, 85–615)
Breast surgery without reconstruction
191 ± 84
(169, 65–450)
187 ± 83
(164, 65–420)
233 ± 92
(227, 85–450)
Breast surgery with gel implant reconstruction
242 ± 84
(222, 118–494)
Breast surgery with autologous reconstruction
548 ± 100
(524, 430–720)
Omental 615
LD 485
Reconstruction time, min, mean ± SD (median, range)
Gel implant reconstruction
72 ± 24
(60.5, 35–178)
Autologous reconstruction
221 ± 36
(210, 190–300)
Omental 165
LD 210
Blood loss, ml, mean ± SD (median, range)
48.4 ± 45.1
(40, 20–260)
49.7 ± 46.9
(40, 20–260)
32.8 ± 17.5
(25, 20–80)
Conversion to open surgery, N (%)
0
0
0
Length of hospital stay, days, mean ± SD (median, range)
5.8 ± 2.9
(5, 1–28)
6 ± 3
(6, 1–28)
3.9 ± 0.8
(4, 3–6)
Breast specimen weight, g, mean ± SD (median, range)
322.9 ± 177.3
(307, 33–850)
349.4 ± 165.5
(313.5, 36–850)
76.9 ± 41.4
(67, 33–193)
Subnipple tissue biopsy, N (%) (NA = 3)
Positive
3 (2.6)
Negative
111 (97.4)
Margin status, N (%)
Involved
3 (2.3)
3 (2.6)
0
Uninvolved
128 (97.7)
114 (97.4)
14 (100)
Complications, N (%)
Hematoma
1 (0.7)
1 (0.8)
0
Delayed wound healing
0
0
0
Seroma requiring needle aspiration
9 (6.9)
8 (6.8)
1 (6.7)
Small blister formation
0
0
0
Transient NAC ischemia
7 (5.3)
7 (6)
Partial NAC necrosis
7 (5.3)
7 (6)
Total NAC necrosis
1 (0.7)
1 (0.8)
Temporal color change of skin flap from decreased blood flowa
4 (3.0)
4 (3.4)
0
Partial/Full thickness skin flap necrosis
0
0
0
Implant Infection
2 (1.5)
2 (1.7)
0
Implant loss
1 (0.7)
1 (0.8)
0
Surgical complications by Clavien-Dindo classification, N (%)
 I
28 (21.5)
27 (23.1)
1 (6.7)
II
1 (0.7)
1 (0.8)
0
IIIa
1 (0.7)
1 (0.8)
0
IIIb
2 (1.5)
2 (1.7)
0
IVa
0
0
0
IVb
0
0
0
V
0
0
0
Oncologic safety, N (%)
Locoregional recurrence (yes)
2 (1.5)
2 (1.7)
0
Distant metastasis (yes)
9 (6.9)
9 (7.7)
0
Mortality (yes)
2 (1.5)
2 (1.7)
0
Follow-up time, months, mean ± SD (median, range)
34.5 ± 15.6
(36, 10–60)
36.7 ± 14.5
(37, 10–60)
13.6 ± 8.8
(11, 10–4)
S-P 3D E-NSM single-port 3-dimensional endoscopic-assisted nipple-sparing mastectomy, S-P 3D E-BCS single-port 3-dimensional endoscopic-assisted breast-conserving surgery, LD latissimus dorsi myocutaneous flap, NAC nipple-areolar complex, SD standard deviation
aAll patients facing skin flap ischemia had temporal color change on 1–10% of breast surface area, which were reversible without the need of antibiotics or surgical procedure
For the treatment of gynecomastia in male patients, 10 cases of S-P 3D E-subcutaneous mastectomy were performed. The mean age of the patients was 27.2 ± 6.7 years, 80% (8/10) were BMI > 24 kg/m2, and 20% (2/10) were BMI 18–24 kg/m2. According to Simon classification [27], 20% (2/10) of patients had severity grade I (small enlargement without skin excess), 70% (7/10) of them had severity grade IIa (moderate enlargement without skin excess), and the remaining 10% (1/10) of patients had severity grade IIb (moderate enlargement with minor skin excess). Regarding perioperative outcomes in this patient group, the mean total operative time was 310 ± 70 min, mean blood loss 57.5 ± 35.8 ml, mean specimen weight 436.4 ± 261 g, and length of hospital stay 1.8 ± 0.6 days. Clinical outcomes of gynecomastia patients receiving S-P 3D E-subcutaneous mastectomy were shown in Table 3.
Table 3
Clinical outcomes of gynecomastia patients who received single-port 3-dimensional (3D) endoscopic-assisted subcutaneous mastectomy
Gynecomastia patients (N = 10)
Age, years, N ( %)
 < 40
9 (90)
≧ 40, < 60
1 (10)
≧ 60
0
Mean ± SD
27.2 ± 6.7
BMI, kg/m2, N (%)
 < 18
0
18–24
2 (20)
 > 24
8 (80)
Grade of gynecomastiaa, N (%)
Grade I (small enlargement without skin excess)
2 (20)
Grade IIa (moderate enlargement without skin excess)
7 (70)
Grade IIb (moderate enlargement with minor skin excess)
1 (10)
Grade III (marked enlargement with excess skin and ptosis)
0
Perioperative parameters for bilateral subcutaneous mastectomy
Mean ± SD (median, range)
Total operation time, min
310 ± 70
(312.5, 205–440)
Blood loss, ml
57.5 ± 35.8
(50, 30–150)
Mastectomy specimen weight, g
436.4 ± 261
(445.25, 140–931)
Length of hospital stay, days
1.8 ± 0.6
(2, 1–3)
Follow-up durations, months, mean ± SD (median, range)
3.3 ± 4.2
(1.5, 0–14)
BMI body mass index, SD standard deviation
aClassified by Simon et al. in Simon BE, Hoffman S, Kahn S. Classification and surgical correction of gynecomastia. Plast Reconstr Surg 1973;51:48–52

Patient-reported aesthetic results

83.8% (98/117) of breast cancer patients who received treatment by S-P 3D E-NSM answered the questionnaire. Regarding the results from 68 patients receiving S-P 3D E-NSM with immediate breast reconstruction (Table 4), 83.8% of them were satisfied with cosmetic outcomes while wearing clothes, 16.2% reported “fair,” and none of them reported poor results. 69.7% of the patients reported “good and excellent” breast symmetry, while 25.8% reported “fair” outcome. 79.1% of them were satisfied with the NAC position, 20.9% showed fair results, and none reported poor NAC location. However, 2 patients (2.9%) reported poor satisfaction without clothes, and 4 patients (6%) showed poor satisfaction with bilateral breast size and symmetry. The overall score results demonstrated “excellent” in 35.3% (24/68), “good” in 48.5% (33/68), and “fair” in 16.2% (11/68) of patients. None of the patients reported poor overall aesthetic outcomes. 80.9% of the patients reported that they would choose the same operation again if given the chance to do so.
Table 4
Patient-reported cosmetic outcomes after receiving S-P 3D E-NSM with immediate breast reconstruction
Questions (N = 68), N (%)
Poor
Fair
Good
Excellent
Mean score
Q1: preoperative breast appearance satisfaction
1 (1.5)
17 (25)
34 (50)
16 (23.5)
2.9 ± 0.7
Q2: postoperative breast appearance satisfaction—with clothes
0
11 (16.2)
31 (45.6)
26 (38.2)
3.2 ± 0.7
Q3: postoperative breast appearance satisfaction—without clothes
2 (2.9)
15 (22.1)
35 (51.5)
16 (23.5)
2.9 ± 0.8
Q4: postoperative bilateral breast size satisfaction (NA = 1)
1 (1.5)
19 (28.3)
30 (44.8)
17 (25.4)
2.9 ± 0.8
Q5: postoperative bilateral breast symmetry satisfaction (NA = 2)
3 (4.5)
17 (25.8)
28 (42.4)
18 (27.3)
2.9 ± 0.8
Q6: postoperative nipple-areola position satisfaction (NA = 1)
0
14 (20.9)
30 (44.8)
23 (34.3)
3.1 ± 0.7
Q7: scar appearance satisfaction (NA = 2)
0
8 (12.1)
24 (36.4)
34 (51.5)
3.4 ± 0.7
Q8: scar length satisfaction (NA = 1)
0
9 (13.5)
22 (32.8)
36 (53.7)
3.4 ± 0.7
Q9: surgical wound position satisfaction (NA = 1)
1 (1.5)
6 (8.9)
20 (29.9)
40 (59.7)
3.5 ± 0.7
Q10: are you willing to undergo S-P 3D E-NSM with immediate reconstruction again if you could choose?
Yes
No
Not sure
55 (80.9)
9 (13.2)
4 (5.9)
Overall score
Poor (8–11)
Fair (12–19)
Good (20–27)
Excellent (28–32)
 
N (%)
0
11 (16.2)
33 (48.5)
24 (35.3)
 
This questionnaire consisted of 10 questions and 4 itemized scales graded. Evaluate the overall satisfaction score of questions 2 to 9 for each patient. The aesthetic results indicated by the overall scores were as follows: 8–11 (poor), 12–19 (fair), 20–27 (good), and 28–32 (excellent). Patients with aesthetic results as “excellent” or “good” are defined as satisfied with the cosmetic outcome
S-P 3D E-NSM single-port 3-dimensional endoscopic-assisted nipple-sparing mastectomy
According to 30 patients who undergone S-P 3D E-NSM without reconstruction (Additional file 1: Table S1), 66.7% of patients reported “good” and “excellent,” and the remaining 33.3% reported “fair” to the overall cosmetic satisfaction. None of them reported “poor” overall aesthetic satisfaction, regardless of the skin reduction procedure. 53.3% and 61.9% of them were satisfied with cosmetic outcomes without clothes and bilateral breast size, respectively. Ninety percent of the patients reported that they would choose the same operation again if given the chance to do so.

Discussion

In the current study, we aimed to demonstrate perioperative outcomes and patient-reported aesthetic satisfaction with our innovative S-P 3D EABS. We conducted a retrospective analysis of 145 patients who underwent a total of 164 breast operations, which were 131 patients with breast cancer (Figs. 2 and 3) including 13 patients receiving prophylactic mastectomy and 10 male patients with bilateral gynecomastia (Fig. 4). Our findings demonstrated that this technique yielded acceptable complications and satisfactory aesthetic results.
The introduction of S-P 3D EABS in breast surgery represents a significant advancement in minimal-accessed breast surgery [3, 10, 11, 29]. At our center, we initiated the use of S-P 3D E-NSM in August 2018 [11] by addressing challenges faced during previous dual-incision 2D endoscopic surgery with retractors [1, 2, 14, 15, 3032]. Our approach involved performing endoscopic resection through a single, inconspicuous axillary incision, which aimed to optimize cosmetic outcomes while preserving blood supply to the NAC and skin flap [3]. Additionally, to ensure proper exposure from a distant incision, we replaced manual retraction with an air-insufflation system, which could minimize the burdensome for surgical assistants and reduce risks of skin flap or NAC ischemia/necrosis [3]. Furthermore, the integration of 3D videoscope technology offered improvement in depth perception and clear visualization through high-resolution imaging [12, 13]. These advancements have resulted in more precise surgical resection, comparable to the benefits seen in robotic breast surgery but at a significantly lower cost [29]. This aspect is particularly relevant for patients in low- to middle-income countries, where cost considerations are crucial.
In our center, the most common immediate reconstruction after S-P 3D E-NSM is direct-to-implant breast reconstruction in the subpectoral plane (Table 1). This approach involves utilizing a single axillary incision, which serves multiple purposes, including harvesting the sentinel lymph node (SLN), performing the S-P 3D E-NSM procedure, removing the specimen, and creating a subpectoral pocket for reconstruction. However, in cases where patients have a large specimen, an extension of the axillary incision is made longitudinally at the lateral part of the chest (intercostal space 3rd–6th, mid-axillary line) to facilitate the surgical exposure during mastectomy or ALND, specimen removal, and provide an option for additional volume replacement reconstruction, such as autologous pedicle TRAM flap (Fig. 2).
In our study, none of the patients required conversion to open surgery (Table 2). The use of 3D EABS resulted in less intraoperative blood loss, which can be attributed to the positive pressure of the air inflation system and clear visualization provided by the 3D imaging system, which facilitates precise resection and decreases a risk of bleeding from perforators [3, 3336]. The operative time of S-P 3D E-NSM may appear longer than previous studies and conventional breast surgery [3335, 3740]; however, our preliminary cumulative sum (CUSUM) plot analysis from 80 cases of S-P 3D E-NSM and ipsilateral gel implant-based reconstruction [3, 24] demonstrated that intraoperative blood loss and operative time significantly decrease after the learning curve of surgeons which required 27 cases to be overcome. Our length of hospital stay was comparable to previous studies [33, 37, 39, 41].
In terms of S-P 3D E-BCS, it seems to have a longer operative time, but offers better cosmetic outcomes compared to conventional BCS in previous studies [4248]. However, there is a lack of a large study comparing endoscopic and conventional BCS. Therefore, we are conducting a study comparing conventional and endoscopic breast surgery in our center.
Regarding perioperative complications, we found 32 events reported, which were mostly classified in CD classification I–II [22, 49](Table 2). Our results exhibited a lower incidence of NAC and skin flap ischemia/necrosis compared to previous studies [33, 37, 40]. This can be attributed to our single incision at an axilla or lateral chest, which did not disrupt blood flow to the NAC or skin flap over the breast [3, 10, 24, 25, 29, 50]. Additionally, the utilization of an air inflation system provided an adequate surgical exposure while minimizing traumatized traction force on the skin flap. Our hydro-dissection technique using a tumescent solution containing adrenaline might result in reduced blood loss, thereby decreasing thermal burns from excessive electrocauterization.
Clear visualization from the 3D imaging system also helped in identifying and preserving perforators that supplied blood flow to the NAC and skin flap [3, 11, 29, 49]. As a result, all these factors may contribute to the lower rate of NAC and skin flap ischemia. Furthermore, 95% (18/19) of NAC/flap ischemic events were reversible and successfully treated with local wound care at the outpatient clinic (CD I) [22]. Complications categorized as CD classification III [22] were reported in only 3 (2.2%) patients. One patient had a total NAC necrosis requiring a local debridement (CD IIIa). The remaining 2 patients were classified as CD IIIb, with one suffering from an implant infection requiring surgical drainage under general anesthesia, and the other with an implant infection requiring an explantation. None of the patients had been reported in CD classification IV or V.
Margin involvement is one of the major challenge in EABS for breast cancer patients [33, 36]. However, our results demonstrated an acceptable incidence of involved margins compared to previous studies [33, 51]. None of the patients receiving S-P 3D E-BCS in our study had an involved margin in their pathological reports, while only three patients (2.6%) who underwent S-P 3D E-NSM showed an involved margin (Table 2). This outcome may be attributed to our precise determination of resection margins using intraoperative ultrasonography and the utilization of breast specimen mammography to confirm adequate resection for S-P 3D E-BCS.
During the mean follow-up time of 34 months, we observed local recurrence in 2 patients (1.5%) and distant metastasis in nine patients (6.9%), with two of them suffering from multiple metastases after the surgery reported mortality (1.5%) from disease progression. Our incidences of short-term oncological outcomes were comparable to previous studies [6, 7, 23, 30, 33, 34, 36, 47, 5255].
Our concept of S-P 3D EABS can also be applied for the treatment of gynecomastia in male patients (Fig. 4). Compared with a periareolar incision in conventional subcutaneous mastectomy, a longitudinal incision at the lateral chest provides a less noticeable surgical scar and potentially preserves the blood flow of the NAC and skin flap (Table 3). Therefore, S-P 3D E-subcutaneous mastectomy could be a promising surgical alternative in this group of patients [27].
In accessing patient-reported cosmetic satisfaction (Table 4), 98 (83.8%) patients who underwent S-P 3D E-NSM responded to our questionnaire, including 18 from 24 patients who experienced postoperative complications. The majority of patients who undergone S-P 3D E-NSM expressed satisfaction with their breast appearance (75%) and scar appearance (87.9%), breast symmetry (69.7%), and NAC position (79.1%). The overall satisfaction was reported as “excellent” in 35.3% of patients and “good” in 48.5% of them. Furthermore, 80.9% of patients would choose S-P 3D E-NSM with immediate reconstruction again if given the opportunity. However, there were 6 patients who reported poor satisfaction with cosmetic appearance without clothes, bilateral breast size, or bilateral symmetry. This may be due to most of our breast reconstruction being gel implant which was possible to have bilateral asymmetry in some patients who had very small breasts. As for the patients receiving S-P 3D E-NSM without reconstruction, we have observed skin retraction gradually after the removal of breast tissue leaving a breast-like contour of the chest wall (Fig. 2(2.5)), and the result from our questionnaire showed that 66.7% of patients reported “good” and “excellent” and the remaining 33.3% reported “fair” to the overall cosmetic satisfaction, even none of the skin reduction procedure was performed (Additional file 1: Table S1).
Patient selection is one of the important factors to the success of EABS. We consider EABS in early-stage breast cancer and no severe medical comorbidity as mentioned before. Regarding the patient’s breast size and shape, the ideal candidates for S-P 3D E-NSM were patients with small to medium-sized breasts (≤ cup C or approximately < 450 g of breast specimen weight) and no/mild ptosis [3, 11]. However, when evaluating candidates for S-P 3D E-BCS, we consider the correlation between breast tumor size and the tumor location. For example, patients with medium-sized breasts (cup B or C) who have small tumor sizes (less than 2 cm) located at the upper outer, upper inner, or lower outer quadrants are preferable as they provide adequate space for dissection and a single port placement. However, a tumor at the lower-inner quadrant is not contraindicated for S-P 3D E-BCS, and an additional peri-areolar incision should be considered to facilitate an endoscopic resection. From our experiences, 2 patients with a tumor in the lower-inner area (one of them could undergo S-P 3D E-BCS through a single axillary incision and another was performed with dual axillary and peri-areolar incisions) reported no complication and comparable hospital stay.
One of the technical challenges encountered in our S-P 3D EABS with air insufflation is the evacuation of smoke generated during the surgery. To solve this issue, our approach involves connecting the endoscopic working instruments to Nelaton tubes, which are then attached to a suction device (Fig. 1j). This setup enables the aspiration of smoke in the surgical field, ensuring clear visibility and maintaining a safe operating environment.
While our study provides valuable insights, it is important to acknowledge certain limitations. The retrospective design of this study introduces the possibility of confounding factors that may influence the results. First, it could contain a recall bias in cosmetic outcome measurement, which some participants were not willing to answer the questionnaire in the outpatient clinic, and our questionnaire still lacks a formal validation. Furthermore, the follow-up period in our study is currently limited, especially those of S-P 3D E-BCS that was established in 2022. However, we keep monitoring the patients for longer follow-up time to achieve a comprehensive evaluation of the oncological safety of this technique. Another aspect that should be noted is the relatively small sample size and lack of direct comparison between 3D EABS and conventional, 2D EABS, or robotic breast surgery in our study. However, it is worth mentioning that this technique is increasingly being adopted in our institute, and we are collecting additional data to conduct further investigations on the efficacy and outcomes of S-P 3D EABS. By expanding our dataset, we aim to enhance our understanding of this technique and its potential benefits. Despite these limitations, our study provides a foundation for future research and highlights the improvement in the field of EABS.

Conclusion

Single-port 3D EABS is a promising minimal-accessed breast surgery technique, demonstrating its safety and efficacy in the treatment of both malignant and benign breast conditions, while also offering remarkable patient-reported aesthetic satisfaction.

Acknowledgements

The authors would like to thank Yi-Ru Ke, Shu-Hsin Pai, An-Ting Yeh, and Ya-Ting Zhung for their assistance in this study.

Declarations

This study was approved by the Institutional Review Board of the Changhua Christian Hospital (CCH IRB No. 141224 and 211228).
All the individual person’s data included in this study have consent for publication.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Tamaki Y, Sakita I, Miyoshi Y, Sekimoto M, Takiguchi S, Monden M, et al. Transareolar endoscopy-assisted partial mastectomy: a preliminary report of six cases. Surg Laparosc Endosc Percutan Tech. 2001;11(6):356–62.PubMedCrossRef Tamaki Y, Sakita I, Miyoshi Y, Sekimoto M, Takiguchi S, Monden M, et al. Transareolar endoscopy-assisted partial mastectomy: a preliminary report of six cases. Surg Laparosc Endosc Percutan Tech. 2001;11(6):356–62.PubMedCrossRef
2.
Zurück zum Zitat Leff DR, Vashisht R, Yongue G, Keshtgar M, Yang GZ, Darzi A. Endoscopic breast surgery: where are we now and what might the future hold for video-assisted breast surgery? Breast Cancer Res Treat. 2011;125(3):607–25.PubMedCrossRef Leff DR, Vashisht R, Yongue G, Keshtgar M, Yang GZ, Darzi A. Endoscopic breast surgery: where are we now and what might the future hold for video-assisted breast surgery? Breast Cancer Res Treat. 2011;125(3):607–25.PubMedCrossRef
3.
Zurück zum Zitat Lai HW, Chen ST, Mok CW, Chang YT, Lin SL, Lin YJ, et al. Single-port three-dimensional (3D) videoscope-assisted endoscopic nipple-sparing mastectomy in the management of breast cancer: technique, clinical outcomes, medical cost, learning curve, and patient-reported aesthetic results from 80 preliminary procedures. Ann Surg Oncol. 2021;28(12):7331–44.PubMedCrossRef Lai HW, Chen ST, Mok CW, Chang YT, Lin SL, Lin YJ, et al. Single-port three-dimensional (3D) videoscope-assisted endoscopic nipple-sparing mastectomy in the management of breast cancer: technique, clinical outcomes, medical cost, learning curve, and patient-reported aesthetic results from 80 preliminary procedures. Ann Surg Oncol. 2021;28(12):7331–44.PubMedCrossRef
4.
Zurück zum Zitat Lai HW, Chen ST, Mok CW, Lin YJ, Wu HK, Lin SL, et al. Robotic versus conventional nipple sparing mastectomy and immediate gel implant breast reconstruction in the management of breast cancer - a case control comparison study with analysis of clinical outcome, medical cost, and patient-reported cosmetic results. J Plast Reconstr Aesthet Surg. 2020;73(8):1514–25.PubMedCrossRef Lai HW, Chen ST, Mok CW, Lin YJ, Wu HK, Lin SL, et al. Robotic versus conventional nipple sparing mastectomy and immediate gel implant breast reconstruction in the management of breast cancer - a case control comparison study with analysis of clinical outcome, medical cost, and patient-reported cosmetic results. J Plast Reconstr Aesthet Surg. 2020;73(8):1514–25.PubMedCrossRef
5.
Zurück zum Zitat Lai HW, Chen ST, Tai CM, Lin SL, Lin YJ, Huang RH, et al. Robotic- versus endoscopic-assisted nipple-sparing mastectomy with immediate prosthesis breast reconstruction in the management of breast cancer: a case-control comparison study with analysis of clinical outcomes, learning curve, patient-reported aesthetic results, and medical cost. Ann Surg Oncol. 2020;27(7):2255–68.PubMedCrossRef Lai HW, Chen ST, Tai CM, Lin SL, Lin YJ, Huang RH, et al. Robotic- versus endoscopic-assisted nipple-sparing mastectomy with immediate prosthesis breast reconstruction in the management of breast cancer: a case-control comparison study with analysis of clinical outcomes, learning curve, patient-reported aesthetic results, and medical cost. Ann Surg Oncol. 2020;27(7):2255–68.PubMedCrossRef
6.
Zurück zum Zitat Wan A, Liang Y, Chen L, Wang S, Shi Q, Yan W, et al. Association of long-term oncologic prognosis with minimal access breast surgery vs conventional breast surgery. JAMA Surg. 2022;157(12):e224711.PubMedPubMedCentralCrossRef Wan A, Liang Y, Chen L, Wang S, Shi Q, Yan W, et al. Association of long-term oncologic prognosis with minimal access breast surgery vs conventional breast surgery. JAMA Surg. 2022;157(12):e224711.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Lai HW, Mok CW, Chang YT, Chen DR, Kuo SJ, Chen ST. Endoscopic assisted breast conserving surgery for breast cancer: clinical outcome, learning curve, and patient reported aesthetic results from preliminary 100 procedures. Eur J Surg Oncol. 2020;46(8):1446–55.PubMedCrossRef Lai HW, Mok CW, Chang YT, Chen DR, Kuo SJ, Chen ST. Endoscopic assisted breast conserving surgery for breast cancer: clinical outcome, learning curve, and patient reported aesthetic results from preliminary 100 procedures. Eur J Surg Oncol. 2020;46(8):1446–55.PubMedCrossRef
8.
Zurück zum Zitat Park HS, Lee J, Lai HW, Park JM, Ryu JM, Lee JE, et al. Surgical and oncologic outcomes of robotic and conventional nipple-sparing mastectomy with immediate reconstruction: international multicenter pooled data analysis. Ann Surg Oncol. 2022;29(11):6646–57.PubMedCrossRef Park HS, Lee J, Lai HW, Park JM, Ryu JM, Lee JE, et al. Surgical and oncologic outcomes of robotic and conventional nipple-sparing mastectomy with immediate reconstruction: international multicenter pooled data analysis. Ann Surg Oncol. 2022;29(11):6646–57.PubMedCrossRef
9.
Zurück zum Zitat Toesca A, Invento A, Massari G, Girardi A, Peradze N, Lissidini G, et al. Update on the feasibility and progress on robotic breast surgery. Ann Surg Oncol. 2019;26(10):3046–51.PubMedPubMedCentralCrossRef Toesca A, Invento A, Massari G, Girardi A, Peradze N, Lissidini G, et al. Update on the feasibility and progress on robotic breast surgery. Ann Surg Oncol. 2019;26(10):3046–51.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Lai HW, Chen ST, Mok CW, Lin SL, Tai CM, Chen DR, et al. Single-port 3-dimensional videoscope-assisted endoscopic nipple-sparing mastectomy in the management of breast cancer. Plast Reconstr Surg Glob Open. 2019;7(8): e2367.PubMedPubMedCentralCrossRef Lai HW, Chen ST, Mok CW, Lin SL, Tai CM, Chen DR, et al. Single-port 3-dimensional videoscope-assisted endoscopic nipple-sparing mastectomy in the management of breast cancer. Plast Reconstr Surg Glob Open. 2019;7(8): e2367.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Yoon J, Kang SI, Kim MH, Kim MJ, Oh HK, Kim DW, et al. Comparison of short-term outcomes between 3D and 2D imaging laparoscopic colectomy with D3 lymphadenectomy for colon cancer. J Laparoendosc Adv Surg Tech A. 2019;29(3):340–5.PubMedCrossRef Yoon J, Kang SI, Kim MH, Kim MJ, Oh HK, Kim DW, et al. Comparison of short-term outcomes between 3D and 2D imaging laparoscopic colectomy with D3 lymphadenectomy for colon cancer. J Laparoendosc Adv Surg Tech A. 2019;29(3):340–5.PubMedCrossRef
13.
Zurück zum Zitat Harada H, Kanaji S, Hasegawa H, Yamamoto M, Matsuda Y, Yamashita K, et al. The effect on surgical skills of expert surgeons using 3D/HD and 2D/4K resolution monitors in laparoscopic phantom tasks. Surg Endosc. 2018;32(10):4228–34.PubMedCrossRef Harada H, Kanaji S, Hasegawa H, Yamamoto M, Matsuda Y, Yamashita K, et al. The effect on surgical skills of expert surgeons using 3D/HD and 2D/4K resolution monitors in laparoscopic phantom tasks. Surg Endosc. 2018;32(10):4228–34.PubMedCrossRef
14.
Zurück zum Zitat Lai HW, Wu HS, Chuang KL, Chen DR, Chang TW, Kuo SJ, et al. Endoscopy-assisted total mastectomy followed by immediate pedicled transverse rectus abdominis musculocutaneous (TRAM) flap reconstruction: preliminary results of 48 patients. Surg Innov. 2015;22(4):382–9.PubMedCrossRef Lai HW, Wu HS, Chuang KL, Chen DR, Chang TW, Kuo SJ, et al. Endoscopy-assisted total mastectomy followed by immediate pedicled transverse rectus abdominis musculocutaneous (TRAM) flap reconstruction: preliminary results of 48 patients. Surg Innov. 2015;22(4):382–9.PubMedCrossRef
16.
Zurück zum Zitat Zhu L, Li S, Tan L, Zhang X, Wu J, Su F, et al. In pursuit of a flawless aphrodite: paving the way to scarless oncoplastic breast surgery. Cancer Commun (London, England). 2019;39(1):82.CrossRef Zhu L, Li S, Tan L, Zhang X, Wu J, Su F, et al. In pursuit of a flawless aphrodite: paving the way to scarless oncoplastic breast surgery. Cancer Commun (London, England). 2019;39(1):82.CrossRef
17.
Zurück zum Zitat Alço G, Igdem S, Okkan S, Dincer M, Sarsenov D, Ilgun AS, et al. Replacement of the tumor bed following oncoplastic breast-conserving surgery with immediate latissimus dorsi mini-flap. Mol Clin Oncol. 2016;5(4):365–71.PubMedPubMedCentralCrossRef Alço G, Igdem S, Okkan S, Dincer M, Sarsenov D, Ilgun AS, et al. Replacement of the tumor bed following oncoplastic breast-conserving surgery with immediate latissimus dorsi mini-flap. Mol Clin Oncol. 2016;5(4):365–71.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Wang ZH, Xin P, Qu X, Zhang ZT. Breast reconstruction using a laparoscopically harvested pedicled omental flap after endoscopic mastectomy for patients with breast cancer: an observational study of a minimally invasive method. Gland Surg. 2020;9(3):676–88.PubMedPubMedCentralCrossRef Wang ZH, Xin P, Qu X, Zhang ZT. Breast reconstruction using a laparoscopically harvested pedicled omental flap after endoscopic mastectomy for patients with breast cancer: an observational study of a minimally invasive method. Gland Surg. 2020;9(3):676–88.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Lemaine V, Hoskin TL, Farley DR, Grant CS, Boughey JC, Torstenson TA, et al. Introducing the SKIN score: a validated scoring system to assess severity of mastectomy skin flap necrosis. Ann Surg Oncol. 2015;22(9):2925–32.PubMedCrossRef Lemaine V, Hoskin TL, Farley DR, Grant CS, Boughey JC, Torstenson TA, et al. Introducing the SKIN score: a validated scoring system to assess severity of mastectomy skin flap necrosis. Ann Surg Oncol. 2015;22(9):2925–32.PubMedCrossRef
20.
Zurück zum Zitat Robertson SA, Jeevaratnam JA, Agrawal A, Cutress RI. Mastectomy skin flap necrosis: challenges and solutions. Breast Cancer (Dove Med Press). 2017;9:141–52.PubMed Robertson SA, Jeevaratnam JA, Agrawal A, Cutress RI. Mastectomy skin flap necrosis: challenges and solutions. Breast Cancer (Dove Med Press). 2017;9:141–52.PubMed
21.
Zurück zum Zitat Lai HW, Lin J, Sae-Lim C, Lin YJ, Chen DR, Lai YC, et al. Oncoplastic and reconstructive breast surgeon performance and impact on breast reconstructions: clinical outcomes, learning curve, and patients’ satisfaction. Surg Oncol. 2023;47:101920.PubMedCrossRef Lai HW, Lin J, Sae-Lim C, Lin YJ, Chen DR, Lai YC, et al. Oncoplastic and reconstructive breast surgeon performance and impact on breast reconstructions: clinical outcomes, learning curve, and patients’ satisfaction. Surg Oncol. 2023;47:101920.PubMedCrossRef
22.
Zurück zum Zitat Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.PubMedPubMedCentralCrossRef Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Lai HW, Chen ST, Liao CY, Mok CW, Lin YJ, Chen DR, et al. Oncologic outcome of endoscopic assisted breast surgery compared with conventional approach in breast cancer: an analysis of 3426 primary operable breast cancer patients from single institute with and without propensity score matching. Ann Surg Oncol. 2021;28(12):7368–80.PubMedCrossRef Lai HW, Chen ST, Liao CY, Mok CW, Lin YJ, Chen DR, et al. Oncologic outcome of endoscopic assisted breast surgery compared with conventional approach in breast cancer: an analysis of 3426 primary operable breast cancer patients from single institute with and without propensity score matching. Ann Surg Oncol. 2021;28(12):7368–80.PubMedCrossRef
24.
Zurück zum Zitat Lai HW, Lin SL, Chen ST, Kuok KM, Chen SL, Lin YL, et al. Single-axillary-incision endoscopic-assisted hybrid technique for nipple-sparing mastectomy: technique, preliminary results, and patient-reported cosmetic outcome from preliminary 50 procedures. Ann Surg Oncol. 2018;25(5):1340–9.PubMedCrossRef Lai HW, Lin SL, Chen ST, Kuok KM, Chen SL, Lin YL, et al. Single-axillary-incision endoscopic-assisted hybrid technique for nipple-sparing mastectomy: technique, preliminary results, and patient-reported cosmetic outcome from preliminary 50 procedures. Ann Surg Oncol. 2018;25(5):1340–9.PubMedCrossRef
25.
Zurück zum Zitat Lai HW, Chen ST, Lin SL, Chen CJ, Lin YL, Pai SH, et al. Robotic nipple-sparing mastectomy and immediate breast reconstruction with gel implant: technique, preliminary results and patient-reported cosmetic outcome. Ann Surg Oncol. 2019;26(1):42–52.PubMedCrossRef Lai HW, Chen ST, Lin SL, Chen CJ, Lin YL, Pai SH, et al. Robotic nipple-sparing mastectomy and immediate breast reconstruction with gel implant: technique, preliminary results and patient-reported cosmetic outcome. Ann Surg Oncol. 2019;26(1):42–52.PubMedCrossRef
26.
Zurück zum Zitat Gradishar WJ, Moran MS, Abraham J, Abramson V, Aft R, Agnese D, et al. NCCN Guidelines® insights: breast cancer, version 4.2023. J Natl Compr Cancer Netw. 2023;21(6):594–608.CrossRef Gradishar WJ, Moran MS, Abraham J, Abramson V, Aft R, Agnese D, et al. NCCN Guidelines® insights: breast cancer, version 4.2023. J Natl Compr Cancer Netw. 2023;21(6):594–608.CrossRef
27.
Zurück zum Zitat Wen TC, Lai HW, Mok CW, Chen ST, Chen DR, Kuo SJ. Surgical management of complicated gynecomastia (associated with foreign body injection) with single-port 3-dimensional videoscope-assisted endoscopic subcutaneous mastectomy and concurrent liposuction: a case report. Medicine (Baltimore). 2021;100(22):e25962.PubMedCrossRef Wen TC, Lai HW, Mok CW, Chen ST, Chen DR, Kuo SJ. Surgical management of complicated gynecomastia (associated with foreign body injection) with single-port 3-dimensional videoscope-assisted endoscopic subcutaneous mastectomy and concurrent liposuction: a case report. Medicine (Baltimore). 2021;100(22):e25962.PubMedCrossRef
28.
Zurück zum Zitat Kim YW, Kim YJ, Kong JS, Cheon YW. Use of the pectoralis major, serratus anterior, and external oblique fascial flap for immediate one-stage breast reconstruction with implant. Aesthetic Plast Surg. 2014;38(4):704–10.PubMedCrossRef Kim YW, Kim YJ, Kong JS, Cheon YW. Use of the pectoralis major, serratus anterior, and external oblique fascial flap for immediate one-stage breast reconstruction with implant. Aesthetic Plast Surg. 2014;38(4):704–10.PubMedCrossRef
29.
Zurück zum Zitat Lai HW, Chen ST, Lin YJ, Lin SL, Lin CM, Chen DR, et al. Minimal access (endoscopic and robotic) breast surgery in the surgical treatment of early breast cancer-trend and clinical outcome from a single-surgeon experience over 10 years. Front Oncol. 2021;11:739144.PubMedPubMedCentralCrossRef Lai HW, Chen ST, Lin YJ, Lin SL, Lin CM, Chen DR, et al. Minimal access (endoscopic and robotic) breast surgery in the surgical treatment of early breast cancer-trend and clinical outcome from a single-surgeon experience over 10 years. Front Oncol. 2021;11:739144.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Lai HW, Chen ST, Chen DR, Chen SL, Chang TW, Kuo SJ, et al. Current trends in and indications for endoscopy-assisted breast surgery for breast cancer: results from a six-year study conducted by the Taiwan Endoscopic Breast Surgery Cooperative Group. PLoS One. 2016;11(3):e0150310.PubMedPubMedCentralCrossRef Lai HW, Chen ST, Chen DR, Chen SL, Chang TW, Kuo SJ, et al. Current trends in and indications for endoscopy-assisted breast surgery for breast cancer: results from a six-year study conducted by the Taiwan Endoscopic Breast Surgery Cooperative Group. PLoS One. 2016;11(3):e0150310.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Ozaki S, Ohara M. Endoscopy-assisted breast-conserving surgery for breast cancer patients. Gland Surg. 2014;3(2):94–108.PubMedPubMedCentral Ozaki S, Ohara M. Endoscopy-assisted breast-conserving surgery for breast cancer patients. Gland Surg. 2014;3(2):94–108.PubMedPubMedCentral
32.
Zurück zum Zitat Hung CS, Chang SW, Liao LM, Huang CC, Tu SH, Chen ST, et al. The learning curve of endoscopic total mastectomy in Taiwan: a multi-center study. PLoS ONE. 2017;12(6):e0178251.PubMedPubMedCentralCrossRef Hung CS, Chang SW, Liao LM, Huang CC, Tu SH, Chen ST, et al. The learning curve of endoscopic total mastectomy in Taiwan: a multi-center study. PLoS ONE. 2017;12(6):e0178251.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Kuo YL, Chang CH, Chang TY, Chien HF, Liao LM, Hung CS, et al. Endoscopy-assisted total mastectomy with and without immediate reconstruction: an extended follow-up, multicenter study. Plast Reconstr Surg. 2021;147(2):267–78.PubMedCrossRef Kuo YL, Chang CH, Chang TY, Chien HF, Liao LM, Hung CS, et al. Endoscopy-assisted total mastectomy with and without immediate reconstruction: an extended follow-up, multicenter study. Plast Reconstr Surg. 2021;147(2):267–78.PubMedCrossRef
34.
Zurück zum Zitat Du J, Liang Q, Qi X, Ming J, Liu J, Zhong L, et al. Endoscopic nipple sparing mastectomy with immediate implant-based reconstruction versus breast conserving surgery: a long-term study. Sci Rep. 2017;7:45636.PubMedPubMedCentralCrossRef Du J, Liang Q, Qi X, Ming J, Liu J, Zhong L, et al. Endoscopic nipple sparing mastectomy with immediate implant-based reconstruction versus breast conserving surgery: a long-term study. Sci Rep. 2017;7:45636.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Fan LJ, Jiang J, Yang XH, Zhang Y, Li XG, Chen XC, et al. A prospective study comparing endoscopic subcutaneous mastectomy plus immediate reconstruction with implants and breast conserving surgery for breast cancer. Chin Med J (Engl). 2009;122(24):2945–50.PubMed Fan LJ, Jiang J, Yang XH, Zhang Y, Li XG, Chen XC, et al. A prospective study comparing endoscopic subcutaneous mastectomy plus immediate reconstruction with implants and breast conserving surgery for breast cancer. Chin Med J (Engl). 2009;122(24):2945–50.PubMed
36.
Zurück zum Zitat Mok CW, Lai HW. Endoscopic-assisted surgery in the management of breast cancer: 20 years review of trend, techniques and outcomes. Breast (Edinburgh, Scotland). 2019;46:144–56.PubMedCrossRef Mok CW, Lai HW. Endoscopic-assisted surgery in the management of breast cancer: 20 years review of trend, techniques and outcomes. Breast (Edinburgh, Scotland). 2019;46:144–56.PubMedCrossRef
37.
Zurück zum Zitat Qiu J, Wen N, Xie Y, Feng Y, Liang F, Lv Q, et al. Novel technique for endoscopic-assisted nipple-sparing mastectomy and immediate breast reconstruction with endoscopic-assisted latissimus dorsi muscle flap harvest through a single axillary incision: a retrospective cohort study of comparing endoscopic and open surgery. Gland Surg. 2022;11(8):1383–94.PubMedPubMedCentralCrossRef Qiu J, Wen N, Xie Y, Feng Y, Liang F, Lv Q, et al. Novel technique for endoscopic-assisted nipple-sparing mastectomy and immediate breast reconstruction with endoscopic-assisted latissimus dorsi muscle flap harvest through a single axillary incision: a retrospective cohort study of comparing endoscopic and open surgery. Gland Surg. 2022;11(8):1383–94.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Zhang S, Xie Y, Liang F, Wang Y, Lv Q, Du Z. Endoscopic-assisted nipple-sparing mastectomy with direct-to-implant subpectoral breast reconstruction in the management of breast cancer. Plast Reconstr Surg Glob Open. 2021;9(12):e3978.PubMedPubMedCentralCrossRef Zhang S, Xie Y, Liang F, Wang Y, Lv Q, Du Z. Endoscopic-assisted nipple-sparing mastectomy with direct-to-implant subpectoral breast reconstruction in the management of breast cancer. Plast Reconstr Surg Glob Open. 2021;9(12):e3978.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Lee HY, Chang YW, Yu DY, Lee TY, Kim DW, Kim WY, et al. Comparison of single incision endoscopic nipple-sparing mastectomy and conventional nipple-sparing mastectomy for breast cancer based on initial experience. J Breast Cancer. 2021;24(2):196–205.PubMedPubMedCentralCrossRef Lee HY, Chang YW, Yu DY, Lee TY, Kim DW, Kim WY, et al. Comparison of single incision endoscopic nipple-sparing mastectomy and conventional nipple-sparing mastectomy for breast cancer based on initial experience. J Breast Cancer. 2021;24(2):196–205.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Wang ZH, Qu X, Teng CS, Ge ZC, Zhang HM, Yuan Z, et al. Preliminary results for treatment of early stage breast cancer with endoscopic subcutaneous mastectomy combined with endoscopic sentinel lymph node biopsy in China. J Surg Oncol. 2016;113(6):616–20.PubMedCrossRef Wang ZH, Qu X, Teng CS, Ge ZC, Zhang HM, Yuan Z, et al. Preliminary results for treatment of early stage breast cancer with endoscopic subcutaneous mastectomy combined with endoscopic sentinel lymph node biopsy in China. J Surg Oncol. 2016;113(6):616–20.PubMedCrossRef
41.
Zurück zum Zitat Franceschini G, Visconti G, Garganese G, Barone-Adesi L, Di Leone A, Sanchez AM, et al. Nipple-sparing mastectomy combined with endoscopic immediate reconstruction via axillary incision for breast cancer: a preliminary experience of an innovative technique. Breast J. 2020;26(2):206–10.PubMedCrossRef Franceschini G, Visconti G, Garganese G, Barone-Adesi L, Di Leone A, Sanchez AM, et al. Nipple-sparing mastectomy combined with endoscopic immediate reconstruction via axillary incision for breast cancer: a preliminary experience of an innovative technique. Breast J. 2020;26(2):206–10.PubMedCrossRef
42.
Zurück zum Zitat Xie F, Wang ZH, Wu SS, Gang TR, Gao GX, Qu X, et al. Comparing outcomes of single-port insufflation endoscopic breast-conserving surgery and conventional open approach for breast cancer. World J Surg Oncol. 2022;20(1):335.PubMedPubMedCentralCrossRef Xie F, Wang ZH, Wu SS, Gang TR, Gao GX, Qu X, et al. Comparing outcomes of single-port insufflation endoscopic breast-conserving surgery and conventional open approach for breast cancer. World J Surg Oncol. 2022;20(1):335.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Yamashita K, Shimizu K. Endoscopic video-assisted breast surgery: procedures and short-term results. J Nippon Med Sch. 2006;73(4):193–202.PubMedCrossRef Yamashita K, Shimizu K. Endoscopic video-assisted breast surgery: procedures and short-term results. J Nippon Med Sch. 2006;73(4):193–202.PubMedCrossRef
44.
Zurück zum Zitat Yamashita K, Shimizu K. Transaxillary retromammary route approach of video-assisted breast surgery enables the inner-side breast cancer to be resected for breast conserving surgery. Am J Surg. 2008;196(4):578–81.PubMedCrossRef Yamashita K, Shimizu K. Transaxillary retromammary route approach of video-assisted breast surgery enables the inner-side breast cancer to be resected for breast conserving surgery. Am J Surg. 2008;196(4):578–81.PubMedCrossRef
45.
Zurück zum Zitat Takemoto N, Koyanagi A, Yamamoto H. Comparison between endoscope-assisted partial mastectomy with filling of dead space using absorbable mesh and conventional conservative method on cosmetic outcome in patients with stage I or II breast cancer. Surg Laparosc Endosc Percutan Tech. 2012;22(1):68–72.PubMedCrossRef Takemoto N, Koyanagi A, Yamamoto H. Comparison between endoscope-assisted partial mastectomy with filling of dead space using absorbable mesh and conventional conservative method on cosmetic outcome in patients with stage I or II breast cancer. Surg Laparosc Endosc Percutan Tech. 2012;22(1):68–72.PubMedCrossRef
46.
Zurück zum Zitat Takemoto N, Koyanagi A, Yamamoto H. Ten-year follow up of cosmetic outcome, overall survival, and disease-free survival in endoscope-assisted partial mastectomy with filling of dead space using absorbable mesh for stage IIA breast cancer: comparison with conventional conservative method. BMC Womens Health. 2021;21(1):253.PubMedPubMedCentralCrossRef Takemoto N, Koyanagi A, Yamamoto H. Ten-year follow up of cosmetic outcome, overall survival, and disease-free survival in endoscope-assisted partial mastectomy with filling of dead space using absorbable mesh for stage IIA breast cancer: comparison with conventional conservative method. BMC Womens Health. 2021;21(1):253.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Takahashi H, Fujii T, Nakagawa S, Inoue Y, Akashi M, Toh U, et al. Usefulness of endoscopic breast-conserving surgery for breast cancer. Surg Today. 2014;44(11):2037–44.PubMedCrossRef Takahashi H, Fujii T, Nakagawa S, Inoue Y, Akashi M, Toh U, et al. Usefulness of endoscopic breast-conserving surgery for breast cancer. Surg Today. 2014;44(11):2037–44.PubMedCrossRef
48.
Zurück zum Zitat Park HS, Lee JS, Park S, Kim SI, Park BW. The feasibility of endoscopy-assisted breast conservation surgery for patients with early breast cancer. J Breast Cancer. 2011;14(1):52–7.PubMedPubMedCentralCrossRef Park HS, Lee JS, Park S, Kim SI, Park BW. The feasibility of endoscopy-assisted breast conservation surgery for patients with early breast cancer. J Breast Cancer. 2011;14(1):52–7.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Panhofer P, Ferenc V, Schütz M, Gleiss A, Dubsky P, Jakesz R, et al. Standardization of morbidity assessment in breast cancer surgery using the Clavien Dindo classification. Int J Surg (London, England). 2014;12(4):334–9.CrossRef Panhofer P, Ferenc V, Schütz M, Gleiss A, Dubsky P, Jakesz R, et al. Standardization of morbidity assessment in breast cancer surgery using the Clavien Dindo classification. Int J Surg (London, England). 2014;12(4):334–9.CrossRef
50.
Zurück zum Zitat Lai HW. ASO author reflections: single axillary incision endoscopic-assisted hybrid technique for nipple-sparing mastectomy. Ann Surg Oncol. 2018;25(Suppl 3):626–7.PubMedCrossRef Lai HW. ASO author reflections: single axillary incision endoscopic-assisted hybrid technique for nipple-sparing mastectomy. Ann Surg Oncol. 2018;25(Suppl 3):626–7.PubMedCrossRef
51.
Zurück zum Zitat Kitamura K, Ishida M, Inoue H, Kinoshita J, Hashizume M, Sugimachi K. Early results of an endoscope-assisted subcutaneous mastectomy and reconstruction for breast cancer. Surgery. 2002;131(1 Suppl):S324–9.PubMedCrossRef Kitamura K, Ishida M, Inoue H, Kinoshita J, Hashizume M, Sugimachi K. Early results of an endoscope-assisted subcutaneous mastectomy and reconstruction for breast cancer. Surgery. 2002;131(1 Suppl):S324–9.PubMedCrossRef
52.
Zurück zum Zitat Nakajima H, Fujiwara I, Mizuta N, Sakaguchi K, Hachimine Y, Magae J. Video-assisted skin-sparing breast-conserving surgery for breast cancer and immediate reconstruction with autologous tissue: clinical outcomes. Ann Surg Oncol. 2009;16(7):1982–9.PubMedCrossRef Nakajima H, Fujiwara I, Mizuta N, Sakaguchi K, Hachimine Y, Magae J. Video-assisted skin-sparing breast-conserving surgery for breast cancer and immediate reconstruction with autologous tissue: clinical outcomes. Ann Surg Oncol. 2009;16(7):1982–9.PubMedCrossRef
53.
Zurück zum Zitat Sakamoto N, Fukuma E, Higa K, Ozaki S, Sakamoto M, Abe S, et al. Early results of an endoscopic nipple-sparing mastectomy for breast cancer. Ann Surg Oncol. 2009;16(12):3406–13.PubMedCrossRef Sakamoto N, Fukuma E, Higa K, Ozaki S, Sakamoto M, Abe S, et al. Early results of an endoscopic nipple-sparing mastectomy for breast cancer. Ann Surg Oncol. 2009;16(12):3406–13.PubMedCrossRef
54.
Zurück zum Zitat Ozaki S, Ohara M, Shigematsu H, Sasada T, Emi A, Masumoto N, et al. Technical feasibility and cosmetic advantage of hybrid endoscopy-assisted breast-conserving surgery for breast cancer patients. J Laparoendosc Adv Surg Tech A. 2013;23(2):91–9.PubMedCrossRef Ozaki S, Ohara M, Shigematsu H, Sasada T, Emi A, Masumoto N, et al. Technical feasibility and cosmetic advantage of hybrid endoscopy-assisted breast-conserving surgery for breast cancer patients. J Laparoendosc Adv Surg Tech A. 2013;23(2):91–9.PubMedCrossRef
55.
Zurück zum Zitat Sakamoto N, Fukuma E, Teraoka K, Hoshi K. Local recurrence following treatment for breast cancer with an endoscopic nipple-sparing mastectomy. Breast cancer (Tokyo, Japan). 2016;23(4):552–60.PubMedCrossRef Sakamoto N, Fukuma E, Teraoka K, Hoshi K. Local recurrence following treatment for breast cancer with an endoscopic nipple-sparing mastectomy. Breast cancer (Tokyo, Japan). 2016;23(4):552–60.PubMedCrossRef
Metadaten
Titel
Single-port three-dimensional (3D) endoscopic-assisted breast surgery—preliminary results and patient-reported satisfaction in 145 breast cancer and gynecomastia cases
verfasst von
Clement Luck Khng Chia
Chayanee Sae-lim
Hung-Wen Lai
Korawan Chandrachamnong
Hsin-I. Huang
Dar-Ren Chen
Shou-Tung Chen
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2023
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-023-03191-7

Weitere Artikel der Ausgabe 1/2023

World Journal of Surgical Oncology 1/2023 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Deutlich weniger Infektionen: Wundprotektoren schützen!

08.05.2024 Postoperative Wundinfektion Nachrichten

Der Einsatz von Wundprotektoren bei offenen Eingriffen am unteren Gastrointestinaltrakt schützt vor Infektionen im Op.-Gebiet – und dient darüber hinaus der besseren Sicht. Das bestätigt mit großer Robustheit eine randomisierte Studie im Fachblatt JAMA Surgery.

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.